Home | History | Annotate | Download | only in regexp
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_REGEXP_JSREGEXP_H_
      6 #define V8_REGEXP_JSREGEXP_H_
      7 
      8 #include "src/allocation.h"
      9 #include "src/assembler.h"
     10 #include "src/regexp/regexp-ast.h"
     11 #include "src/regexp/regexp-macro-assembler.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 class NodeVisitor;
     17 class RegExpCompiler;
     18 class RegExpMacroAssembler;
     19 class RegExpNode;
     20 class RegExpTree;
     21 class BoyerMooreLookahead;
     22 
     23 class RegExpImpl {
     24  public:
     25   // Whether V8 is compiled with native regexp support or not.
     26   static bool UsesNativeRegExp() {
     27 #ifdef V8_INTERPRETED_REGEXP
     28     return false;
     29 #else
     30     return true;
     31 #endif
     32   }
     33 
     34   // Returns a string representation of a regular expression.
     35   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
     36   // This function calls the garbage collector if necessary.
     37   static Handle<String> ToString(Handle<Object> value);
     38 
     39   // Parses the RegExp pattern and prepares the JSRegExp object with
     40   // generic data and choice of implementation - as well as what
     41   // the implementation wants to store in the data field.
     42   // Returns false if compilation fails.
     43   MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re,
     44                                                      Handle<String> pattern,
     45                                                      JSRegExp::Flags flags);
     46 
     47   // See ECMA-262 section 15.10.6.2.
     48   // This function calls the garbage collector if necessary.
     49   MUST_USE_RESULT static MaybeHandle<Object> Exec(
     50       Handle<JSRegExp> regexp,
     51       Handle<String> subject,
     52       int index,
     53       Handle<JSArray> lastMatchInfo);
     54 
     55   // Prepares a JSRegExp object with Irregexp-specific data.
     56   static void IrregexpInitialize(Handle<JSRegExp> re,
     57                                  Handle<String> pattern,
     58                                  JSRegExp::Flags flags,
     59                                  int capture_register_count);
     60 
     61 
     62   static void AtomCompile(Handle<JSRegExp> re,
     63                           Handle<String> pattern,
     64                           JSRegExp::Flags flags,
     65                           Handle<String> match_pattern);
     66 
     67 
     68   static int AtomExecRaw(Handle<JSRegExp> regexp,
     69                          Handle<String> subject,
     70                          int index,
     71                          int32_t* output,
     72                          int output_size);
     73 
     74 
     75   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
     76                                  Handle<String> subject,
     77                                  int index,
     78                                  Handle<JSArray> lastMatchInfo);
     79 
     80   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
     81 
     82   // Prepare a RegExp for being executed one or more times (using
     83   // IrregexpExecOnce) on the subject.
     84   // This ensures that the regexp is compiled for the subject, and that
     85   // the subject is flat.
     86   // Returns the number of integer spaces required by IrregexpExecOnce
     87   // as its "registers" argument.  If the regexp cannot be compiled,
     88   // an exception is set as pending, and this function returns negative.
     89   static int IrregexpPrepare(Handle<JSRegExp> regexp,
     90                              Handle<String> subject);
     91 
     92   // Execute a regular expression on the subject, starting from index.
     93   // If matching succeeds, return the number of matches.  This can be larger
     94   // than one in the case of global regular expressions.
     95   // The captures and subcaptures are stored into the registers vector.
     96   // If matching fails, returns RE_FAILURE.
     97   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
     98   static int IrregexpExecRaw(Handle<JSRegExp> regexp,
     99                              Handle<String> subject,
    100                              int index,
    101                              int32_t* output,
    102                              int output_size);
    103 
    104   // Execute an Irregexp bytecode pattern.
    105   // On a successful match, the result is a JSArray containing
    106   // captured positions.  On a failure, the result is the null value.
    107   // Returns an empty handle in case of an exception.
    108   MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
    109       Handle<JSRegExp> regexp,
    110       Handle<String> subject,
    111       int index,
    112       Handle<JSArray> lastMatchInfo);
    113 
    114   // Set last match info.  If match is NULL, then setting captures is omitted.
    115   static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
    116                                           Handle<String> subject,
    117                                           int capture_count,
    118                                           int32_t* match);
    119 
    120 
    121   class GlobalCache {
    122    public:
    123     GlobalCache(Handle<JSRegExp> regexp,
    124                 Handle<String> subject,
    125                 Isolate* isolate);
    126 
    127     INLINE(~GlobalCache());
    128 
    129     // Fetch the next entry in the cache for global regexp match results.
    130     // This does not set the last match info.  Upon failure, NULL is returned.
    131     // The cause can be checked with Result().  The previous
    132     // result is still in available in memory when a failure happens.
    133     INLINE(int32_t* FetchNext());
    134 
    135     INLINE(int32_t* LastSuccessfulMatch());
    136 
    137     INLINE(bool HasException()) { return num_matches_ < 0; }
    138 
    139    private:
    140     int AdvanceZeroLength(int last_index);
    141 
    142     int num_matches_;
    143     int max_matches_;
    144     int current_match_index_;
    145     int registers_per_match_;
    146     // Pointer to the last set of captures.
    147     int32_t* register_array_;
    148     int register_array_size_;
    149     Handle<JSRegExp> regexp_;
    150     Handle<String> subject_;
    151   };
    152 
    153 
    154   // Array index in the lastMatchInfo array.
    155   static const int kLastCaptureCount = 0;
    156   static const int kLastSubject = 1;
    157   static const int kLastInput = 2;
    158   static const int kFirstCapture = 3;
    159   static const int kLastMatchOverhead = 3;
    160 
    161   // Direct offset into the lastMatchInfo array.
    162   static const int kLastCaptureCountOffset =
    163       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
    164   static const int kLastSubjectOffset =
    165       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
    166   static const int kLastInputOffset =
    167       FixedArray::kHeaderSize + kLastInput * kPointerSize;
    168   static const int kFirstCaptureOffset =
    169       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
    170 
    171   // Used to access the lastMatchInfo array.
    172   static int GetCapture(FixedArray* array, int index) {
    173     return Smi::cast(array->get(index + kFirstCapture))->value();
    174   }
    175 
    176   static void SetLastCaptureCount(FixedArray* array, int to) {
    177     array->set(kLastCaptureCount, Smi::FromInt(to));
    178   }
    179 
    180   static void SetLastSubject(FixedArray* array, String* to) {
    181     array->set(kLastSubject, to);
    182   }
    183 
    184   static void SetLastInput(FixedArray* array, String* to) {
    185     array->set(kLastInput, to);
    186   }
    187 
    188   static void SetCapture(FixedArray* array, int index, int to) {
    189     array->set(index + kFirstCapture, Smi::FromInt(to));
    190   }
    191 
    192   static int GetLastCaptureCount(FixedArray* array) {
    193     return Smi::cast(array->get(kLastCaptureCount))->value();
    194   }
    195 
    196   // For acting on the JSRegExp data FixedArray.
    197   static int IrregexpMaxRegisterCount(FixedArray* re);
    198   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
    199   static void SetIrregexpCaptureNameMap(FixedArray* re,
    200                                         Handle<FixedArray> value);
    201   static int IrregexpNumberOfCaptures(FixedArray* re);
    202   static int IrregexpNumberOfRegisters(FixedArray* re);
    203   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
    204   static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
    205 
    206   // Limit the space regexps take up on the heap.  In order to limit this we
    207   // would like to keep track of the amount of regexp code on the heap.  This
    208   // is not tracked, however.  As a conservative approximation we track the
    209   // total regexp code compiled including code that has subsequently been freed
    210   // and the total executable memory at any point.
    211   static const int kRegExpExecutableMemoryLimit = 16 * MB;
    212   static const int kRegExpCompiledLimit = 1 * MB;
    213   static const int kRegExpTooLargeToOptimize = 20 * KB;
    214 
    215  private:
    216   static bool CompileIrregexp(Handle<JSRegExp> re,
    217                               Handle<String> sample_subject, bool is_one_byte);
    218   static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
    219                                             Handle<String> sample_subject,
    220                                             bool is_one_byte);
    221 };
    222 
    223 
    224 // Represents the location of one element relative to the intersection of
    225 // two sets. Corresponds to the four areas of a Venn diagram.
    226 enum ElementInSetsRelation {
    227   kInsideNone = 0,
    228   kInsideFirst = 1,
    229   kInsideSecond = 2,
    230   kInsideBoth = 3
    231 };
    232 
    233 
    234 // A set of unsigned integers that behaves especially well on small
    235 // integers (< 32).  May do zone-allocation.
    236 class OutSet: public ZoneObject {
    237  public:
    238   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
    239   OutSet* Extend(unsigned value, Zone* zone);
    240   bool Get(unsigned value) const;
    241   static const unsigned kFirstLimit = 32;
    242 
    243  private:
    244   // Destructively set a value in this set.  In most cases you want
    245   // to use Extend instead to ensure that only one instance exists
    246   // that contains the same values.
    247   void Set(unsigned value, Zone* zone);
    248 
    249   // The successors are a list of sets that contain the same values
    250   // as this set and the one more value that is not present in this
    251   // set.
    252   ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
    253 
    254   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
    255       : first_(first), remaining_(remaining), successors_(NULL) { }
    256   uint32_t first_;
    257   ZoneList<unsigned>* remaining_;
    258   ZoneList<OutSet*>* successors_;
    259   friend class Trace;
    260 };
    261 
    262 
    263 // A mapping from integers, specified as ranges, to a set of integers.
    264 // Used for mapping character ranges to choices.
    265 class DispatchTable : public ZoneObject {
    266  public:
    267   explicit DispatchTable(Zone* zone) : tree_(zone) { }
    268 
    269   class Entry {
    270    public:
    271     Entry() : from_(0), to_(0), out_set_(NULL) { }
    272     Entry(uc32 from, uc32 to, OutSet* out_set)
    273         : from_(from), to_(to), out_set_(out_set) {
    274       DCHECK(from <= to);
    275     }
    276     uc32 from() { return from_; }
    277     uc32 to() { return to_; }
    278     void set_to(uc32 value) { to_ = value; }
    279     void AddValue(int value, Zone* zone) {
    280       out_set_ = out_set_->Extend(value, zone);
    281     }
    282     OutSet* out_set() { return out_set_; }
    283    private:
    284     uc32 from_;
    285     uc32 to_;
    286     OutSet* out_set_;
    287   };
    288 
    289   class Config {
    290    public:
    291     typedef uc32 Key;
    292     typedef Entry Value;
    293     static const uc32 kNoKey;
    294     static const Entry NoValue() { return Value(); }
    295     static inline int Compare(uc32 a, uc32 b) {
    296       if (a == b)
    297         return 0;
    298       else if (a < b)
    299         return -1;
    300       else
    301         return 1;
    302     }
    303   };
    304 
    305   void AddRange(CharacterRange range, int value, Zone* zone);
    306   OutSet* Get(uc32 value);
    307   void Dump();
    308 
    309   template <typename Callback>
    310   void ForEach(Callback* callback) {
    311     return tree()->ForEach(callback);
    312   }
    313 
    314  private:
    315   // There can't be a static empty set since it allocates its
    316   // successors in a zone and caches them.
    317   OutSet* empty() { return &empty_; }
    318   OutSet empty_;
    319   ZoneSplayTree<Config>* tree() { return &tree_; }
    320   ZoneSplayTree<Config> tree_;
    321 };
    322 
    323 
    324 // Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates.
    325 class UnicodeRangeSplitter {
    326  public:
    327   UnicodeRangeSplitter(Zone* zone, ZoneList<CharacterRange>* base);
    328   void Call(uc32 from, DispatchTable::Entry entry);
    329 
    330   ZoneList<CharacterRange>* bmp() { return bmp_; }
    331   ZoneList<CharacterRange>* lead_surrogates() { return lead_surrogates_; }
    332   ZoneList<CharacterRange>* trail_surrogates() { return trail_surrogates_; }
    333   ZoneList<CharacterRange>* non_bmp() const { return non_bmp_; }
    334 
    335  private:
    336   static const int kBase = 0;
    337   // Separate ranges into
    338   static const int kBmpCodePoints = 1;
    339   static const int kLeadSurrogates = 2;
    340   static const int kTrailSurrogates = 3;
    341   static const int kNonBmpCodePoints = 4;
    342 
    343   Zone* zone_;
    344   DispatchTable table_;
    345   ZoneList<CharacterRange>* bmp_;
    346   ZoneList<CharacterRange>* lead_surrogates_;
    347   ZoneList<CharacterRange>* trail_surrogates_;
    348   ZoneList<CharacterRange>* non_bmp_;
    349 };
    350 
    351 
    352 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
    353   VISIT(End)                                                         \
    354   VISIT(Action)                                                      \
    355   VISIT(Choice)                                                      \
    356   VISIT(BackReference)                                               \
    357   VISIT(Assertion)                                                   \
    358   VISIT(Text)
    359 
    360 
    361 class Trace;
    362 struct PreloadState;
    363 class GreedyLoopState;
    364 class AlternativeGenerationList;
    365 
    366 struct NodeInfo {
    367   NodeInfo()
    368       : being_analyzed(false),
    369         been_analyzed(false),
    370         follows_word_interest(false),
    371         follows_newline_interest(false),
    372         follows_start_interest(false),
    373         at_end(false),
    374         visited(false),
    375         replacement_calculated(false) { }
    376 
    377   // Returns true if the interests and assumptions of this node
    378   // matches the given one.
    379   bool Matches(NodeInfo* that) {
    380     return (at_end == that->at_end) &&
    381            (follows_word_interest == that->follows_word_interest) &&
    382            (follows_newline_interest == that->follows_newline_interest) &&
    383            (follows_start_interest == that->follows_start_interest);
    384   }
    385 
    386   // Updates the interests of this node given the interests of the
    387   // node preceding it.
    388   void AddFromPreceding(NodeInfo* that) {
    389     at_end |= that->at_end;
    390     follows_word_interest |= that->follows_word_interest;
    391     follows_newline_interest |= that->follows_newline_interest;
    392     follows_start_interest |= that->follows_start_interest;
    393   }
    394 
    395   bool HasLookbehind() {
    396     return follows_word_interest ||
    397            follows_newline_interest ||
    398            follows_start_interest;
    399   }
    400 
    401   // Sets the interests of this node to include the interests of the
    402   // following node.
    403   void AddFromFollowing(NodeInfo* that) {
    404     follows_word_interest |= that->follows_word_interest;
    405     follows_newline_interest |= that->follows_newline_interest;
    406     follows_start_interest |= that->follows_start_interest;
    407   }
    408 
    409   void ResetCompilationState() {
    410     being_analyzed = false;
    411     been_analyzed = false;
    412   }
    413 
    414   bool being_analyzed: 1;
    415   bool been_analyzed: 1;
    416 
    417   // These bits are set of this node has to know what the preceding
    418   // character was.
    419   bool follows_word_interest: 1;
    420   bool follows_newline_interest: 1;
    421   bool follows_start_interest: 1;
    422 
    423   bool at_end: 1;
    424   bool visited: 1;
    425   bool replacement_calculated: 1;
    426 };
    427 
    428 
    429 // Details of a quick mask-compare check that can look ahead in the
    430 // input stream.
    431 class QuickCheckDetails {
    432  public:
    433   QuickCheckDetails()
    434       : characters_(0),
    435         mask_(0),
    436         value_(0),
    437         cannot_match_(false) { }
    438   explicit QuickCheckDetails(int characters)
    439       : characters_(characters),
    440         mask_(0),
    441         value_(0),
    442         cannot_match_(false) { }
    443   bool Rationalize(bool one_byte);
    444   // Merge in the information from another branch of an alternation.
    445   void Merge(QuickCheckDetails* other, int from_index);
    446   // Advance the current position by some amount.
    447   void Advance(int by, bool one_byte);
    448   void Clear();
    449   bool cannot_match() { return cannot_match_; }
    450   void set_cannot_match() { cannot_match_ = true; }
    451   struct Position {
    452     Position() : mask(0), value(0), determines_perfectly(false) { }
    453     uc16 mask;
    454     uc16 value;
    455     bool determines_perfectly;
    456   };
    457   int characters() { return characters_; }
    458   void set_characters(int characters) { characters_ = characters; }
    459   Position* positions(int index) {
    460     DCHECK(index >= 0);
    461     DCHECK(index < characters_);
    462     return positions_ + index;
    463   }
    464   uint32_t mask() { return mask_; }
    465   uint32_t value() { return value_; }
    466 
    467  private:
    468   // How many characters do we have quick check information from.  This is
    469   // the same for all branches of a choice node.
    470   int characters_;
    471   Position positions_[4];
    472   // These values are the condensate of the above array after Rationalize().
    473   uint32_t mask_;
    474   uint32_t value_;
    475   // If set to true, there is no way this quick check can match at all.
    476   // E.g., if it requires to be at the start of the input, and isn't.
    477   bool cannot_match_;
    478 };
    479 
    480 
    481 extern int kUninitializedRegExpNodePlaceHolder;
    482 
    483 
    484 class RegExpNode: public ZoneObject {
    485  public:
    486   explicit RegExpNode(Zone* zone)
    487       : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) {
    488     bm_info_[0] = bm_info_[1] = NULL;
    489   }
    490   virtual ~RegExpNode();
    491   virtual void Accept(NodeVisitor* visitor) = 0;
    492   // Generates a goto to this node or actually generates the code at this point.
    493   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
    494   // How many characters must this node consume at a minimum in order to
    495   // succeed.  If we have found at least 'still_to_find' characters that
    496   // must be consumed there is no need to ask any following nodes whether
    497   // they are sure to eat any more characters.  The not_at_start argument is
    498   // used to indicate that we know we are not at the start of the input.  In
    499   // this case anchored branches will always fail and can be ignored when
    500   // determining how many characters are consumed on success.
    501   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
    502   // Emits some quick code that checks whether the preloaded characters match.
    503   // Falls through on certain failure, jumps to the label on possible success.
    504   // If the node cannot make a quick check it does nothing and returns false.
    505   bool EmitQuickCheck(RegExpCompiler* compiler,
    506                       Trace* bounds_check_trace,
    507                       Trace* trace,
    508                       bool preload_has_checked_bounds,
    509                       Label* on_possible_success,
    510                       QuickCheckDetails* details_return,
    511                       bool fall_through_on_failure);
    512   // For a given number of characters this returns a mask and a value.  The
    513   // next n characters are anded with the mask and compared with the value.
    514   // A comparison failure indicates the node cannot match the next n characters.
    515   // A comparison success indicates the node may match.
    516   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    517                                     RegExpCompiler* compiler,
    518                                     int characters_filled_in,
    519                                     bool not_at_start) = 0;
    520   static const int kNodeIsTooComplexForGreedyLoops = kMinInt;
    521   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    522   // Only returns the successor for a text node of length 1 that matches any
    523   // character and that has no guards on it.
    524   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
    525       RegExpCompiler* compiler) {
    526     return NULL;
    527   }
    528 
    529   // Collects information on the possible code units (mod 128) that can match if
    530   // we look forward.  This is used for a Boyer-Moore-like string searching
    531   // implementation.  TODO(erikcorry):  This should share more code with
    532   // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
    533   // the number of nodes we are willing to look at in order to create this data.
    534   static const int kRecursionBudget = 200;
    535   bool KeepRecursing(RegExpCompiler* compiler);
    536   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    537                             BoyerMooreLookahead* bm, bool not_at_start) {
    538     UNREACHABLE();
    539   }
    540 
    541   // If we know that the input is one-byte then there are some nodes that can
    542   // never match.  This method returns a node that can be substituted for
    543   // itself, or NULL if the node can never match.
    544   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
    545     return this;
    546   }
    547   // Helper for FilterOneByte.
    548   RegExpNode* replacement() {
    549     DCHECK(info()->replacement_calculated);
    550     return replacement_;
    551   }
    552   RegExpNode* set_replacement(RegExpNode* replacement) {
    553     info()->replacement_calculated = true;
    554     replacement_ =  replacement;
    555     return replacement;  // For convenience.
    556   }
    557 
    558   // We want to avoid recalculating the lookahead info, so we store it on the
    559   // node.  Only info that is for this node is stored.  We can tell that the
    560   // info is for this node when offset == 0, so the information is calculated
    561   // relative to this node.
    562   void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
    563     if (offset == 0) set_bm_info(not_at_start, bm);
    564   }
    565 
    566   Label* label() { return &label_; }
    567   // If non-generic code is generated for a node (i.e. the node is not at the
    568   // start of the trace) then it cannot be reused.  This variable sets a limit
    569   // on how often we allow that to happen before we insist on starting a new
    570   // trace and generating generic code for a node that can be reused by flushing
    571   // the deferred actions in the current trace and generating a goto.
    572   static const int kMaxCopiesCodeGenerated = 10;
    573 
    574   bool on_work_list() { return on_work_list_; }
    575   void set_on_work_list(bool value) { on_work_list_ = value; }
    576 
    577   NodeInfo* info() { return &info_; }
    578 
    579   BoyerMooreLookahead* bm_info(bool not_at_start) {
    580     return bm_info_[not_at_start ? 1 : 0];
    581   }
    582 
    583   Zone* zone() const { return zone_; }
    584 
    585  protected:
    586   enum LimitResult { DONE, CONTINUE };
    587   RegExpNode* replacement_;
    588 
    589   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
    590 
    591   void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
    592     bm_info_[not_at_start ? 1 : 0] = bm;
    593   }
    594 
    595  private:
    596   static const int kFirstCharBudget = 10;
    597   Label label_;
    598   bool on_work_list_;
    599   NodeInfo info_;
    600   // This variable keeps track of how many times code has been generated for
    601   // this node (in different traces).  We don't keep track of where the
    602   // generated code is located unless the code is generated at the start of
    603   // a trace, in which case it is generic and can be reused by flushing the
    604   // deferred operations in the current trace and generating a goto.
    605   int trace_count_;
    606   BoyerMooreLookahead* bm_info_[2];
    607 
    608   Zone* zone_;
    609 };
    610 
    611 
    612 class SeqRegExpNode: public RegExpNode {
    613  public:
    614   explicit SeqRegExpNode(RegExpNode* on_success)
    615       : RegExpNode(on_success->zone()), on_success_(on_success) { }
    616   RegExpNode* on_success() { return on_success_; }
    617   void set_on_success(RegExpNode* node) { on_success_ = node; }
    618   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
    619   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    620                             BoyerMooreLookahead* bm, bool not_at_start) {
    621     on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
    622     if (offset == 0) set_bm_info(not_at_start, bm);
    623   }
    624 
    625  protected:
    626   RegExpNode* FilterSuccessor(int depth, bool ignore_case);
    627 
    628  private:
    629   RegExpNode* on_success_;
    630 };
    631 
    632 
    633 class ActionNode: public SeqRegExpNode {
    634  public:
    635   enum ActionType {
    636     SET_REGISTER,
    637     INCREMENT_REGISTER,
    638     STORE_POSITION,
    639     BEGIN_SUBMATCH,
    640     POSITIVE_SUBMATCH_SUCCESS,
    641     EMPTY_MATCH_CHECK,
    642     CLEAR_CAPTURES
    643   };
    644   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
    645   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
    646   static ActionNode* StorePosition(int reg,
    647                                    bool is_capture,
    648                                    RegExpNode* on_success);
    649   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
    650   static ActionNode* BeginSubmatch(int stack_pointer_reg,
    651                                    int position_reg,
    652                                    RegExpNode* on_success);
    653   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
    654                                              int restore_reg,
    655                                              int clear_capture_count,
    656                                              int clear_capture_from,
    657                                              RegExpNode* on_success);
    658   static ActionNode* EmptyMatchCheck(int start_register,
    659                                      int repetition_register,
    660                                      int repetition_limit,
    661                                      RegExpNode* on_success);
    662   virtual void Accept(NodeVisitor* visitor);
    663   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    664   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    665   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    666                                     RegExpCompiler* compiler,
    667                                     int filled_in,
    668                                     bool not_at_start) {
    669     return on_success()->GetQuickCheckDetails(
    670         details, compiler, filled_in, not_at_start);
    671   }
    672   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    673                             BoyerMooreLookahead* bm, bool not_at_start);
    674   ActionType action_type() { return action_type_; }
    675   // TODO(erikcorry): We should allow some action nodes in greedy loops.
    676   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    677 
    678  private:
    679   union {
    680     struct {
    681       int reg;
    682       int value;
    683     } u_store_register;
    684     struct {
    685       int reg;
    686     } u_increment_register;
    687     struct {
    688       int reg;
    689       bool is_capture;
    690     } u_position_register;
    691     struct {
    692       int stack_pointer_register;
    693       int current_position_register;
    694       int clear_register_count;
    695       int clear_register_from;
    696     } u_submatch;
    697     struct {
    698       int start_register;
    699       int repetition_register;
    700       int repetition_limit;
    701     } u_empty_match_check;
    702     struct {
    703       int range_from;
    704       int range_to;
    705     } u_clear_captures;
    706   } data_;
    707   ActionNode(ActionType action_type, RegExpNode* on_success)
    708       : SeqRegExpNode(on_success),
    709         action_type_(action_type) { }
    710   ActionType action_type_;
    711   friend class DotPrinter;
    712 };
    713 
    714 
    715 class TextNode: public SeqRegExpNode {
    716  public:
    717   TextNode(ZoneList<TextElement>* elms, bool read_backward,
    718            RegExpNode* on_success)
    719       : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {}
    720   TextNode(RegExpCharacterClass* that, bool read_backward,
    721            RegExpNode* on_success)
    722       : SeqRegExpNode(on_success),
    723         elms_(new (zone()) ZoneList<TextElement>(1, zone())),
    724         read_backward_(read_backward) {
    725     elms_->Add(TextElement::CharClass(that), zone());
    726   }
    727   // Create TextNode for a single character class for the given ranges.
    728   static TextNode* CreateForCharacterRanges(Zone* zone,
    729                                             ZoneList<CharacterRange>* ranges,
    730                                             bool read_backward,
    731                                             RegExpNode* on_success);
    732   // Create TextNode for a surrogate pair with a range given for the
    733   // lead and the trail surrogate each.
    734   static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead,
    735                                           CharacterRange trail,
    736                                           bool read_backward,
    737                                           RegExpNode* on_success);
    738   virtual void Accept(NodeVisitor* visitor);
    739   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    740   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    741   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    742                                     RegExpCompiler* compiler,
    743                                     int characters_filled_in,
    744                                     bool not_at_start);
    745   ZoneList<TextElement>* elements() { return elms_; }
    746   bool read_backward() { return read_backward_; }
    747   void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
    748   virtual int GreedyLoopTextLength();
    749   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
    750       RegExpCompiler* compiler);
    751   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    752                             BoyerMooreLookahead* bm, bool not_at_start);
    753   void CalculateOffsets();
    754   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
    755 
    756  private:
    757   enum TextEmitPassType {
    758     NON_LATIN1_MATCH,            // Check for characters that can't match.
    759     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
    760     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
    761     CASE_CHARACTER_MATCH,        // Case-independent single character check.
    762     CHARACTER_CLASS_MATCH        // Character class.
    763   };
    764   static bool SkipPass(int pass, bool ignore_case);
    765   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
    766   static const int kLastPass = CHARACTER_CLASS_MATCH;
    767   void TextEmitPass(RegExpCompiler* compiler,
    768                     TextEmitPassType pass,
    769                     bool preloaded,
    770                     Trace* trace,
    771                     bool first_element_checked,
    772                     int* checked_up_to);
    773   int Length();
    774   ZoneList<TextElement>* elms_;
    775   bool read_backward_;
    776 };
    777 
    778 
    779 class AssertionNode: public SeqRegExpNode {
    780  public:
    781   enum AssertionType {
    782     AT_END,
    783     AT_START,
    784     AT_BOUNDARY,
    785     AT_NON_BOUNDARY,
    786     AFTER_NEWLINE
    787   };
    788   static AssertionNode* AtEnd(RegExpNode* on_success) {
    789     return new(on_success->zone()) AssertionNode(AT_END, on_success);
    790   }
    791   static AssertionNode* AtStart(RegExpNode* on_success) {
    792     return new(on_success->zone()) AssertionNode(AT_START, on_success);
    793   }
    794   static AssertionNode* AtBoundary(RegExpNode* on_success) {
    795     return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
    796   }
    797   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
    798     return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
    799   }
    800   static AssertionNode* AfterNewline(RegExpNode* on_success) {
    801     return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
    802   }
    803   virtual void Accept(NodeVisitor* visitor);
    804   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    805   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    806   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    807                                     RegExpCompiler* compiler,
    808                                     int filled_in,
    809                                     bool not_at_start);
    810   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    811                             BoyerMooreLookahead* bm, bool not_at_start);
    812   AssertionType assertion_type() { return assertion_type_; }
    813 
    814  private:
    815   void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
    816   enum IfPrevious { kIsNonWord, kIsWord };
    817   void BacktrackIfPrevious(RegExpCompiler* compiler,
    818                            Trace* trace,
    819                            IfPrevious backtrack_if_previous);
    820   AssertionNode(AssertionType t, RegExpNode* on_success)
    821       : SeqRegExpNode(on_success), assertion_type_(t) { }
    822   AssertionType assertion_type_;
    823 };
    824 
    825 
    826 class BackReferenceNode: public SeqRegExpNode {
    827  public:
    828   BackReferenceNode(int start_reg, int end_reg, bool read_backward,
    829                     RegExpNode* on_success)
    830       : SeqRegExpNode(on_success),
    831         start_reg_(start_reg),
    832         end_reg_(end_reg),
    833         read_backward_(read_backward) {}
    834   virtual void Accept(NodeVisitor* visitor);
    835   int start_register() { return start_reg_; }
    836   int end_register() { return end_reg_; }
    837   bool read_backward() { return read_backward_; }
    838   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    839   virtual int EatsAtLeast(int still_to_find,
    840                           int recursion_depth,
    841                           bool not_at_start);
    842   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    843                                     RegExpCompiler* compiler,
    844                                     int characters_filled_in,
    845                                     bool not_at_start) {
    846     return;
    847   }
    848   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    849                             BoyerMooreLookahead* bm, bool not_at_start);
    850 
    851  private:
    852   int start_reg_;
    853   int end_reg_;
    854   bool read_backward_;
    855 };
    856 
    857 
    858 class EndNode: public RegExpNode {
    859  public:
    860   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
    861   EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {}
    862   virtual void Accept(NodeVisitor* visitor);
    863   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    864   virtual int EatsAtLeast(int still_to_find,
    865                           int recursion_depth,
    866                           bool not_at_start) { return 0; }
    867   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    868                                     RegExpCompiler* compiler,
    869                                     int characters_filled_in,
    870                                     bool not_at_start) {
    871     // Returning 0 from EatsAtLeast should ensure we never get here.
    872     UNREACHABLE();
    873   }
    874   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    875                             BoyerMooreLookahead* bm, bool not_at_start) {
    876     // Returning 0 from EatsAtLeast should ensure we never get here.
    877     UNREACHABLE();
    878   }
    879 
    880  private:
    881   Action action_;
    882 };
    883 
    884 
    885 class NegativeSubmatchSuccess: public EndNode {
    886  public:
    887   NegativeSubmatchSuccess(int stack_pointer_reg,
    888                           int position_reg,
    889                           int clear_capture_count,
    890                           int clear_capture_start,
    891                           Zone* zone)
    892       : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
    893         stack_pointer_register_(stack_pointer_reg),
    894         current_position_register_(position_reg),
    895         clear_capture_count_(clear_capture_count),
    896         clear_capture_start_(clear_capture_start) { }
    897   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    898 
    899  private:
    900   int stack_pointer_register_;
    901   int current_position_register_;
    902   int clear_capture_count_;
    903   int clear_capture_start_;
    904 };
    905 
    906 
    907 class Guard: public ZoneObject {
    908  public:
    909   enum Relation { LT, GEQ };
    910   Guard(int reg, Relation op, int value)
    911       : reg_(reg),
    912         op_(op),
    913         value_(value) { }
    914   int reg() { return reg_; }
    915   Relation op() { return op_; }
    916   int value() { return value_; }
    917 
    918  private:
    919   int reg_;
    920   Relation op_;
    921   int value_;
    922 };
    923 
    924 
    925 class GuardedAlternative {
    926  public:
    927   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
    928   void AddGuard(Guard* guard, Zone* zone);
    929   RegExpNode* node() { return node_; }
    930   void set_node(RegExpNode* node) { node_ = node; }
    931   ZoneList<Guard*>* guards() { return guards_; }
    932 
    933  private:
    934   RegExpNode* node_;
    935   ZoneList<Guard*>* guards_;
    936 };
    937 
    938 
    939 class AlternativeGeneration;
    940 
    941 
    942 class ChoiceNode: public RegExpNode {
    943  public:
    944   explicit ChoiceNode(int expected_size, Zone* zone)
    945       : RegExpNode(zone),
    946         alternatives_(new(zone)
    947                       ZoneList<GuardedAlternative>(expected_size, zone)),
    948         table_(NULL),
    949         not_at_start_(false),
    950         being_calculated_(false) { }
    951   virtual void Accept(NodeVisitor* visitor);
    952   void AddAlternative(GuardedAlternative node) {
    953     alternatives()->Add(node, zone());
    954   }
    955   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
    956   DispatchTable* GetTable(bool ignore_case);
    957   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    958   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    959   int EatsAtLeastHelper(int still_to_find,
    960                         int budget,
    961                         RegExpNode* ignore_this_node,
    962                         bool not_at_start);
    963   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    964                                     RegExpCompiler* compiler,
    965                                     int characters_filled_in,
    966                                     bool not_at_start);
    967   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    968                             BoyerMooreLookahead* bm, bool not_at_start);
    969 
    970   bool being_calculated() { return being_calculated_; }
    971   bool not_at_start() { return not_at_start_; }
    972   void set_not_at_start() { not_at_start_ = true; }
    973   void set_being_calculated(bool b) { being_calculated_ = b; }
    974   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
    975     return true;
    976   }
    977   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
    978   virtual bool read_backward() { return false; }
    979 
    980  protected:
    981   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
    982   ZoneList<GuardedAlternative>* alternatives_;
    983 
    984  private:
    985   friend class DispatchTableConstructor;
    986   friend class Analysis;
    987   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
    988                      Guard* guard,
    989                      Trace* trace);
    990   int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
    991   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
    992                                  Trace* trace,
    993                                  GuardedAlternative alternative,
    994                                  AlternativeGeneration* alt_gen,
    995                                  int preload_characters,
    996                                  bool next_expects_preload);
    997   void SetUpPreLoad(RegExpCompiler* compiler,
    998                     Trace* current_trace,
    999                     PreloadState* preloads);
   1000   void AssertGuardsMentionRegisters(Trace* trace);
   1001   int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
   1002   Trace* EmitGreedyLoop(RegExpCompiler* compiler,
   1003                         Trace* trace,
   1004                         AlternativeGenerationList* alt_gens,
   1005                         PreloadState* preloads,
   1006                         GreedyLoopState* greedy_loop_state,
   1007                         int text_length);
   1008   void EmitChoices(RegExpCompiler* compiler,
   1009                    AlternativeGenerationList* alt_gens,
   1010                    int first_choice,
   1011                    Trace* trace,
   1012                    PreloadState* preloads);
   1013   DispatchTable* table_;
   1014   // If true, this node is never checked at the start of the input.
   1015   // Allows a new trace to start with at_start() set to false.
   1016   bool not_at_start_;
   1017   bool being_calculated_;
   1018 };
   1019 
   1020 
   1021 class NegativeLookaroundChoiceNode : public ChoiceNode {
   1022  public:
   1023   explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail,
   1024                                         GuardedAlternative then_do_this,
   1025                                         Zone* zone)
   1026       : ChoiceNode(2, zone) {
   1027     AddAlternative(this_must_fail);
   1028     AddAlternative(then_do_this);
   1029   }
   1030   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
   1031   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1032                                     RegExpCompiler* compiler,
   1033                                     int characters_filled_in,
   1034                                     bool not_at_start);
   1035   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
   1036                             BoyerMooreLookahead* bm, bool not_at_start) {
   1037     alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
   1038                                               not_at_start);
   1039     if (offset == 0) set_bm_info(not_at_start, bm);
   1040   }
   1041   // For a negative lookahead we don't emit the quick check for the
   1042   // alternative that is expected to fail.  This is because quick check code
   1043   // starts by loading enough characters for the alternative that takes fewest
   1044   // characters, but on a negative lookahead the negative branch did not take
   1045   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
   1046   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
   1047     return !is_first;
   1048   }
   1049   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
   1050 };
   1051 
   1052 
   1053 class LoopChoiceNode: public ChoiceNode {
   1054  public:
   1055   LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone)
   1056       : ChoiceNode(2, zone),
   1057         loop_node_(NULL),
   1058         continue_node_(NULL),
   1059         body_can_be_zero_length_(body_can_be_zero_length),
   1060         read_backward_(read_backward) {}
   1061   void AddLoopAlternative(GuardedAlternative alt);
   1062   void AddContinueAlternative(GuardedAlternative alt);
   1063   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1064   virtual int EatsAtLeast(int still_to_find,  int budget, bool not_at_start);
   1065   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1066                                     RegExpCompiler* compiler,
   1067                                     int characters_filled_in,
   1068                                     bool not_at_start);
   1069   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
   1070                             BoyerMooreLookahead* bm, bool not_at_start);
   1071   RegExpNode* loop_node() { return loop_node_; }
   1072   RegExpNode* continue_node() { return continue_node_; }
   1073   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
   1074   virtual bool read_backward() { return read_backward_; }
   1075   virtual void Accept(NodeVisitor* visitor);
   1076   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
   1077 
   1078  private:
   1079   // AddAlternative is made private for loop nodes because alternatives
   1080   // should not be added freely, we need to keep track of which node
   1081   // goes back to the node itself.
   1082   void AddAlternative(GuardedAlternative node) {
   1083     ChoiceNode::AddAlternative(node);
   1084   }
   1085 
   1086   RegExpNode* loop_node_;
   1087   RegExpNode* continue_node_;
   1088   bool body_can_be_zero_length_;
   1089   bool read_backward_;
   1090 };
   1091 
   1092 
   1093 // Improve the speed that we scan for an initial point where a non-anchored
   1094 // regexp can match by using a Boyer-Moore-like table. This is done by
   1095 // identifying non-greedy non-capturing loops in the nodes that eat any
   1096 // character one at a time.  For example in the middle of the regexp
   1097 // /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
   1098 // inserted at the start of any non-anchored regexp.
   1099 //
   1100 // When we have found such a loop we look ahead in the nodes to find the set of
   1101 // characters that can come at given distances. For example for the regexp
   1102 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
   1103 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
   1104 // the lookahead info where the set of characters is reasonably constrained. In
   1105 // our example this is from index 1 to 2 (0 is not constrained). We can now
   1106 // look 3 characters ahead and if we don't find one of [f, o] (the union of
   1107 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
   1108 //
   1109 // For Unicode input strings we do the same, but modulo 128.
   1110 //
   1111 // We also look at the first string fed to the regexp and use that to get a hint
   1112 // of the character frequencies in the inputs. This affects the assessment of
   1113 // whether the set of characters is 'reasonably constrained'.
   1114 //
   1115 // We also have another lookahead mechanism (called quick check in the code),
   1116 // which uses a wide load of multiple characters followed by a mask and compare
   1117 // to determine whether a match is possible at this point.
   1118 enum ContainedInLattice {
   1119   kNotYet = 0,
   1120   kLatticeIn = 1,
   1121   kLatticeOut = 2,
   1122   kLatticeUnknown = 3  // Can also mean both in and out.
   1123 };
   1124 
   1125 
   1126 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
   1127   return static_cast<ContainedInLattice>(a | b);
   1128 }
   1129 
   1130 
   1131 ContainedInLattice AddRange(ContainedInLattice a,
   1132                             const int* ranges,
   1133                             int ranges_size,
   1134                             Interval new_range);
   1135 
   1136 
   1137 class BoyerMoorePositionInfo : public ZoneObject {
   1138  public:
   1139   explicit BoyerMoorePositionInfo(Zone* zone)
   1140       : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
   1141         map_count_(0),
   1142         w_(kNotYet),
   1143         s_(kNotYet),
   1144         d_(kNotYet),
   1145         surrogate_(kNotYet) {
   1146      for (int i = 0; i < kMapSize; i++) {
   1147        map_->Add(false, zone);
   1148      }
   1149   }
   1150 
   1151   bool& at(int i) { return map_->at(i); }
   1152 
   1153   static const int kMapSize = 128;
   1154   static const int kMask = kMapSize - 1;
   1155 
   1156   int map_count() const { return map_count_; }
   1157 
   1158   void Set(int character);
   1159   void SetInterval(const Interval& interval);
   1160   void SetAll();
   1161   bool is_non_word() { return w_ == kLatticeOut; }
   1162   bool is_word() { return w_ == kLatticeIn; }
   1163 
   1164  private:
   1165   ZoneList<bool>* map_;
   1166   int map_count_;  // Number of set bits in the map.
   1167   ContainedInLattice w_;  // The \w character class.
   1168   ContainedInLattice s_;  // The \s character class.
   1169   ContainedInLattice d_;  // The \d character class.
   1170   ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
   1171 };
   1172 
   1173 
   1174 class BoyerMooreLookahead : public ZoneObject {
   1175  public:
   1176   BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
   1177 
   1178   int length() { return length_; }
   1179   int max_char() { return max_char_; }
   1180   RegExpCompiler* compiler() { return compiler_; }
   1181 
   1182   int Count(int map_number) {
   1183     return bitmaps_->at(map_number)->map_count();
   1184   }
   1185 
   1186   BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
   1187 
   1188   void Set(int map_number, int character) {
   1189     if (character > max_char_) return;
   1190     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
   1191     info->Set(character);
   1192   }
   1193 
   1194   void SetInterval(int map_number, const Interval& interval) {
   1195     if (interval.from() > max_char_) return;
   1196     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
   1197     if (interval.to() > max_char_) {
   1198       info->SetInterval(Interval(interval.from(), max_char_));
   1199     } else {
   1200       info->SetInterval(interval);
   1201     }
   1202   }
   1203 
   1204   void SetAll(int map_number) {
   1205     bitmaps_->at(map_number)->SetAll();
   1206   }
   1207 
   1208   void SetRest(int from_map) {
   1209     for (int i = from_map; i < length_; i++) SetAll(i);
   1210   }
   1211   void EmitSkipInstructions(RegExpMacroAssembler* masm);
   1212 
   1213  private:
   1214   // This is the value obtained by EatsAtLeast.  If we do not have at least this
   1215   // many characters left in the sample string then the match is bound to fail.
   1216   // Therefore it is OK to read a character this far ahead of the current match
   1217   // point.
   1218   int length_;
   1219   RegExpCompiler* compiler_;
   1220   // 0xff for Latin1, 0xffff for UTF-16.
   1221   int max_char_;
   1222   ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
   1223 
   1224   int GetSkipTable(int min_lookahead,
   1225                    int max_lookahead,
   1226                    Handle<ByteArray> boolean_skip_table);
   1227   bool FindWorthwhileInterval(int* from, int* to);
   1228   int FindBestInterval(
   1229     int max_number_of_chars, int old_biggest_points, int* from, int* to);
   1230 };
   1231 
   1232 
   1233 // There are many ways to generate code for a node.  This class encapsulates
   1234 // the current way we should be generating.  In other words it encapsulates
   1235 // the current state of the code generator.  The effect of this is that we
   1236 // generate code for paths that the matcher can take through the regular
   1237 // expression.  A given node in the regexp can be code-generated several times
   1238 // as it can be part of several traces.  For example for the regexp:
   1239 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
   1240 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
   1241 // to match foo is generated only once (the traces have a common prefix).  The
   1242 // code to store the capture is deferred and generated (twice) after the places
   1243 // where baz has been matched.
   1244 class Trace {
   1245  public:
   1246   // A value for a property that is either known to be true, know to be false,
   1247   // or not known.
   1248   enum TriBool {
   1249     UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
   1250   };
   1251 
   1252   class DeferredAction {
   1253    public:
   1254     DeferredAction(ActionNode::ActionType action_type, int reg)
   1255         : action_type_(action_type), reg_(reg), next_(NULL) { }
   1256     DeferredAction* next() { return next_; }
   1257     bool Mentions(int reg);
   1258     int reg() { return reg_; }
   1259     ActionNode::ActionType action_type() { return action_type_; }
   1260    private:
   1261     ActionNode::ActionType action_type_;
   1262     int reg_;
   1263     DeferredAction* next_;
   1264     friend class Trace;
   1265   };
   1266 
   1267   class DeferredCapture : public DeferredAction {
   1268    public:
   1269     DeferredCapture(int reg, bool is_capture, Trace* trace)
   1270         : DeferredAction(ActionNode::STORE_POSITION, reg),
   1271           cp_offset_(trace->cp_offset()),
   1272           is_capture_(is_capture) { }
   1273     int cp_offset() { return cp_offset_; }
   1274     bool is_capture() { return is_capture_; }
   1275    private:
   1276     int cp_offset_;
   1277     bool is_capture_;
   1278     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
   1279   };
   1280 
   1281   class DeferredSetRegister : public DeferredAction {
   1282    public:
   1283     DeferredSetRegister(int reg, int value)
   1284         : DeferredAction(ActionNode::SET_REGISTER, reg),
   1285           value_(value) { }
   1286     int value() { return value_; }
   1287    private:
   1288     int value_;
   1289   };
   1290 
   1291   class DeferredClearCaptures : public DeferredAction {
   1292    public:
   1293     explicit DeferredClearCaptures(Interval range)
   1294         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
   1295           range_(range) { }
   1296     Interval range() { return range_; }
   1297    private:
   1298     Interval range_;
   1299   };
   1300 
   1301   class DeferredIncrementRegister : public DeferredAction {
   1302    public:
   1303     explicit DeferredIncrementRegister(int reg)
   1304         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
   1305   };
   1306 
   1307   Trace()
   1308       : cp_offset_(0),
   1309         actions_(NULL),
   1310         backtrack_(NULL),
   1311         stop_node_(NULL),
   1312         loop_label_(NULL),
   1313         characters_preloaded_(0),
   1314         bound_checked_up_to_(0),
   1315         flush_budget_(100),
   1316         at_start_(UNKNOWN) { }
   1317 
   1318   // End the trace.  This involves flushing the deferred actions in the trace
   1319   // and pushing a backtrack location onto the backtrack stack.  Once this is
   1320   // done we can start a new trace or go to one that has already been
   1321   // generated.
   1322   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
   1323   int cp_offset() { return cp_offset_; }
   1324   DeferredAction* actions() { return actions_; }
   1325   // A trivial trace is one that has no deferred actions or other state that
   1326   // affects the assumptions used when generating code.  There is no recorded
   1327   // backtrack location in a trivial trace, so with a trivial trace we will
   1328   // generate code that, on a failure to match, gets the backtrack location
   1329   // from the backtrack stack rather than using a direct jump instruction.  We
   1330   // always start code generation with a trivial trace and non-trivial traces
   1331   // are created as we emit code for nodes or add to the list of deferred
   1332   // actions in the trace.  The location of the code generated for a node using
   1333   // a trivial trace is recorded in a label in the node so that gotos can be
   1334   // generated to that code.
   1335   bool is_trivial() {
   1336     return backtrack_ == NULL &&
   1337            actions_ == NULL &&
   1338            cp_offset_ == 0 &&
   1339            characters_preloaded_ == 0 &&
   1340            bound_checked_up_to_ == 0 &&
   1341            quick_check_performed_.characters() == 0 &&
   1342            at_start_ == UNKNOWN;
   1343   }
   1344   TriBool at_start() { return at_start_; }
   1345   void set_at_start(TriBool at_start) { at_start_ = at_start; }
   1346   Label* backtrack() { return backtrack_; }
   1347   Label* loop_label() { return loop_label_; }
   1348   RegExpNode* stop_node() { return stop_node_; }
   1349   int characters_preloaded() { return characters_preloaded_; }
   1350   int bound_checked_up_to() { return bound_checked_up_to_; }
   1351   int flush_budget() { return flush_budget_; }
   1352   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
   1353   bool mentions_reg(int reg);
   1354   // Returns true if a deferred position store exists to the specified
   1355   // register and stores the offset in the out-parameter.  Otherwise
   1356   // returns false.
   1357   bool GetStoredPosition(int reg, int* cp_offset);
   1358   // These set methods and AdvanceCurrentPositionInTrace should be used only on
   1359   // new traces - the intention is that traces are immutable after creation.
   1360   void add_action(DeferredAction* new_action) {
   1361     DCHECK(new_action->next_ == NULL);
   1362     new_action->next_ = actions_;
   1363     actions_ = new_action;
   1364   }
   1365   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
   1366   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
   1367   void set_loop_label(Label* label) { loop_label_ = label; }
   1368   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
   1369   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
   1370   void set_flush_budget(int to) { flush_budget_ = to; }
   1371   void set_quick_check_performed(QuickCheckDetails* d) {
   1372     quick_check_performed_ = *d;
   1373   }
   1374   void InvalidateCurrentCharacter();
   1375   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
   1376 
   1377  private:
   1378   int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
   1379   void PerformDeferredActions(RegExpMacroAssembler* macro,
   1380                               int max_register,
   1381                               const OutSet& affected_registers,
   1382                               OutSet* registers_to_pop,
   1383                               OutSet* registers_to_clear,
   1384                               Zone* zone);
   1385   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
   1386                                 int max_register,
   1387                                 const OutSet& registers_to_pop,
   1388                                 const OutSet& registers_to_clear);
   1389   int cp_offset_;
   1390   DeferredAction* actions_;
   1391   Label* backtrack_;
   1392   RegExpNode* stop_node_;
   1393   Label* loop_label_;
   1394   int characters_preloaded_;
   1395   int bound_checked_up_to_;
   1396   QuickCheckDetails quick_check_performed_;
   1397   int flush_budget_;
   1398   TriBool at_start_;
   1399 };
   1400 
   1401 
   1402 class GreedyLoopState {
   1403  public:
   1404   explicit GreedyLoopState(bool not_at_start);
   1405 
   1406   Label* label() { return &label_; }
   1407   Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
   1408 
   1409  private:
   1410   Label label_;
   1411   Trace counter_backtrack_trace_;
   1412 };
   1413 
   1414 
   1415 struct PreloadState {
   1416   static const int kEatsAtLeastNotYetInitialized = -1;
   1417   bool preload_is_current_;
   1418   bool preload_has_checked_bounds_;
   1419   int preload_characters_;
   1420   int eats_at_least_;
   1421   void init() {
   1422     eats_at_least_ = kEatsAtLeastNotYetInitialized;
   1423   }
   1424 };
   1425 
   1426 
   1427 class NodeVisitor {
   1428  public:
   1429   virtual ~NodeVisitor() { }
   1430 #define DECLARE_VISIT(Type)                                          \
   1431   virtual void Visit##Type(Type##Node* that) = 0;
   1432 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1433 #undef DECLARE_VISIT
   1434   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
   1435 };
   1436 
   1437 
   1438 // Node visitor used to add the start set of the alternatives to the
   1439 // dispatch table of a choice node.
   1440 class DispatchTableConstructor: public NodeVisitor {
   1441  public:
   1442   DispatchTableConstructor(DispatchTable* table, bool ignore_case,
   1443                            Zone* zone)
   1444       : table_(table),
   1445         choice_index_(-1),
   1446         ignore_case_(ignore_case),
   1447         zone_(zone) { }
   1448 
   1449   void BuildTable(ChoiceNode* node);
   1450 
   1451   void AddRange(CharacterRange range) {
   1452     table()->AddRange(range, choice_index_, zone_);
   1453   }
   1454 
   1455   void AddInverse(ZoneList<CharacterRange>* ranges);
   1456 
   1457 #define DECLARE_VISIT(Type)                                          \
   1458   virtual void Visit##Type(Type##Node* that);
   1459 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1460 #undef DECLARE_VISIT
   1461 
   1462   DispatchTable* table() { return table_; }
   1463   void set_choice_index(int value) { choice_index_ = value; }
   1464 
   1465  protected:
   1466   DispatchTable* table_;
   1467   int choice_index_;
   1468   bool ignore_case_;
   1469   Zone* zone_;
   1470 };
   1471 
   1472 
   1473 // Assertion propagation moves information about assertions such as
   1474 // \b to the affected nodes.  For instance, in /.\b./ information must
   1475 // be propagated to the first '.' that whatever follows needs to know
   1476 // if it matched a word or a non-word, and to the second '.' that it
   1477 // has to check if it succeeds a word or non-word.  In this case the
   1478 // result will be something like:
   1479 //
   1480 //   +-------+        +------------+
   1481 //   |   .   |        |      .     |
   1482 //   +-------+  --->  +------------+
   1483 //   | word? |        | check word |
   1484 //   +-------+        +------------+
   1485 class Analysis: public NodeVisitor {
   1486  public:
   1487   Analysis(Isolate* isolate, JSRegExp::Flags flags, bool is_one_byte)
   1488       : isolate_(isolate),
   1489         flags_(flags),
   1490         is_one_byte_(is_one_byte),
   1491         error_message_(NULL) {}
   1492   void EnsureAnalyzed(RegExpNode* node);
   1493 
   1494 #define DECLARE_VISIT(Type)                                          \
   1495   virtual void Visit##Type(Type##Node* that);
   1496 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1497 #undef DECLARE_VISIT
   1498   virtual void VisitLoopChoice(LoopChoiceNode* that);
   1499 
   1500   bool has_failed() { return error_message_ != NULL; }
   1501   const char* error_message() {
   1502     DCHECK(error_message_ != NULL);
   1503     return error_message_;
   1504   }
   1505   void fail(const char* error_message) {
   1506     error_message_ = error_message;
   1507   }
   1508 
   1509   Isolate* isolate() const { return isolate_; }
   1510 
   1511   bool ignore_case() const { return (flags_ & JSRegExp::kIgnoreCase) != 0; }
   1512   bool unicode() const { return (flags_ & JSRegExp::kUnicode) != 0; }
   1513 
   1514  private:
   1515   Isolate* isolate_;
   1516   JSRegExp::Flags flags_;
   1517   bool is_one_byte_;
   1518   const char* error_message_;
   1519 
   1520   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
   1521 };
   1522 
   1523 
   1524 struct RegExpCompileData {
   1525   RegExpCompileData()
   1526     : tree(NULL),
   1527       node(NULL),
   1528       simple(true),
   1529       contains_anchor(false),
   1530       capture_count(0) { }
   1531   RegExpTree* tree;
   1532   RegExpNode* node;
   1533   bool simple;
   1534   bool contains_anchor;
   1535   Handle<FixedArray> capture_name_map;
   1536   Handle<String> error;
   1537   int capture_count;
   1538 };
   1539 
   1540 
   1541 class RegExpEngine: public AllStatic {
   1542  public:
   1543   struct CompilationResult {
   1544     CompilationResult(Isolate* isolate, const char* error_message)
   1545         : error_message(error_message),
   1546           code(isolate->heap()->the_hole_value()),
   1547           num_registers(0) {}
   1548     CompilationResult(Object* code, int registers)
   1549         : error_message(NULL), code(code), num_registers(registers) {}
   1550     const char* error_message;
   1551     Object* code;
   1552     int num_registers;
   1553   };
   1554 
   1555   static CompilationResult Compile(Isolate* isolate, Zone* zone,
   1556                                    RegExpCompileData* input,
   1557                                    JSRegExp::Flags flags,
   1558                                    Handle<String> pattern,
   1559                                    Handle<String> sample_subject,
   1560                                    bool is_one_byte);
   1561 
   1562   static bool TooMuchRegExpCode(Handle<String> pattern);
   1563 
   1564   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
   1565 };
   1566 
   1567 
   1568 class RegExpResultsCache : public AllStatic {
   1569  public:
   1570   enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
   1571 
   1572   // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
   1573   // On success, the returned result is guaranteed to be a COW-array.
   1574   static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
   1575                         FixedArray** last_match_out, ResultsCacheType type);
   1576   // Attempt to add value_array to the cache specified by type.  On success,
   1577   // value_array is turned into a COW-array.
   1578   static void Enter(Isolate* isolate, Handle<String> key_string,
   1579                     Handle<Object> key_pattern, Handle<FixedArray> value_array,
   1580                     Handle<FixedArray> last_match_cache, ResultsCacheType type);
   1581   static void Clear(FixedArray* cache);
   1582   static const int kRegExpResultsCacheSize = 0x100;
   1583 
   1584  private:
   1585   static const int kArrayEntriesPerCacheEntry = 4;
   1586   static const int kStringOffset = 0;
   1587   static const int kPatternOffset = 1;
   1588   static const int kArrayOffset = 2;
   1589   static const int kLastMatchOffset = 3;
   1590 };
   1591 
   1592 }  // namespace internal
   1593 }  // namespace v8
   1594 
   1595 #endif  // V8_REGEXP_JSREGEXP_H_
   1596