Home | History | Annotate | Download | only in video_coding
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/modules/video_coding/receiver.h"
     12 
     13 #include <assert.h>
     14 
     15 #include <cstdlib>
     16 #include <utility>
     17 #include <vector>
     18 
     19 #include "webrtc/base/logging.h"
     20 #include "webrtc/base/trace_event.h"
     21 #include "webrtc/modules/video_coding/encoded_frame.h"
     22 #include "webrtc/modules/video_coding/internal_defines.h"
     23 #include "webrtc/modules/video_coding/media_opt_util.h"
     24 #include "webrtc/system_wrappers/include/clock.h"
     25 
     26 namespace webrtc {
     27 
     28 enum { kMaxReceiverDelayMs = 10000 };
     29 
     30 VCMReceiver::VCMReceiver(VCMTiming* timing,
     31                          Clock* clock,
     32                          EventFactory* event_factory)
     33     : VCMReceiver(timing,
     34                   clock,
     35                   rtc::scoped_ptr<EventWrapper>(event_factory->CreateEvent()),
     36                   rtc::scoped_ptr<EventWrapper>(event_factory->CreateEvent())) {
     37 }
     38 
     39 VCMReceiver::VCMReceiver(VCMTiming* timing,
     40                          Clock* clock,
     41                          rtc::scoped_ptr<EventWrapper> receiver_event,
     42                          rtc::scoped_ptr<EventWrapper> jitter_buffer_event)
     43     : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
     44       clock_(clock),
     45       jitter_buffer_(clock_, std::move(jitter_buffer_event)),
     46       timing_(timing),
     47       render_wait_event_(std::move(receiver_event)),
     48       max_video_delay_ms_(kMaxVideoDelayMs) {
     49   Reset();
     50 }
     51 
     52 VCMReceiver::~VCMReceiver() {
     53   render_wait_event_->Set();
     54   delete crit_sect_;
     55 }
     56 
     57 void VCMReceiver::Reset() {
     58   CriticalSectionScoped cs(crit_sect_);
     59   if (!jitter_buffer_.Running()) {
     60     jitter_buffer_.Start();
     61   } else {
     62     jitter_buffer_.Flush();
     63   }
     64 }
     65 
     66 void VCMReceiver::UpdateRtt(int64_t rtt) {
     67   jitter_buffer_.UpdateRtt(rtt);
     68 }
     69 
     70 int32_t VCMReceiver::InsertPacket(const VCMPacket& packet,
     71                                   uint16_t frame_width,
     72                                   uint16_t frame_height) {
     73   // Insert the packet into the jitter buffer. The packet can either be empty or
     74   // contain media at this point.
     75   bool retransmitted = false;
     76   const VCMFrameBufferEnum ret =
     77       jitter_buffer_.InsertPacket(packet, &retransmitted);
     78   if (ret == kOldPacket) {
     79     return VCM_OK;
     80   } else if (ret == kFlushIndicator) {
     81     return VCM_FLUSH_INDICATOR;
     82   } else if (ret < 0) {
     83     return VCM_JITTER_BUFFER_ERROR;
     84   }
     85   if (ret == kCompleteSession && !retransmitted) {
     86     // We don't want to include timestamps which have suffered from
     87     // retransmission here, since we compensate with extra retransmission
     88     // delay within the jitter estimate.
     89     timing_->IncomingTimestamp(packet.timestamp, clock_->TimeInMilliseconds());
     90   }
     91   return VCM_OK;
     92 }
     93 
     94 void VCMReceiver::TriggerDecoderShutdown() {
     95   jitter_buffer_.Stop();
     96   render_wait_event_->Set();
     97 }
     98 
     99 VCMEncodedFrame* VCMReceiver::FrameForDecoding(uint16_t max_wait_time_ms,
    100                                                int64_t* next_render_time_ms,
    101                                                bool prefer_late_decoding) {
    102   const int64_t start_time_ms = clock_->TimeInMilliseconds();
    103   uint32_t frame_timestamp = 0;
    104   // Exhaust wait time to get a complete frame for decoding.
    105   bool found_frame =
    106       jitter_buffer_.NextCompleteTimestamp(max_wait_time_ms, &frame_timestamp);
    107 
    108   if (!found_frame)
    109     found_frame = jitter_buffer_.NextMaybeIncompleteTimestamp(&frame_timestamp);
    110 
    111   if (!found_frame)
    112     return NULL;
    113 
    114   // We have a frame - Set timing and render timestamp.
    115   timing_->SetJitterDelay(jitter_buffer_.EstimatedJitterMs());
    116   const int64_t now_ms = clock_->TimeInMilliseconds();
    117   timing_->UpdateCurrentDelay(frame_timestamp);
    118   *next_render_time_ms = timing_->RenderTimeMs(frame_timestamp, now_ms);
    119   // Check render timing.
    120   bool timing_error = false;
    121   // Assume that render timing errors are due to changes in the video stream.
    122   if (*next_render_time_ms < 0) {
    123     timing_error = true;
    124   } else if (std::abs(*next_render_time_ms - now_ms) > max_video_delay_ms_) {
    125     int frame_delay = static_cast<int>(std::abs(*next_render_time_ms - now_ms));
    126     LOG(LS_WARNING) << "A frame about to be decoded is out of the configured "
    127                     << "delay bounds (" << frame_delay << " > "
    128                     << max_video_delay_ms_
    129                     << "). Resetting the video jitter buffer.";
    130     timing_error = true;
    131   } else if (static_cast<int>(timing_->TargetVideoDelay()) >
    132              max_video_delay_ms_) {
    133     LOG(LS_WARNING) << "The video target delay has grown larger than "
    134                     << max_video_delay_ms_ << " ms. Resetting jitter buffer.";
    135     timing_error = true;
    136   }
    137 
    138   if (timing_error) {
    139     // Timing error => reset timing and flush the jitter buffer.
    140     jitter_buffer_.Flush();
    141     timing_->Reset();
    142     return NULL;
    143   }
    144 
    145   if (prefer_late_decoding) {
    146     // Decode frame as close as possible to the render timestamp.
    147     const int32_t available_wait_time =
    148         max_wait_time_ms -
    149         static_cast<int32_t>(clock_->TimeInMilliseconds() - start_time_ms);
    150     uint16_t new_max_wait_time =
    151         static_cast<uint16_t>(VCM_MAX(available_wait_time, 0));
    152     uint32_t wait_time_ms = timing_->MaxWaitingTime(
    153         *next_render_time_ms, clock_->TimeInMilliseconds());
    154     if (new_max_wait_time < wait_time_ms) {
    155       // We're not allowed to wait until the frame is supposed to be rendered,
    156       // waiting as long as we're allowed to avoid busy looping, and then return
    157       // NULL. Next call to this function might return the frame.
    158       render_wait_event_->Wait(new_max_wait_time);
    159       return NULL;
    160     }
    161     // Wait until it's time to render.
    162     render_wait_event_->Wait(wait_time_ms);
    163   }
    164 
    165   // Extract the frame from the jitter buffer and set the render time.
    166   VCMEncodedFrame* frame = jitter_buffer_.ExtractAndSetDecode(frame_timestamp);
    167   if (frame == NULL) {
    168     return NULL;
    169   }
    170   frame->SetRenderTime(*next_render_time_ms);
    171   TRACE_EVENT_ASYNC_STEP1("webrtc", "Video", frame->TimeStamp(), "SetRenderTS",
    172                           "render_time", *next_render_time_ms);
    173   if (!frame->Complete()) {
    174     // Update stats for incomplete frames.
    175     bool retransmitted = false;
    176     const int64_t last_packet_time_ms =
    177         jitter_buffer_.LastPacketTime(frame, &retransmitted);
    178     if (last_packet_time_ms >= 0 && !retransmitted) {
    179       // We don't want to include timestamps which have suffered from
    180       // retransmission here, since we compensate with extra retransmission
    181       // delay within the jitter estimate.
    182       timing_->IncomingTimestamp(frame_timestamp, last_packet_time_ms);
    183     }
    184   }
    185   return frame;
    186 }
    187 
    188 void VCMReceiver::ReleaseFrame(VCMEncodedFrame* frame) {
    189   jitter_buffer_.ReleaseFrame(frame);
    190 }
    191 
    192 void VCMReceiver::ReceiveStatistics(uint32_t* bitrate, uint32_t* framerate) {
    193   assert(bitrate);
    194   assert(framerate);
    195   jitter_buffer_.IncomingRateStatistics(framerate, bitrate);
    196 }
    197 
    198 uint32_t VCMReceiver::DiscardedPackets() const {
    199   return jitter_buffer_.num_discarded_packets();
    200 }
    201 
    202 void VCMReceiver::SetNackMode(VCMNackMode nackMode,
    203                               int64_t low_rtt_nack_threshold_ms,
    204                               int64_t high_rtt_nack_threshold_ms) {
    205   CriticalSectionScoped cs(crit_sect_);
    206   // Default to always having NACK enabled in hybrid mode.
    207   jitter_buffer_.SetNackMode(nackMode, low_rtt_nack_threshold_ms,
    208                              high_rtt_nack_threshold_ms);
    209 }
    210 
    211 void VCMReceiver::SetNackSettings(size_t max_nack_list_size,
    212                                   int max_packet_age_to_nack,
    213                                   int max_incomplete_time_ms) {
    214   jitter_buffer_.SetNackSettings(max_nack_list_size, max_packet_age_to_nack,
    215                                  max_incomplete_time_ms);
    216 }
    217 
    218 VCMNackMode VCMReceiver::NackMode() const {
    219   CriticalSectionScoped cs(crit_sect_);
    220   return jitter_buffer_.nack_mode();
    221 }
    222 
    223 std::vector<uint16_t> VCMReceiver::NackList(bool* request_key_frame) {
    224   return jitter_buffer_.GetNackList(request_key_frame);
    225 }
    226 
    227 void VCMReceiver::SetDecodeErrorMode(VCMDecodeErrorMode decode_error_mode) {
    228   jitter_buffer_.SetDecodeErrorMode(decode_error_mode);
    229 }
    230 
    231 VCMDecodeErrorMode VCMReceiver::DecodeErrorMode() const {
    232   return jitter_buffer_.decode_error_mode();
    233 }
    234 
    235 int VCMReceiver::SetMinReceiverDelay(int desired_delay_ms) {
    236   CriticalSectionScoped cs(crit_sect_);
    237   if (desired_delay_ms < 0 || desired_delay_ms > kMaxReceiverDelayMs) {
    238     return -1;
    239   }
    240   max_video_delay_ms_ = desired_delay_ms + kMaxVideoDelayMs;
    241   // Initializing timing to the desired delay.
    242   timing_->set_min_playout_delay(desired_delay_ms);
    243   return 0;
    244 }
    245 
    246 int VCMReceiver::RenderBufferSizeMs() {
    247   uint32_t timestamp_start = 0u;
    248   uint32_t timestamp_end = 0u;
    249   // Render timestamps are computed just prior to decoding. Therefore this is
    250   // only an estimate based on frames' timestamps and current timing state.
    251   jitter_buffer_.RenderBufferSize(&timestamp_start, &timestamp_end);
    252   if (timestamp_start == timestamp_end) {
    253     return 0;
    254   }
    255   // Update timing.
    256   const int64_t now_ms = clock_->TimeInMilliseconds();
    257   timing_->SetJitterDelay(jitter_buffer_.EstimatedJitterMs());
    258   // Get render timestamps.
    259   uint32_t render_start = timing_->RenderTimeMs(timestamp_start, now_ms);
    260   uint32_t render_end = timing_->RenderTimeMs(timestamp_end, now_ms);
    261   return render_end - render_start;
    262 }
    263 
    264 void VCMReceiver::RegisterStatsCallback(
    265     VCMReceiveStatisticsCallback* callback) {
    266   jitter_buffer_.RegisterStatsCallback(callback);
    267 }
    268 
    269 }  // namespace webrtc
    270