Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include "ceres/linear_least_squares_problems.h"
     32 
     33 #include <cstdio>
     34 #include <string>
     35 #include <vector>
     36 #include "ceres/block_sparse_matrix.h"
     37 #include "ceres/block_structure.h"
     38 #include "ceres/casts.h"
     39 #include "ceres/file.h"
     40 #include "ceres/internal/scoped_ptr.h"
     41 #include "ceres/stringprintf.h"
     42 #include "ceres/triplet_sparse_matrix.h"
     43 #include "ceres/types.h"
     44 #include "glog/logging.h"
     45 
     46 namespace ceres {
     47 namespace internal {
     48 
     49 LinearLeastSquaresProblem* CreateLinearLeastSquaresProblemFromId(int id) {
     50   switch (id) {
     51     case 0:
     52       return LinearLeastSquaresProblem0();
     53     case 1:
     54       return LinearLeastSquaresProblem1();
     55     case 2:
     56       return LinearLeastSquaresProblem2();
     57     case 3:
     58       return LinearLeastSquaresProblem3();
     59     default:
     60       LOG(FATAL) << "Unknown problem id requested " << id;
     61   }
     62   return NULL;
     63 }
     64 
     65 /*
     66 A = [1   2]
     67     [3   4]
     68     [6 -10]
     69 
     70 b = [  8
     71       18
     72      -18]
     73 
     74 x = [2
     75      3]
     76 
     77 D = [1
     78      2]
     79 
     80 x_D = [1.78448275;
     81        2.82327586;]
     82  */
     83 LinearLeastSquaresProblem* LinearLeastSquaresProblem0() {
     84   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem;
     85 
     86   TripletSparseMatrix* A = new TripletSparseMatrix(3, 2, 6);
     87   problem->b.reset(new double[3]);
     88   problem->D.reset(new double[2]);
     89 
     90   problem->x.reset(new double[2]);
     91   problem->x_D.reset(new double[2]);
     92 
     93   int* Ai = A->mutable_rows();
     94   int* Aj = A->mutable_cols();
     95   double* Ax = A->mutable_values();
     96 
     97   int counter = 0;
     98   for (int i = 0; i < 3; ++i) {
     99     for (int j = 0; j< 2; ++j) {
    100       Ai[counter]=i;
    101       Aj[counter]=j;
    102       ++counter;
    103     }
    104   };
    105 
    106   Ax[0] = 1.;
    107   Ax[1] = 2.;
    108   Ax[2] = 3.;
    109   Ax[3] = 4.;
    110   Ax[4] = 6;
    111   Ax[5] = -10;
    112   A->set_num_nonzeros(6);
    113   problem->A.reset(A);
    114 
    115   problem->b[0] = 8;
    116   problem->b[1] = 18;
    117   problem->b[2] = -18;
    118 
    119   problem->x[0] = 2.0;
    120   problem->x[1] = 3.0;
    121 
    122   problem->D[0] = 1;
    123   problem->D[1] = 2;
    124 
    125   problem->x_D[0] = 1.78448275;
    126   problem->x_D[1] = 2.82327586;
    127   return problem;
    128 }
    129 
    130 
    131 /*
    132       A = [1 0  | 2 0 0
    133            3 0  | 0 4 0
    134            0 5  | 0 0 6
    135            0 7  | 8 0 0
    136            0 9  | 1 0 0
    137            0 0  | 1 1 1]
    138 
    139       b = [0
    140            1
    141            2
    142            3
    143            4
    144            5]
    145 
    146       c = A'* b = [ 3
    147                    67
    148                    33
    149                     9
    150                    17]
    151 
    152       A'A = [10    0    2   12   0
    153               0  155   65    0  30
    154               2   65   70    1   1
    155              12    0    1   17   1
    156               0   30    1    1  37]
    157 
    158       S = [ 42.3419  -1.4000  -11.5806
    159             -1.4000   2.6000    1.0000
    160             11.5806   1.0000   31.1935]
    161 
    162       r = [ 4.3032
    163             5.4000
    164             5.0323]
    165 
    166       S\r = [ 0.2102
    167               2.1367
    168               0.1388]
    169 
    170       A\b = [-2.3061
    171               0.3172
    172               0.2102
    173               2.1367
    174               0.1388]
    175 */
    176 // The following two functions create a TripletSparseMatrix and a
    177 // BlockSparseMatrix version of this problem.
    178 
    179 // TripletSparseMatrix version.
    180 LinearLeastSquaresProblem* LinearLeastSquaresProblem1() {
    181   int num_rows = 6;
    182   int num_cols = 5;
    183 
    184   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem;
    185   TripletSparseMatrix* A = new TripletSparseMatrix(num_rows,
    186                                                    num_cols,
    187                                                    num_rows * num_cols);
    188   problem->b.reset(new double[num_rows]);
    189   problem->D.reset(new double[num_cols]);
    190   problem->num_eliminate_blocks = 2;
    191 
    192   int* rows = A->mutable_rows();
    193   int* cols = A->mutable_cols();
    194   double* values = A->mutable_values();
    195 
    196   int nnz = 0;
    197 
    198   // Row 1
    199   {
    200     rows[nnz] = 0;
    201     cols[nnz] = 0;
    202     values[nnz++] = 1;
    203 
    204     rows[nnz] = 0;
    205     cols[nnz] = 2;
    206     values[nnz++] = 2;
    207   }
    208 
    209   // Row 2
    210   {
    211     rows[nnz] = 1;
    212     cols[nnz] = 0;
    213     values[nnz++] = 3;
    214 
    215     rows[nnz] = 1;
    216     cols[nnz] = 3;
    217     values[nnz++] = 4;
    218   }
    219 
    220   // Row 3
    221   {
    222     rows[nnz] = 2;
    223     cols[nnz] = 1;
    224     values[nnz++] = 5;
    225 
    226     rows[nnz] = 2;
    227     cols[nnz] = 4;
    228     values[nnz++] = 6;
    229   }
    230 
    231   // Row 4
    232   {
    233     rows[nnz] = 3;
    234     cols[nnz] = 1;
    235     values[nnz++] = 7;
    236 
    237     rows[nnz] = 3;
    238     cols[nnz] = 2;
    239     values[nnz++] = 8;
    240   }
    241 
    242   // Row 5
    243   {
    244     rows[nnz] = 4;
    245     cols[nnz] = 1;
    246     values[nnz++] = 9;
    247 
    248     rows[nnz] = 4;
    249     cols[nnz] = 2;
    250     values[nnz++] = 1;
    251   }
    252 
    253   // Row 6
    254   {
    255     rows[nnz] = 5;
    256     cols[nnz] = 2;
    257     values[nnz++] = 1;
    258 
    259     rows[nnz] = 5;
    260     cols[nnz] = 3;
    261     values[nnz++] = 1;
    262 
    263     rows[nnz] = 5;
    264     cols[nnz] = 4;
    265     values[nnz++] = 1;
    266   }
    267 
    268   A->set_num_nonzeros(nnz);
    269   CHECK(A->IsValid());
    270 
    271   problem->A.reset(A);
    272 
    273   for (int i = 0; i < num_cols; ++i) {
    274     problem->D.get()[i] = 1;
    275   }
    276 
    277   for (int i = 0; i < num_rows; ++i) {
    278     problem->b.get()[i] = i;
    279   }
    280 
    281   return problem;
    282 }
    283 
    284 // BlockSparseMatrix version
    285 LinearLeastSquaresProblem* LinearLeastSquaresProblem2() {
    286   int num_rows = 6;
    287   int num_cols = 5;
    288 
    289   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem;
    290 
    291   problem->b.reset(new double[num_rows]);
    292   problem->D.reset(new double[num_cols]);
    293   problem->num_eliminate_blocks = 2;
    294 
    295   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure;
    296   scoped_array<double> values(new double[num_rows * num_cols]);
    297 
    298   for (int c = 0; c < num_cols; ++c) {
    299     bs->cols.push_back(Block());
    300     bs->cols.back().size = 1;
    301     bs->cols.back().position = c;
    302   }
    303 
    304   int nnz = 0;
    305 
    306   // Row 1
    307   {
    308     values[nnz++] = 1;
    309     values[nnz++] = 2;
    310 
    311     bs->rows.push_back(CompressedRow());
    312     CompressedRow& row = bs->rows.back();
    313     row.block.size = 1;
    314     row.block.position = 0;
    315     row.cells.push_back(Cell(0, 0));
    316     row.cells.push_back(Cell(2, 1));
    317   }
    318 
    319   // Row 2
    320   {
    321     values[nnz++] = 3;
    322     values[nnz++] = 4;
    323 
    324     bs->rows.push_back(CompressedRow());
    325     CompressedRow& row = bs->rows.back();
    326     row.block.size = 1;
    327     row.block.position = 1;
    328     row.cells.push_back(Cell(0, 2));
    329     row.cells.push_back(Cell(3, 3));
    330   }
    331 
    332   // Row 3
    333   {
    334     values[nnz++] = 5;
    335     values[nnz++] = 6;
    336 
    337     bs->rows.push_back(CompressedRow());
    338     CompressedRow& row = bs->rows.back();
    339     row.block.size = 1;
    340     row.block.position = 2;
    341     row.cells.push_back(Cell(1, 4));
    342     row.cells.push_back(Cell(4, 5));
    343   }
    344 
    345   // Row 4
    346   {
    347     values[nnz++] = 7;
    348     values[nnz++] = 8;
    349 
    350     bs->rows.push_back(CompressedRow());
    351     CompressedRow& row = bs->rows.back();
    352     row.block.size = 1;
    353     row.block.position = 3;
    354     row.cells.push_back(Cell(1, 6));
    355     row.cells.push_back(Cell(2, 7));
    356   }
    357 
    358   // Row 5
    359   {
    360     values[nnz++] = 9;
    361     values[nnz++] = 1;
    362 
    363     bs->rows.push_back(CompressedRow());
    364     CompressedRow& row = bs->rows.back();
    365     row.block.size = 1;
    366     row.block.position = 4;
    367     row.cells.push_back(Cell(1, 8));
    368     row.cells.push_back(Cell(2, 9));
    369   }
    370 
    371   // Row 6
    372   {
    373     values[nnz++] = 1;
    374     values[nnz++] = 1;
    375     values[nnz++] = 1;
    376 
    377     bs->rows.push_back(CompressedRow());
    378     CompressedRow& row = bs->rows.back();
    379     row.block.size = 1;
    380     row.block.position = 5;
    381     row.cells.push_back(Cell(2, 10));
    382     row.cells.push_back(Cell(3, 11));
    383     row.cells.push_back(Cell(4, 12));
    384   }
    385 
    386   BlockSparseMatrix* A = new BlockSparseMatrix(bs);
    387   memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values()));
    388 
    389   for (int i = 0; i < num_cols; ++i) {
    390     problem->D.get()[i] = 1;
    391   }
    392 
    393   for (int i = 0; i < num_rows; ++i) {
    394     problem->b.get()[i] = i;
    395   }
    396 
    397   problem->A.reset(A);
    398 
    399   return problem;
    400 }
    401 
    402 
    403 /*
    404       A = [1 0
    405            3 0
    406            0 5
    407            0 7
    408            0 9
    409            0 0]
    410 
    411       b = [0
    412            1
    413            2
    414            3
    415            4
    416            5]
    417 */
    418 // BlockSparseMatrix version
    419 LinearLeastSquaresProblem* LinearLeastSquaresProblem3() {
    420   int num_rows = 5;
    421   int num_cols = 2;
    422 
    423   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem;
    424 
    425   problem->b.reset(new double[num_rows]);
    426   problem->D.reset(new double[num_cols]);
    427   problem->num_eliminate_blocks = 2;
    428 
    429   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure;
    430   scoped_array<double> values(new double[num_rows * num_cols]);
    431 
    432   for (int c = 0; c < num_cols; ++c) {
    433     bs->cols.push_back(Block());
    434     bs->cols.back().size = 1;
    435     bs->cols.back().position = c;
    436   }
    437 
    438   int nnz = 0;
    439 
    440   // Row 1
    441   {
    442     values[nnz++] = 1;
    443     bs->rows.push_back(CompressedRow());
    444     CompressedRow& row = bs->rows.back();
    445     row.block.size = 1;
    446     row.block.position = 0;
    447     row.cells.push_back(Cell(0, 0));
    448   }
    449 
    450   // Row 2
    451   {
    452     values[nnz++] = 3;
    453     bs->rows.push_back(CompressedRow());
    454     CompressedRow& row = bs->rows.back();
    455     row.block.size = 1;
    456     row.block.position = 1;
    457     row.cells.push_back(Cell(0, 1));
    458   }
    459 
    460   // Row 3
    461   {
    462     values[nnz++] = 5;
    463     bs->rows.push_back(CompressedRow());
    464     CompressedRow& row = bs->rows.back();
    465     row.block.size = 1;
    466     row.block.position = 2;
    467     row.cells.push_back(Cell(1, 2));
    468   }
    469 
    470   // Row 4
    471   {
    472     values[nnz++] = 7;
    473     bs->rows.push_back(CompressedRow());
    474     CompressedRow& row = bs->rows.back();
    475     row.block.size = 1;
    476     row.block.position = 3;
    477     row.cells.push_back(Cell(1, 3));
    478   }
    479 
    480   // Row 5
    481   {
    482     values[nnz++] = 9;
    483     bs->rows.push_back(CompressedRow());
    484     CompressedRow& row = bs->rows.back();
    485     row.block.size = 1;
    486     row.block.position = 4;
    487     row.cells.push_back(Cell(1, 4));
    488   }
    489 
    490   BlockSparseMatrix* A = new BlockSparseMatrix(bs);
    491   memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values()));
    492 
    493   for (int i = 0; i < num_cols; ++i) {
    494     problem->D.get()[i] = 1;
    495   }
    496 
    497   for (int i = 0; i < num_rows; ++i) {
    498     problem->b.get()[i] = i;
    499   }
    500 
    501   problem->A.reset(A);
    502 
    503   return problem;
    504 }
    505 
    506 namespace {
    507 bool DumpLinearLeastSquaresProblemToConsole(const SparseMatrix* A,
    508                                             const double* D,
    509                                             const double* b,
    510                                             const double* x,
    511                                             int num_eliminate_blocks) {
    512   CHECK_NOTNULL(A);
    513   Matrix AA;
    514   A->ToDenseMatrix(&AA);
    515   LOG(INFO) << "A^T: \n" << AA.transpose();
    516 
    517   if (D != NULL) {
    518     LOG(INFO) << "A's appended diagonal:\n"
    519               << ConstVectorRef(D, A->num_cols());
    520   }
    521 
    522   if (b != NULL) {
    523     LOG(INFO) << "b: \n" << ConstVectorRef(b, A->num_rows());
    524   }
    525 
    526   if (x != NULL) {
    527     LOG(INFO) << "x: \n" << ConstVectorRef(x, A->num_cols());
    528   }
    529   return true;
    530 };
    531 
    532 void WriteArrayToFileOrDie(const string& filename,
    533                            const double* x,
    534                            const int size) {
    535   CHECK_NOTNULL(x);
    536   VLOG(2) << "Writing array to: " << filename;
    537   FILE* fptr = fopen(filename.c_str(), "w");
    538   CHECK_NOTNULL(fptr);
    539   for (int i = 0; i < size; ++i) {
    540     fprintf(fptr, "%17f\n", x[i]);
    541   }
    542   fclose(fptr);
    543 }
    544 
    545 bool DumpLinearLeastSquaresProblemToTextFile(const string& filename_base,
    546                                              const SparseMatrix* A,
    547                                              const double* D,
    548                                              const double* b,
    549                                              const double* x,
    550                                              int num_eliminate_blocks) {
    551   CHECK_NOTNULL(A);
    552   LOG(INFO) << "writing to: " << filename_base << "*";
    553 
    554   string matlab_script;
    555   StringAppendF(&matlab_script,
    556                 "function lsqp = load_trust_region_problem()\n");
    557   StringAppendF(&matlab_script,
    558                 "lsqp.num_rows = %d;\n", A->num_rows());
    559   StringAppendF(&matlab_script,
    560                 "lsqp.num_cols = %d;\n", A->num_cols());
    561 
    562   {
    563     string filename = filename_base + "_A.txt";
    564     FILE* fptr = fopen(filename.c_str(), "w");
    565     CHECK_NOTNULL(fptr);
    566     A->ToTextFile(fptr);
    567     fclose(fptr);
    568     StringAppendF(&matlab_script,
    569                   "tmp = load('%s', '-ascii');\n", filename.c_str());
    570     StringAppendF(
    571         &matlab_script,
    572         "lsqp.A = sparse(tmp(:, 1) + 1, tmp(:, 2) + 1, tmp(:, 3), %d, %d);\n",
    573         A->num_rows(),
    574         A->num_cols());
    575   }
    576 
    577 
    578   if (D != NULL) {
    579     string filename = filename_base + "_D.txt";
    580     WriteArrayToFileOrDie(filename, D, A->num_cols());
    581     StringAppendF(&matlab_script,
    582                   "lsqp.D = load('%s', '-ascii');\n", filename.c_str());
    583   }
    584 
    585   if (b != NULL) {
    586     string filename = filename_base + "_b.txt";
    587     WriteArrayToFileOrDie(filename, b, A->num_rows());
    588     StringAppendF(&matlab_script,
    589                   "lsqp.b = load('%s', '-ascii');\n", filename.c_str());
    590   }
    591 
    592   if (x != NULL) {
    593     string filename = filename_base + "_x.txt";
    594     WriteArrayToFileOrDie(filename, x, A->num_cols());
    595     StringAppendF(&matlab_script,
    596                   "lsqp.x = load('%s', '-ascii');\n", filename.c_str());
    597   }
    598 
    599   string matlab_filename = filename_base + ".m";
    600   WriteStringToFileOrDie(matlab_script, matlab_filename);
    601   return true;
    602 }
    603 }  // namespace
    604 
    605 bool DumpLinearLeastSquaresProblem(const string& filename_base,
    606                                    DumpFormatType dump_format_type,
    607                                    const SparseMatrix* A,
    608                                    const double* D,
    609                                    const double* b,
    610                                    const double* x,
    611                                    int num_eliminate_blocks) {
    612   switch (dump_format_type) {
    613     case CONSOLE:
    614       return DumpLinearLeastSquaresProblemToConsole(A, D, b, x,
    615                                                     num_eliminate_blocks);
    616     case TEXTFILE:
    617       return DumpLinearLeastSquaresProblemToTextFile(filename_base,
    618                                                      A, D, b, x,
    619                                                      num_eliminate_blocks);
    620     default:
    621       LOG(FATAL) << "Unknown DumpFormatType " << dump_format_type;
    622   };
    623 
    624   return true;
    625 }
    626 
    627 }  // namespace internal
    628 }  // namespace ceres
    629