Home | History | Annotate | Download | only in regexp
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/regexp/jsregexp.h"
      6 
      7 #include "src/ast/ast.h"
      8 #include "src/base/platform/platform.h"
      9 #include "src/compilation-cache.h"
     10 #include "src/compiler.h"
     11 #include "src/execution.h"
     12 #include "src/factory.h"
     13 #include "src/isolate-inl.h"
     14 #include "src/messages.h"
     15 #include "src/ostreams.h"
     16 #include "src/regexp/interpreter-irregexp.h"
     17 #include "src/regexp/jsregexp-inl.h"
     18 #include "src/regexp/regexp-macro-assembler.h"
     19 #include "src/regexp/regexp-macro-assembler-irregexp.h"
     20 #include "src/regexp/regexp-macro-assembler-tracer.h"
     21 #include "src/regexp/regexp-parser.h"
     22 #include "src/regexp/regexp-stack.h"
     23 #include "src/runtime/runtime.h"
     24 #include "src/splay-tree-inl.h"
     25 #include "src/string-search.h"
     26 #include "src/unicode-decoder.h"
     27 
     28 #ifdef V8_I18N_SUPPORT
     29 #include "unicode/uset.h"
     30 #include "unicode/utypes.h"
     31 #endif  // V8_I18N_SUPPORT
     32 
     33 #ifndef V8_INTERPRETED_REGEXP
     34 #if V8_TARGET_ARCH_IA32
     35 #include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
     36 #elif V8_TARGET_ARCH_X64
     37 #include "src/regexp/x64/regexp-macro-assembler-x64.h"
     38 #elif V8_TARGET_ARCH_ARM64
     39 #include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
     40 #elif V8_TARGET_ARCH_ARM
     41 #include "src/regexp/arm/regexp-macro-assembler-arm.h"
     42 #elif V8_TARGET_ARCH_PPC
     43 #include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
     44 #elif V8_TARGET_ARCH_S390
     45 #include "src/regexp/s390/regexp-macro-assembler-s390.h"
     46 #elif V8_TARGET_ARCH_MIPS
     47 #include "src/regexp/mips/regexp-macro-assembler-mips.h"
     48 #elif V8_TARGET_ARCH_MIPS64
     49 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
     50 #elif V8_TARGET_ARCH_X87
     51 #include "src/regexp/x87/regexp-macro-assembler-x87.h"
     52 #else
     53 #error Unsupported target architecture.
     54 #endif
     55 #endif
     56 
     57 
     58 namespace v8 {
     59 namespace internal {
     60 
     61 MUST_USE_RESULT
     62 static inline MaybeHandle<Object> ThrowRegExpException(
     63     Handle<JSRegExp> re, Handle<String> pattern, Handle<String> error_text) {
     64   Isolate* isolate = re->GetIsolate();
     65   THROW_NEW_ERROR(isolate, NewSyntaxError(MessageTemplate::kMalformedRegExp,
     66                                           pattern, error_text),
     67                   Object);
     68 }
     69 
     70 
     71 inline void ThrowRegExpException(Handle<JSRegExp> re,
     72                                  Handle<String> error_text) {
     73   USE(ThrowRegExpException(re, Handle<String>(re->Pattern()), error_text));
     74 }
     75 
     76 
     77 ContainedInLattice AddRange(ContainedInLattice containment,
     78                             const int* ranges,
     79                             int ranges_length,
     80                             Interval new_range) {
     81   DCHECK((ranges_length & 1) == 1);
     82   DCHECK(ranges[ranges_length - 1] == String::kMaxCodePoint + 1);
     83   if (containment == kLatticeUnknown) return containment;
     84   bool inside = false;
     85   int last = 0;
     86   for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) {
     87     // Consider the range from last to ranges[i].
     88     // We haven't got to the new range yet.
     89     if (ranges[i] <= new_range.from()) continue;
     90     // New range is wholly inside last-ranges[i].  Note that new_range.to() is
     91     // inclusive, but the values in ranges are not.
     92     if (last <= new_range.from() && new_range.to() < ranges[i]) {
     93       return Combine(containment, inside ? kLatticeIn : kLatticeOut);
     94     }
     95     return kLatticeUnknown;
     96   }
     97   return containment;
     98 }
     99 
    100 
    101 // More makes code generation slower, less makes V8 benchmark score lower.
    102 const int kMaxLookaheadForBoyerMoore = 8;
    103 // In a 3-character pattern you can maximally step forwards 3 characters
    104 // at a time, which is not always enough to pay for the extra logic.
    105 const int kPatternTooShortForBoyerMoore = 2;
    106 
    107 
    108 // Identifies the sort of regexps where the regexp engine is faster
    109 // than the code used for atom matches.
    110 static bool HasFewDifferentCharacters(Handle<String> pattern) {
    111   int length = Min(kMaxLookaheadForBoyerMoore, pattern->length());
    112   if (length <= kPatternTooShortForBoyerMoore) return false;
    113   const int kMod = 128;
    114   bool character_found[kMod];
    115   int different = 0;
    116   memset(&character_found[0], 0, sizeof(character_found));
    117   for (int i = 0; i < length; i++) {
    118     int ch = (pattern->Get(i) & (kMod - 1));
    119     if (!character_found[ch]) {
    120       character_found[ch] = true;
    121       different++;
    122       // We declare a regexp low-alphabet if it has at least 3 times as many
    123       // characters as it has different characters.
    124       if (different * 3 > length) return false;
    125     }
    126   }
    127   return true;
    128 }
    129 
    130 
    131 // Generic RegExp methods. Dispatches to implementation specific methods.
    132 
    133 
    134 MaybeHandle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
    135                                         Handle<String> pattern,
    136                                         JSRegExp::Flags flags) {
    137   Isolate* isolate = re->GetIsolate();
    138   Zone zone(isolate->allocator());
    139   CompilationCache* compilation_cache = isolate->compilation_cache();
    140   MaybeHandle<FixedArray> maybe_cached =
    141       compilation_cache->LookupRegExp(pattern, flags);
    142   Handle<FixedArray> cached;
    143   bool in_cache = maybe_cached.ToHandle(&cached);
    144   LOG(isolate, RegExpCompileEvent(re, in_cache));
    145 
    146   Handle<Object> result;
    147   if (in_cache) {
    148     re->set_data(*cached);
    149     return re;
    150   }
    151   pattern = String::Flatten(pattern);
    152   PostponeInterruptsScope postpone(isolate);
    153   RegExpCompileData parse_result;
    154   FlatStringReader reader(isolate, pattern);
    155   if (!RegExpParser::ParseRegExp(re->GetIsolate(), &zone, &reader, flags,
    156                                  &parse_result)) {
    157     // Throw an exception if we fail to parse the pattern.
    158     return ThrowRegExpException(re, pattern, parse_result.error);
    159   }
    160 
    161   bool has_been_compiled = false;
    162 
    163   if (parse_result.simple && !(flags & JSRegExp::kIgnoreCase) &&
    164       !(flags & JSRegExp::kSticky) && !HasFewDifferentCharacters(pattern)) {
    165     // Parse-tree is a single atom that is equal to the pattern.
    166     AtomCompile(re, pattern, flags, pattern);
    167     has_been_compiled = true;
    168   } else if (parse_result.tree->IsAtom() && !(flags & JSRegExp::kIgnoreCase) &&
    169              !(flags & JSRegExp::kSticky) && parse_result.capture_count == 0) {
    170     RegExpAtom* atom = parse_result.tree->AsAtom();
    171     Vector<const uc16> atom_pattern = atom->data();
    172     Handle<String> atom_string;
    173     ASSIGN_RETURN_ON_EXCEPTION(
    174         isolate, atom_string,
    175         isolate->factory()->NewStringFromTwoByte(atom_pattern),
    176         Object);
    177     if (!HasFewDifferentCharacters(atom_string)) {
    178       AtomCompile(re, pattern, flags, atom_string);
    179       has_been_compiled = true;
    180     }
    181   }
    182   if (!has_been_compiled) {
    183     IrregexpInitialize(re, pattern, flags, parse_result.capture_count);
    184   }
    185   DCHECK(re->data()->IsFixedArray());
    186   // Compilation succeeded so the data is set on the regexp
    187   // and we can store it in the cache.
    188   Handle<FixedArray> data(FixedArray::cast(re->data()));
    189   compilation_cache->PutRegExp(pattern, flags, data);
    190 
    191   return re;
    192 }
    193 
    194 
    195 MaybeHandle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
    196                                      Handle<String> subject,
    197                                      int index,
    198                                      Handle<JSArray> last_match_info) {
    199   switch (regexp->TypeTag()) {
    200     case JSRegExp::ATOM:
    201       return AtomExec(regexp, subject, index, last_match_info);
    202     case JSRegExp::IRREGEXP: {
    203       return IrregexpExec(regexp, subject, index, last_match_info);
    204     }
    205     default:
    206       UNREACHABLE();
    207       return MaybeHandle<Object>();
    208   }
    209 }
    210 
    211 
    212 // RegExp Atom implementation: Simple string search using indexOf.
    213 
    214 
    215 void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
    216                              Handle<String> pattern,
    217                              JSRegExp::Flags flags,
    218                              Handle<String> match_pattern) {
    219   re->GetIsolate()->factory()->SetRegExpAtomData(re,
    220                                                  JSRegExp::ATOM,
    221                                                  pattern,
    222                                                  flags,
    223                                                  match_pattern);
    224 }
    225 
    226 
    227 static void SetAtomLastCapture(FixedArray* array,
    228                                String* subject,
    229                                int from,
    230                                int to) {
    231   SealHandleScope shs(array->GetIsolate());
    232   RegExpImpl::SetLastCaptureCount(array, 2);
    233   RegExpImpl::SetLastSubject(array, subject);
    234   RegExpImpl::SetLastInput(array, subject);
    235   RegExpImpl::SetCapture(array, 0, from);
    236   RegExpImpl::SetCapture(array, 1, to);
    237 }
    238 
    239 
    240 int RegExpImpl::AtomExecRaw(Handle<JSRegExp> regexp,
    241                             Handle<String> subject,
    242                             int index,
    243                             int32_t* output,
    244                             int output_size) {
    245   Isolate* isolate = regexp->GetIsolate();
    246 
    247   DCHECK(0 <= index);
    248   DCHECK(index <= subject->length());
    249 
    250   subject = String::Flatten(subject);
    251   DisallowHeapAllocation no_gc;  // ensure vectors stay valid
    252 
    253   String* needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex));
    254   int needle_len = needle->length();
    255   DCHECK(needle->IsFlat());
    256   DCHECK_LT(0, needle_len);
    257 
    258   if (index + needle_len > subject->length()) {
    259     return RegExpImpl::RE_FAILURE;
    260   }
    261 
    262   for (int i = 0; i < output_size; i += 2) {
    263     String::FlatContent needle_content = needle->GetFlatContent();
    264     String::FlatContent subject_content = subject->GetFlatContent();
    265     DCHECK(needle_content.IsFlat());
    266     DCHECK(subject_content.IsFlat());
    267     // dispatch on type of strings
    268     index =
    269         (needle_content.IsOneByte()
    270              ? (subject_content.IsOneByte()
    271                     ? SearchString(isolate, subject_content.ToOneByteVector(),
    272                                    needle_content.ToOneByteVector(), index)
    273                     : SearchString(isolate, subject_content.ToUC16Vector(),
    274                                    needle_content.ToOneByteVector(), index))
    275              : (subject_content.IsOneByte()
    276                     ? SearchString(isolate, subject_content.ToOneByteVector(),
    277                                    needle_content.ToUC16Vector(), index)
    278                     : SearchString(isolate, subject_content.ToUC16Vector(),
    279                                    needle_content.ToUC16Vector(), index)));
    280     if (index == -1) {
    281       return i / 2;  // Return number of matches.
    282     } else {
    283       output[i] = index;
    284       output[i+1] = index + needle_len;
    285       index += needle_len;
    286     }
    287   }
    288   return output_size / 2;
    289 }
    290 
    291 
    292 Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re,
    293                                     Handle<String> subject,
    294                                     int index,
    295                                     Handle<JSArray> last_match_info) {
    296   Isolate* isolate = re->GetIsolate();
    297 
    298   static const int kNumRegisters = 2;
    299   STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize);
    300   int32_t* output_registers = isolate->jsregexp_static_offsets_vector();
    301 
    302   int res = AtomExecRaw(re, subject, index, output_registers, kNumRegisters);
    303 
    304   if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value();
    305 
    306   DCHECK_EQ(res, RegExpImpl::RE_SUCCESS);
    307   SealHandleScope shs(isolate);
    308   FixedArray* array = FixedArray::cast(last_match_info->elements());
    309   SetAtomLastCapture(array, *subject, output_registers[0], output_registers[1]);
    310   return last_match_info;
    311 }
    312 
    313 
    314 // Irregexp implementation.
    315 
    316 // Ensures that the regexp object contains a compiled version of the
    317 // source for either one-byte or two-byte subject strings.
    318 // If the compiled version doesn't already exist, it is compiled
    319 // from the source pattern.
    320 // If compilation fails, an exception is thrown and this function
    321 // returns false.
    322 bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re,
    323                                         Handle<String> sample_subject,
    324                                         bool is_one_byte) {
    325   Object* compiled_code = re->DataAt(JSRegExp::code_index(is_one_byte));
    326 #ifdef V8_INTERPRETED_REGEXP
    327   if (compiled_code->IsByteArray()) return true;
    328 #else  // V8_INTERPRETED_REGEXP (RegExp native code)
    329   if (compiled_code->IsCode()) return true;
    330 #endif
    331   // We could potentially have marked this as flushable, but have kept
    332   // a saved version if we did not flush it yet.
    333   Object* saved_code = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
    334   if (saved_code->IsCode()) {
    335     // Reinstate the code in the original place.
    336     re->SetDataAt(JSRegExp::code_index(is_one_byte), saved_code);
    337     DCHECK(compiled_code->IsSmi());
    338     return true;
    339   }
    340   return CompileIrregexp(re, sample_subject, is_one_byte);
    341 }
    342 
    343 
    344 bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re,
    345                                  Handle<String> sample_subject,
    346                                  bool is_one_byte) {
    347   // Compile the RegExp.
    348   Isolate* isolate = re->GetIsolate();
    349   Zone zone(isolate->allocator());
    350   PostponeInterruptsScope postpone(isolate);
    351   // If we had a compilation error the last time this is saved at the
    352   // saved code index.
    353   Object* entry = re->DataAt(JSRegExp::code_index(is_one_byte));
    354   // When arriving here entry can only be a smi, either representing an
    355   // uncompiled regexp, a previous compilation error, or code that has
    356   // been flushed.
    357   DCHECK(entry->IsSmi());
    358   int entry_value = Smi::cast(entry)->value();
    359   DCHECK(entry_value == JSRegExp::kUninitializedValue ||
    360          entry_value == JSRegExp::kCompilationErrorValue ||
    361          (entry_value < JSRegExp::kCodeAgeMask && entry_value >= 0));
    362 
    363   if (entry_value == JSRegExp::kCompilationErrorValue) {
    364     // A previous compilation failed and threw an error which we store in
    365     // the saved code index (we store the error message, not the actual
    366     // error). Recreate the error object and throw it.
    367     Object* error_string = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
    368     DCHECK(error_string->IsString());
    369     Handle<String> error_message(String::cast(error_string));
    370     ThrowRegExpException(re, error_message);
    371     return false;
    372   }
    373 
    374   JSRegExp::Flags flags = re->GetFlags();
    375 
    376   Handle<String> pattern(re->Pattern());
    377   pattern = String::Flatten(pattern);
    378   RegExpCompileData compile_data;
    379   FlatStringReader reader(isolate, pattern);
    380   if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags,
    381                                  &compile_data)) {
    382     // Throw an exception if we fail to parse the pattern.
    383     // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
    384     USE(ThrowRegExpException(re, pattern, compile_data.error));
    385     return false;
    386   }
    387   RegExpEngine::CompilationResult result =
    388       RegExpEngine::Compile(isolate, &zone, &compile_data, flags, pattern,
    389                             sample_subject, is_one_byte);
    390   if (result.error_message != NULL) {
    391     // Unable to compile regexp.
    392     Handle<String> error_message = isolate->factory()->NewStringFromUtf8(
    393         CStrVector(result.error_message)).ToHandleChecked();
    394     ThrowRegExpException(re, error_message);
    395     return false;
    396   }
    397 
    398   Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data()));
    399   data->set(JSRegExp::code_index(is_one_byte), result.code);
    400   SetIrregexpCaptureNameMap(*data, compile_data.capture_name_map);
    401   int register_max = IrregexpMaxRegisterCount(*data);
    402   if (result.num_registers > register_max) {
    403     SetIrregexpMaxRegisterCount(*data, result.num_registers);
    404   }
    405 
    406   return true;
    407 }
    408 
    409 
    410 int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
    411   return Smi::cast(
    412       re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
    413 }
    414 
    415 
    416 void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
    417   re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
    418 }
    419 
    420 void RegExpImpl::SetIrregexpCaptureNameMap(FixedArray* re,
    421                                            Handle<FixedArray> value) {
    422   if (value.is_null()) {
    423     re->set(JSRegExp::kIrregexpCaptureNameMapIndex, Smi::FromInt(0));
    424   } else {
    425     re->set(JSRegExp::kIrregexpCaptureNameMapIndex, *value);
    426   }
    427 }
    428 
    429 int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
    430   return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
    431 }
    432 
    433 
    434 int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
    435   return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
    436 }
    437 
    438 
    439 ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_one_byte) {
    440   return ByteArray::cast(re->get(JSRegExp::code_index(is_one_byte)));
    441 }
    442 
    443 
    444 Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_one_byte) {
    445   return Code::cast(re->get(JSRegExp::code_index(is_one_byte)));
    446 }
    447 
    448 
    449 void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re,
    450                                     Handle<String> pattern,
    451                                     JSRegExp::Flags flags,
    452                                     int capture_count) {
    453   // Initialize compiled code entries to null.
    454   re->GetIsolate()->factory()->SetRegExpIrregexpData(re,
    455                                                      JSRegExp::IRREGEXP,
    456                                                      pattern,
    457                                                      flags,
    458                                                      capture_count);
    459 }
    460 
    461 
    462 int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp,
    463                                 Handle<String> subject) {
    464   subject = String::Flatten(subject);
    465 
    466   // Check representation of the underlying storage.
    467   bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
    468   if (!EnsureCompiledIrregexp(regexp, subject, is_one_byte)) return -1;
    469 
    470 #ifdef V8_INTERPRETED_REGEXP
    471   // Byte-code regexp needs space allocated for all its registers.
    472   // The result captures are copied to the start of the registers array
    473   // if the match succeeds.  This way those registers are not clobbered
    474   // when we set the last match info from last successful match.
    475   return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) +
    476          (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
    477 #else  // V8_INTERPRETED_REGEXP
    478   // Native regexp only needs room to output captures. Registers are handled
    479   // internally.
    480   return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
    481 #endif  // V8_INTERPRETED_REGEXP
    482 }
    483 
    484 
    485 int RegExpImpl::IrregexpExecRaw(Handle<JSRegExp> regexp,
    486                                 Handle<String> subject,
    487                                 int index,
    488                                 int32_t* output,
    489                                 int output_size) {
    490   Isolate* isolate = regexp->GetIsolate();
    491 
    492   Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate);
    493 
    494   DCHECK(index >= 0);
    495   DCHECK(index <= subject->length());
    496   DCHECK(subject->IsFlat());
    497 
    498   bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
    499 
    500 #ifndef V8_INTERPRETED_REGEXP
    501   DCHECK(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2);
    502   do {
    503     EnsureCompiledIrregexp(regexp, subject, is_one_byte);
    504     Handle<Code> code(IrregexpNativeCode(*irregexp, is_one_byte), isolate);
    505     // The stack is used to allocate registers for the compiled regexp code.
    506     // This means that in case of failure, the output registers array is left
    507     // untouched and contains the capture results from the previous successful
    508     // match.  We can use that to set the last match info lazily.
    509     NativeRegExpMacroAssembler::Result res =
    510         NativeRegExpMacroAssembler::Match(code,
    511                                           subject,
    512                                           output,
    513                                           output_size,
    514                                           index,
    515                                           isolate);
    516     if (res != NativeRegExpMacroAssembler::RETRY) {
    517       DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION ||
    518              isolate->has_pending_exception());
    519       STATIC_ASSERT(
    520           static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS);
    521       STATIC_ASSERT(
    522           static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE);
    523       STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION)
    524                     == RE_EXCEPTION);
    525       return static_cast<IrregexpResult>(res);
    526     }
    527     // If result is RETRY, the string has changed representation, and we
    528     // must restart from scratch.
    529     // In this case, it means we must make sure we are prepared to handle
    530     // the, potentially, different subject (the string can switch between
    531     // being internal and external, and even between being Latin1 and UC16,
    532     // but the characters are always the same).
    533     IrregexpPrepare(regexp, subject);
    534     is_one_byte = subject->IsOneByteRepresentationUnderneath();
    535   } while (true);
    536   UNREACHABLE();
    537   return RE_EXCEPTION;
    538 #else  // V8_INTERPRETED_REGEXP
    539 
    540   DCHECK(output_size >= IrregexpNumberOfRegisters(*irregexp));
    541   // We must have done EnsureCompiledIrregexp, so we can get the number of
    542   // registers.
    543   int number_of_capture_registers =
    544       (IrregexpNumberOfCaptures(*irregexp) + 1) * 2;
    545   int32_t* raw_output = &output[number_of_capture_registers];
    546   // We do not touch the actual capture result registers until we know there
    547   // has been a match so that we can use those capture results to set the
    548   // last match info.
    549   for (int i = number_of_capture_registers - 1; i >= 0; i--) {
    550     raw_output[i] = -1;
    551   }
    552   Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_one_byte),
    553                                isolate);
    554 
    555   IrregexpResult result = IrregexpInterpreter::Match(isolate,
    556                                                      byte_codes,
    557                                                      subject,
    558                                                      raw_output,
    559                                                      index);
    560   if (result == RE_SUCCESS) {
    561     // Copy capture results to the start of the registers array.
    562     MemCopy(output, raw_output, number_of_capture_registers * sizeof(int32_t));
    563   }
    564   if (result == RE_EXCEPTION) {
    565     DCHECK(!isolate->has_pending_exception());
    566     isolate->StackOverflow();
    567   }
    568   return result;
    569 #endif  // V8_INTERPRETED_REGEXP
    570 }
    571 
    572 
    573 MaybeHandle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> regexp,
    574                                              Handle<String> subject,
    575                                              int previous_index,
    576                                              Handle<JSArray> last_match_info) {
    577   Isolate* isolate = regexp->GetIsolate();
    578   DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP);
    579 
    580   // Prepare space for the return values.
    581 #if defined(V8_INTERPRETED_REGEXP) && defined(DEBUG)
    582   if (FLAG_trace_regexp_bytecodes) {
    583     String* pattern = regexp->Pattern();
    584     PrintF("\n\nRegexp match:   /%s/\n\n", pattern->ToCString().get());
    585     PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get());
    586   }
    587 #endif
    588   int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject);
    589   if (required_registers < 0) {
    590     // Compiling failed with an exception.
    591     DCHECK(isolate->has_pending_exception());
    592     return MaybeHandle<Object>();
    593   }
    594 
    595   int32_t* output_registers = NULL;
    596   if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) {
    597     output_registers = NewArray<int32_t>(required_registers);
    598   }
    599   base::SmartArrayPointer<int32_t> auto_release(output_registers);
    600   if (output_registers == NULL) {
    601     output_registers = isolate->jsregexp_static_offsets_vector();
    602   }
    603 
    604   int res = RegExpImpl::IrregexpExecRaw(
    605       regexp, subject, previous_index, output_registers, required_registers);
    606   if (res == RE_SUCCESS) {
    607     int capture_count =
    608         IrregexpNumberOfCaptures(FixedArray::cast(regexp->data()));
    609     return SetLastMatchInfo(
    610         last_match_info, subject, capture_count, output_registers);
    611   }
    612   if (res == RE_EXCEPTION) {
    613     DCHECK(isolate->has_pending_exception());
    614     return MaybeHandle<Object>();
    615   }
    616   DCHECK(res == RE_FAILURE);
    617   return isolate->factory()->null_value();
    618 }
    619 
    620 
    621 static void EnsureSize(Handle<JSArray> array, uint32_t minimum_size) {
    622   if (static_cast<uint32_t>(array->elements()->length()) < minimum_size) {
    623     JSArray::SetLength(array, minimum_size);
    624   }
    625 }
    626 
    627 
    628 Handle<JSArray> RegExpImpl::SetLastMatchInfo(Handle<JSArray> last_match_info,
    629                                              Handle<String> subject,
    630                                              int capture_count,
    631                                              int32_t* match) {
    632   DCHECK(last_match_info->HasFastObjectElements());
    633   int capture_register_count = (capture_count + 1) * 2;
    634   EnsureSize(last_match_info, capture_register_count + kLastMatchOverhead);
    635   DisallowHeapAllocation no_allocation;
    636   FixedArray* array = FixedArray::cast(last_match_info->elements());
    637   if (match != NULL) {
    638     for (int i = 0; i < capture_register_count; i += 2) {
    639       SetCapture(array, i, match[i]);
    640       SetCapture(array, i + 1, match[i + 1]);
    641     }
    642   }
    643   SetLastCaptureCount(array, capture_register_count);
    644   SetLastSubject(array, *subject);
    645   SetLastInput(array, *subject);
    646   return last_match_info;
    647 }
    648 
    649 
    650 RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp,
    651                                      Handle<String> subject,
    652                                      Isolate* isolate)
    653   : register_array_(NULL),
    654     register_array_size_(0),
    655     regexp_(regexp),
    656     subject_(subject) {
    657 #ifdef V8_INTERPRETED_REGEXP
    658   bool interpreted = true;
    659 #else
    660   bool interpreted = false;
    661 #endif  // V8_INTERPRETED_REGEXP
    662 
    663   if (regexp_->TypeTag() == JSRegExp::ATOM) {
    664     static const int kAtomRegistersPerMatch = 2;
    665     registers_per_match_ = kAtomRegistersPerMatch;
    666     // There is no distinction between interpreted and native for atom regexps.
    667     interpreted = false;
    668   } else {
    669     registers_per_match_ = RegExpImpl::IrregexpPrepare(regexp_, subject_);
    670     if (registers_per_match_ < 0) {
    671       num_matches_ = -1;  // Signal exception.
    672       return;
    673     }
    674   }
    675 
    676   DCHECK_NE(0, regexp->GetFlags() & JSRegExp::kGlobal);
    677   if (!interpreted) {
    678     register_array_size_ =
    679         Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize);
    680     max_matches_ = register_array_size_ / registers_per_match_;
    681   } else {
    682     // Global loop in interpreted regexp is not implemented.  We choose
    683     // the size of the offsets vector so that it can only store one match.
    684     register_array_size_ = registers_per_match_;
    685     max_matches_ = 1;
    686   }
    687 
    688   if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
    689     register_array_ = NewArray<int32_t>(register_array_size_);
    690   } else {
    691     register_array_ = isolate->jsregexp_static_offsets_vector();
    692   }
    693 
    694   // Set state so that fetching the results the first time triggers a call
    695   // to the compiled regexp.
    696   current_match_index_ = max_matches_ - 1;
    697   num_matches_ = max_matches_;
    698   DCHECK(registers_per_match_ >= 2);  // Each match has at least one capture.
    699   DCHECK_GE(register_array_size_, registers_per_match_);
    700   int32_t* last_match =
    701       &register_array_[current_match_index_ * registers_per_match_];
    702   last_match[0] = -1;
    703   last_match[1] = 0;
    704 }
    705 
    706 int RegExpImpl::GlobalCache::AdvanceZeroLength(int last_index) {
    707   if ((regexp_->GetFlags() & JSRegExp::kUnicode) != 0 &&
    708       last_index + 1 < subject_->length() &&
    709       unibrow::Utf16::IsLeadSurrogate(subject_->Get(last_index)) &&
    710       unibrow::Utf16::IsTrailSurrogate(subject_->Get(last_index + 1))) {
    711     // Advance over the surrogate pair.
    712     return last_index + 2;
    713   }
    714   return last_index + 1;
    715 }
    716 
    717 // -------------------------------------------------------------------
    718 // Implementation of the Irregexp regular expression engine.
    719 //
    720 // The Irregexp regular expression engine is intended to be a complete
    721 // implementation of ECMAScript regular expressions.  It generates either
    722 // bytecodes or native code.
    723 
    724 //   The Irregexp regexp engine is structured in three steps.
    725 //   1) The parser generates an abstract syntax tree.  See ast.cc.
    726 //   2) From the AST a node network is created.  The nodes are all
    727 //      subclasses of RegExpNode.  The nodes represent states when
    728 //      executing a regular expression.  Several optimizations are
    729 //      performed on the node network.
    730 //   3) From the nodes we generate either byte codes or native code
    731 //      that can actually execute the regular expression (perform
    732 //      the search).  The code generation step is described in more
    733 //      detail below.
    734 
    735 // Code generation.
    736 //
    737 //   The nodes are divided into four main categories.
    738 //   * Choice nodes
    739 //        These represent places where the regular expression can
    740 //        match in more than one way.  For example on entry to an
    741 //        alternation (foo|bar) or a repetition (*, +, ? or {}).
    742 //   * Action nodes
    743 //        These represent places where some action should be
    744 //        performed.  Examples include recording the current position
    745 //        in the input string to a register (in order to implement
    746 //        captures) or other actions on register for example in order
    747 //        to implement the counters needed for {} repetitions.
    748 //   * Matching nodes
    749 //        These attempt to match some element part of the input string.
    750 //        Examples of elements include character classes, plain strings
    751 //        or back references.
    752 //   * End nodes
    753 //        These are used to implement the actions required on finding
    754 //        a successful match or failing to find a match.
    755 //
    756 //   The code generated (whether as byte codes or native code) maintains
    757 //   some state as it runs.  This consists of the following elements:
    758 //
    759 //   * The capture registers.  Used for string captures.
    760 //   * Other registers.  Used for counters etc.
    761 //   * The current position.
    762 //   * The stack of backtracking information.  Used when a matching node
    763 //     fails to find a match and needs to try an alternative.
    764 //
    765 // Conceptual regular expression execution model:
    766 //
    767 //   There is a simple conceptual model of regular expression execution
    768 //   which will be presented first.  The actual code generated is a more
    769 //   efficient simulation of the simple conceptual model:
    770 //
    771 //   * Choice nodes are implemented as follows:
    772 //     For each choice except the last {
    773 //       push current position
    774 //       push backtrack code location
    775 //       <generate code to test for choice>
    776 //       backtrack code location:
    777 //       pop current position
    778 //     }
    779 //     <generate code to test for last choice>
    780 //
    781 //   * Actions nodes are generated as follows
    782 //     <push affected registers on backtrack stack>
    783 //     <generate code to perform action>
    784 //     push backtrack code location
    785 //     <generate code to test for following nodes>
    786 //     backtrack code location:
    787 //     <pop affected registers to restore their state>
    788 //     <pop backtrack location from stack and go to it>
    789 //
    790 //   * Matching nodes are generated as follows:
    791 //     if input string matches at current position
    792 //       update current position
    793 //       <generate code to test for following nodes>
    794 //     else
    795 //       <pop backtrack location from stack and go to it>
    796 //
    797 //   Thus it can be seen that the current position is saved and restored
    798 //   by the choice nodes, whereas the registers are saved and restored by
    799 //   by the action nodes that manipulate them.
    800 //
    801 //   The other interesting aspect of this model is that nodes are generated
    802 //   at the point where they are needed by a recursive call to Emit().  If
    803 //   the node has already been code generated then the Emit() call will
    804 //   generate a jump to the previously generated code instead.  In order to
    805 //   limit recursion it is possible for the Emit() function to put the node
    806 //   on a work list for later generation and instead generate a jump.  The
    807 //   destination of the jump is resolved later when the code is generated.
    808 //
    809 // Actual regular expression code generation.
    810 //
    811 //   Code generation is actually more complicated than the above.  In order
    812 //   to improve the efficiency of the generated code some optimizations are
    813 //   performed
    814 //
    815 //   * Choice nodes have 1-character lookahead.
    816 //     A choice node looks at the following character and eliminates some of
    817 //     the choices immediately based on that character.  This is not yet
    818 //     implemented.
    819 //   * Simple greedy loops store reduced backtracking information.
    820 //     A quantifier like /.*foo/m will greedily match the whole input.  It will
    821 //     then need to backtrack to a point where it can match "foo".  The naive
    822 //     implementation of this would push each character position onto the
    823 //     backtracking stack, then pop them off one by one.  This would use space
    824 //     proportional to the length of the input string.  However since the "."
    825 //     can only match in one way and always has a constant length (in this case
    826 //     of 1) it suffices to store the current position on the top of the stack
    827 //     once.  Matching now becomes merely incrementing the current position and
    828 //     backtracking becomes decrementing the current position and checking the
    829 //     result against the stored current position.  This is faster and saves
    830 //     space.
    831 //   * The current state is virtualized.
    832 //     This is used to defer expensive operations until it is clear that they
    833 //     are needed and to generate code for a node more than once, allowing
    834 //     specialized an efficient versions of the code to be created. This is
    835 //     explained in the section below.
    836 //
    837 // Execution state virtualization.
    838 //
    839 //   Instead of emitting code, nodes that manipulate the state can record their
    840 //   manipulation in an object called the Trace.  The Trace object can record a
    841 //   current position offset, an optional backtrack code location on the top of
    842 //   the virtualized backtrack stack and some register changes.  When a node is
    843 //   to be emitted it can flush the Trace or update it.  Flushing the Trace
    844 //   will emit code to bring the actual state into line with the virtual state.
    845 //   Avoiding flushing the state can postpone some work (e.g. updates of capture
    846 //   registers).  Postponing work can save time when executing the regular
    847 //   expression since it may be found that the work never has to be done as a
    848 //   failure to match can occur.  In addition it is much faster to jump to a
    849 //   known backtrack code location than it is to pop an unknown backtrack
    850 //   location from the stack and jump there.
    851 //
    852 //   The virtual state found in the Trace affects code generation.  For example
    853 //   the virtual state contains the difference between the actual current
    854 //   position and the virtual current position, and matching code needs to use
    855 //   this offset to attempt a match in the correct location of the input
    856 //   string.  Therefore code generated for a non-trivial trace is specialized
    857 //   to that trace.  The code generator therefore has the ability to generate
    858 //   code for each node several times.  In order to limit the size of the
    859 //   generated code there is an arbitrary limit on how many specialized sets of
    860 //   code may be generated for a given node.  If the limit is reached, the
    861 //   trace is flushed and a generic version of the code for a node is emitted.
    862 //   This is subsequently used for that node.  The code emitted for non-generic
    863 //   trace is not recorded in the node and so it cannot currently be reused in
    864 //   the event that code generation is requested for an identical trace.
    865 
    866 
    867 void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
    868   UNREACHABLE();
    869 }
    870 
    871 
    872 void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
    873   text->AddElement(TextElement::Atom(this), zone);
    874 }
    875 
    876 
    877 void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
    878   text->AddElement(TextElement::CharClass(this), zone);
    879 }
    880 
    881 
    882 void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
    883   for (int i = 0; i < elements()->length(); i++)
    884     text->AddElement(elements()->at(i), zone);
    885 }
    886 
    887 
    888 TextElement TextElement::Atom(RegExpAtom* atom) {
    889   return TextElement(ATOM, atom);
    890 }
    891 
    892 
    893 TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
    894   return TextElement(CHAR_CLASS, char_class);
    895 }
    896 
    897 
    898 int TextElement::length() const {
    899   switch (text_type()) {
    900     case ATOM:
    901       return atom()->length();
    902 
    903     case CHAR_CLASS:
    904       return 1;
    905   }
    906   UNREACHABLE();
    907   return 0;
    908 }
    909 
    910 
    911 DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
    912   if (table_ == NULL) {
    913     table_ = new(zone()) DispatchTable(zone());
    914     DispatchTableConstructor cons(table_, ignore_case, zone());
    915     cons.BuildTable(this);
    916   }
    917   return table_;
    918 }
    919 
    920 
    921 class FrequencyCollator {
    922  public:
    923   FrequencyCollator() : total_samples_(0) {
    924     for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
    925       frequencies_[i] = CharacterFrequency(i);
    926     }
    927   }
    928 
    929   void CountCharacter(int character) {
    930     int index = (character & RegExpMacroAssembler::kTableMask);
    931     frequencies_[index].Increment();
    932     total_samples_++;
    933   }
    934 
    935   // Does not measure in percent, but rather per-128 (the table size from the
    936   // regexp macro assembler).
    937   int Frequency(int in_character) {
    938     DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
    939     if (total_samples_ < 1) return 1;  // Division by zero.
    940     int freq_in_per128 =
    941         (frequencies_[in_character].counter() * 128) / total_samples_;
    942     return freq_in_per128;
    943   }
    944 
    945  private:
    946   class CharacterFrequency {
    947    public:
    948     CharacterFrequency() : counter_(0), character_(-1) { }
    949     explicit CharacterFrequency(int character)
    950         : counter_(0), character_(character) { }
    951 
    952     void Increment() { counter_++; }
    953     int counter() { return counter_; }
    954     int character() { return character_; }
    955 
    956    private:
    957     int counter_;
    958     int character_;
    959   };
    960 
    961 
    962  private:
    963   CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
    964   int total_samples_;
    965 };
    966 
    967 
    968 class RegExpCompiler {
    969  public:
    970   RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
    971                  JSRegExp::Flags flags, bool is_one_byte);
    972 
    973   int AllocateRegister() {
    974     if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
    975       reg_exp_too_big_ = true;
    976       return next_register_;
    977     }
    978     return next_register_++;
    979   }
    980 
    981   // Lookarounds to match lone surrogates for unicode character class matches
    982   // are never nested. We can therefore reuse registers.
    983   int UnicodeLookaroundStackRegister() {
    984     if (unicode_lookaround_stack_register_ == kNoRegister) {
    985       unicode_lookaround_stack_register_ = AllocateRegister();
    986     }
    987     return unicode_lookaround_stack_register_;
    988   }
    989 
    990   int UnicodeLookaroundPositionRegister() {
    991     if (unicode_lookaround_position_register_ == kNoRegister) {
    992       unicode_lookaround_position_register_ = AllocateRegister();
    993     }
    994     return unicode_lookaround_position_register_;
    995   }
    996 
    997   RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
    998                                            RegExpNode* start,
    999                                            int capture_count,
   1000                                            Handle<String> pattern);
   1001 
   1002   inline void AddWork(RegExpNode* node) {
   1003     if (!node->on_work_list() && !node->label()->is_bound()) {
   1004       node->set_on_work_list(true);
   1005       work_list_->Add(node);
   1006     }
   1007   }
   1008 
   1009   static const int kImplementationOffset = 0;
   1010   static const int kNumberOfRegistersOffset = 0;
   1011   static const int kCodeOffset = 1;
   1012 
   1013   RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
   1014   EndNode* accept() { return accept_; }
   1015 
   1016   static const int kMaxRecursion = 100;
   1017   inline int recursion_depth() { return recursion_depth_; }
   1018   inline void IncrementRecursionDepth() { recursion_depth_++; }
   1019   inline void DecrementRecursionDepth() { recursion_depth_--; }
   1020 
   1021   void SetRegExpTooBig() { reg_exp_too_big_ = true; }
   1022 
   1023   inline bool ignore_case() { return (flags_ & JSRegExp::kIgnoreCase) != 0; }
   1024   inline bool unicode() { return (flags_ & JSRegExp::kUnicode) != 0; }
   1025   inline bool one_byte() { return one_byte_; }
   1026   inline bool optimize() { return optimize_; }
   1027   inline void set_optimize(bool value) { optimize_ = value; }
   1028   inline bool limiting_recursion() { return limiting_recursion_; }
   1029   inline void set_limiting_recursion(bool value) {
   1030     limiting_recursion_ = value;
   1031   }
   1032   bool read_backward() { return read_backward_; }
   1033   void set_read_backward(bool value) { read_backward_ = value; }
   1034   FrequencyCollator* frequency_collator() { return &frequency_collator_; }
   1035 
   1036   int current_expansion_factor() { return current_expansion_factor_; }
   1037   void set_current_expansion_factor(int value) {
   1038     current_expansion_factor_ = value;
   1039   }
   1040 
   1041   Isolate* isolate() const { return isolate_; }
   1042   Zone* zone() const { return zone_; }
   1043 
   1044   static const int kNoRegister = -1;
   1045 
   1046  private:
   1047   EndNode* accept_;
   1048   int next_register_;
   1049   int unicode_lookaround_stack_register_;
   1050   int unicode_lookaround_position_register_;
   1051   List<RegExpNode*>* work_list_;
   1052   int recursion_depth_;
   1053   RegExpMacroAssembler* macro_assembler_;
   1054   JSRegExp::Flags flags_;
   1055   bool one_byte_;
   1056   bool reg_exp_too_big_;
   1057   bool limiting_recursion_;
   1058   bool optimize_;
   1059   bool read_backward_;
   1060   int current_expansion_factor_;
   1061   FrequencyCollator frequency_collator_;
   1062   Isolate* isolate_;
   1063   Zone* zone_;
   1064 };
   1065 
   1066 
   1067 class RecursionCheck {
   1068  public:
   1069   explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
   1070     compiler->IncrementRecursionDepth();
   1071   }
   1072   ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
   1073  private:
   1074   RegExpCompiler* compiler_;
   1075 };
   1076 
   1077 
   1078 static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
   1079   return RegExpEngine::CompilationResult(isolate, "RegExp too big");
   1080 }
   1081 
   1082 
   1083 // Attempts to compile the regexp using an Irregexp code generator.  Returns
   1084 // a fixed array or a null handle depending on whether it succeeded.
   1085 RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
   1086                                JSRegExp::Flags flags, bool one_byte)
   1087     : next_register_(2 * (capture_count + 1)),
   1088       unicode_lookaround_stack_register_(kNoRegister),
   1089       unicode_lookaround_position_register_(kNoRegister),
   1090       work_list_(NULL),
   1091       recursion_depth_(0),
   1092       flags_(flags),
   1093       one_byte_(one_byte),
   1094       reg_exp_too_big_(false),
   1095       limiting_recursion_(false),
   1096       optimize_(FLAG_regexp_optimization),
   1097       read_backward_(false),
   1098       current_expansion_factor_(1),
   1099       frequency_collator_(),
   1100       isolate_(isolate),
   1101       zone_(zone) {
   1102   accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
   1103   DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
   1104 }
   1105 
   1106 
   1107 RegExpEngine::CompilationResult RegExpCompiler::Assemble(
   1108     RegExpMacroAssembler* macro_assembler,
   1109     RegExpNode* start,
   1110     int capture_count,
   1111     Handle<String> pattern) {
   1112   Heap* heap = pattern->GetHeap();
   1113 
   1114 #ifdef DEBUG
   1115   if (FLAG_trace_regexp_assembler)
   1116     macro_assembler_ =
   1117         new RegExpMacroAssemblerTracer(isolate(), macro_assembler);
   1118   else
   1119 #endif
   1120     macro_assembler_ = macro_assembler;
   1121 
   1122   List <RegExpNode*> work_list(0);
   1123   work_list_ = &work_list;
   1124   Label fail;
   1125   macro_assembler_->PushBacktrack(&fail);
   1126   Trace new_trace;
   1127   start->Emit(this, &new_trace);
   1128   macro_assembler_->Bind(&fail);
   1129   macro_assembler_->Fail();
   1130   while (!work_list.is_empty()) {
   1131     RegExpNode* node = work_list.RemoveLast();
   1132     node->set_on_work_list(false);
   1133     if (!node->label()->is_bound()) node->Emit(this, &new_trace);
   1134   }
   1135   if (reg_exp_too_big_) {
   1136     macro_assembler_->AbortedCodeGeneration();
   1137     return IrregexpRegExpTooBig(isolate_);
   1138   }
   1139 
   1140   Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
   1141   heap->IncreaseTotalRegexpCodeGenerated(code->Size());
   1142   work_list_ = NULL;
   1143 #ifdef ENABLE_DISASSEMBLER
   1144   if (FLAG_print_code) {
   1145     CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
   1146     OFStream os(trace_scope.file());
   1147     Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
   1148   }
   1149 #endif
   1150 #ifdef DEBUG
   1151   if (FLAG_trace_regexp_assembler) {
   1152     delete macro_assembler_;
   1153   }
   1154 #endif
   1155   return RegExpEngine::CompilationResult(*code, next_register_);
   1156 }
   1157 
   1158 
   1159 bool Trace::DeferredAction::Mentions(int that) {
   1160   if (action_type() == ActionNode::CLEAR_CAPTURES) {
   1161     Interval range = static_cast<DeferredClearCaptures*>(this)->range();
   1162     return range.Contains(that);
   1163   } else {
   1164     return reg() == that;
   1165   }
   1166 }
   1167 
   1168 
   1169 bool Trace::mentions_reg(int reg) {
   1170   for (DeferredAction* action = actions_;
   1171        action != NULL;
   1172        action = action->next()) {
   1173     if (action->Mentions(reg))
   1174       return true;
   1175   }
   1176   return false;
   1177 }
   1178 
   1179 
   1180 bool Trace::GetStoredPosition(int reg, int* cp_offset) {
   1181   DCHECK_EQ(0, *cp_offset);
   1182   for (DeferredAction* action = actions_;
   1183        action != NULL;
   1184        action = action->next()) {
   1185     if (action->Mentions(reg)) {
   1186       if (action->action_type() == ActionNode::STORE_POSITION) {
   1187         *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
   1188         return true;
   1189       } else {
   1190         return false;
   1191       }
   1192     }
   1193   }
   1194   return false;
   1195 }
   1196 
   1197 
   1198 int Trace::FindAffectedRegisters(OutSet* affected_registers,
   1199                                  Zone* zone) {
   1200   int max_register = RegExpCompiler::kNoRegister;
   1201   for (DeferredAction* action = actions_;
   1202        action != NULL;
   1203        action = action->next()) {
   1204     if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
   1205       Interval range = static_cast<DeferredClearCaptures*>(action)->range();
   1206       for (int i = range.from(); i <= range.to(); i++)
   1207         affected_registers->Set(i, zone);
   1208       if (range.to() > max_register) max_register = range.to();
   1209     } else {
   1210       affected_registers->Set(action->reg(), zone);
   1211       if (action->reg() > max_register) max_register = action->reg();
   1212     }
   1213   }
   1214   return max_register;
   1215 }
   1216 
   1217 
   1218 void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
   1219                                      int max_register,
   1220                                      const OutSet& registers_to_pop,
   1221                                      const OutSet& registers_to_clear) {
   1222   for (int reg = max_register; reg >= 0; reg--) {
   1223     if (registers_to_pop.Get(reg)) {
   1224       assembler->PopRegister(reg);
   1225     } else if (registers_to_clear.Get(reg)) {
   1226       int clear_to = reg;
   1227       while (reg > 0 && registers_to_clear.Get(reg - 1)) {
   1228         reg--;
   1229       }
   1230       assembler->ClearRegisters(reg, clear_to);
   1231     }
   1232   }
   1233 }
   1234 
   1235 
   1236 void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
   1237                                    int max_register,
   1238                                    const OutSet& affected_registers,
   1239                                    OutSet* registers_to_pop,
   1240                                    OutSet* registers_to_clear,
   1241                                    Zone* zone) {
   1242   // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
   1243   const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
   1244 
   1245   // Count pushes performed to force a stack limit check occasionally.
   1246   int pushes = 0;
   1247 
   1248   for (int reg = 0; reg <= max_register; reg++) {
   1249     if (!affected_registers.Get(reg)) {
   1250       continue;
   1251     }
   1252 
   1253     // The chronologically first deferred action in the trace
   1254     // is used to infer the action needed to restore a register
   1255     // to its previous state (or not, if it's safe to ignore it).
   1256     enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
   1257     DeferredActionUndoType undo_action = IGNORE;
   1258 
   1259     int value = 0;
   1260     bool absolute = false;
   1261     bool clear = false;
   1262     static const int kNoStore = kMinInt;
   1263     int store_position = kNoStore;
   1264     // This is a little tricky because we are scanning the actions in reverse
   1265     // historical order (newest first).
   1266     for (DeferredAction* action = actions_;
   1267          action != NULL;
   1268          action = action->next()) {
   1269       if (action->Mentions(reg)) {
   1270         switch (action->action_type()) {
   1271           case ActionNode::SET_REGISTER: {
   1272             Trace::DeferredSetRegister* psr =
   1273                 static_cast<Trace::DeferredSetRegister*>(action);
   1274             if (!absolute) {
   1275               value += psr->value();
   1276               absolute = true;
   1277             }
   1278             // SET_REGISTER is currently only used for newly introduced loop
   1279             // counters. They can have a significant previous value if they
   1280             // occour in a loop. TODO(lrn): Propagate this information, so
   1281             // we can set undo_action to IGNORE if we know there is no value to
   1282             // restore.
   1283             undo_action = RESTORE;
   1284             DCHECK_EQ(store_position, kNoStore);
   1285             DCHECK(!clear);
   1286             break;
   1287           }
   1288           case ActionNode::INCREMENT_REGISTER:
   1289             if (!absolute) {
   1290               value++;
   1291             }
   1292             DCHECK_EQ(store_position, kNoStore);
   1293             DCHECK(!clear);
   1294             undo_action = RESTORE;
   1295             break;
   1296           case ActionNode::STORE_POSITION: {
   1297             Trace::DeferredCapture* pc =
   1298                 static_cast<Trace::DeferredCapture*>(action);
   1299             if (!clear && store_position == kNoStore) {
   1300               store_position = pc->cp_offset();
   1301             }
   1302 
   1303             // For captures we know that stores and clears alternate.
   1304             // Other register, are never cleared, and if the occur
   1305             // inside a loop, they might be assigned more than once.
   1306             if (reg <= 1) {
   1307               // Registers zero and one, aka "capture zero", is
   1308               // always set correctly if we succeed. There is no
   1309               // need to undo a setting on backtrack, because we
   1310               // will set it again or fail.
   1311               undo_action = IGNORE;
   1312             } else {
   1313               undo_action = pc->is_capture() ? CLEAR : RESTORE;
   1314             }
   1315             DCHECK(!absolute);
   1316             DCHECK_EQ(value, 0);
   1317             break;
   1318           }
   1319           case ActionNode::CLEAR_CAPTURES: {
   1320             // Since we're scanning in reverse order, if we've already
   1321             // set the position we have to ignore historically earlier
   1322             // clearing operations.
   1323             if (store_position == kNoStore) {
   1324               clear = true;
   1325             }
   1326             undo_action = RESTORE;
   1327             DCHECK(!absolute);
   1328             DCHECK_EQ(value, 0);
   1329             break;
   1330           }
   1331           default:
   1332             UNREACHABLE();
   1333             break;
   1334         }
   1335       }
   1336     }
   1337     // Prepare for the undo-action (e.g., push if it's going to be popped).
   1338     if (undo_action == RESTORE) {
   1339       pushes++;
   1340       RegExpMacroAssembler::StackCheckFlag stack_check =
   1341           RegExpMacroAssembler::kNoStackLimitCheck;
   1342       if (pushes == push_limit) {
   1343         stack_check = RegExpMacroAssembler::kCheckStackLimit;
   1344         pushes = 0;
   1345       }
   1346 
   1347       assembler->PushRegister(reg, stack_check);
   1348       registers_to_pop->Set(reg, zone);
   1349     } else if (undo_action == CLEAR) {
   1350       registers_to_clear->Set(reg, zone);
   1351     }
   1352     // Perform the chronologically last action (or accumulated increment)
   1353     // for the register.
   1354     if (store_position != kNoStore) {
   1355       assembler->WriteCurrentPositionToRegister(reg, store_position);
   1356     } else if (clear) {
   1357       assembler->ClearRegisters(reg, reg);
   1358     } else if (absolute) {
   1359       assembler->SetRegister(reg, value);
   1360     } else if (value != 0) {
   1361       assembler->AdvanceRegister(reg, value);
   1362     }
   1363   }
   1364 }
   1365 
   1366 
   1367 // This is called as we come into a loop choice node and some other tricky
   1368 // nodes.  It normalizes the state of the code generator to ensure we can
   1369 // generate generic code.
   1370 void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
   1371   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1372 
   1373   DCHECK(!is_trivial());
   1374 
   1375   if (actions_ == NULL && backtrack() == NULL) {
   1376     // Here we just have some deferred cp advances to fix and we are back to
   1377     // a normal situation.  We may also have to forget some information gained
   1378     // through a quick check that was already performed.
   1379     if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
   1380     // Create a new trivial state and generate the node with that.
   1381     Trace new_state;
   1382     successor->Emit(compiler, &new_state);
   1383     return;
   1384   }
   1385 
   1386   // Generate deferred actions here along with code to undo them again.
   1387   OutSet affected_registers;
   1388 
   1389   if (backtrack() != NULL) {
   1390     // Here we have a concrete backtrack location.  These are set up by choice
   1391     // nodes and so they indicate that we have a deferred save of the current
   1392     // position which we may need to emit here.
   1393     assembler->PushCurrentPosition();
   1394   }
   1395 
   1396   int max_register = FindAffectedRegisters(&affected_registers,
   1397                                            compiler->zone());
   1398   OutSet registers_to_pop;
   1399   OutSet registers_to_clear;
   1400   PerformDeferredActions(assembler,
   1401                          max_register,
   1402                          affected_registers,
   1403                          &registers_to_pop,
   1404                          &registers_to_clear,
   1405                          compiler->zone());
   1406   if (cp_offset_ != 0) {
   1407     assembler->AdvanceCurrentPosition(cp_offset_);
   1408   }
   1409 
   1410   // Create a new trivial state and generate the node with that.
   1411   Label undo;
   1412   assembler->PushBacktrack(&undo);
   1413   if (successor->KeepRecursing(compiler)) {
   1414     Trace new_state;
   1415     successor->Emit(compiler, &new_state);
   1416   } else {
   1417     compiler->AddWork(successor);
   1418     assembler->GoTo(successor->label());
   1419   }
   1420 
   1421   // On backtrack we need to restore state.
   1422   assembler->Bind(&undo);
   1423   RestoreAffectedRegisters(assembler,
   1424                            max_register,
   1425                            registers_to_pop,
   1426                            registers_to_clear);
   1427   if (backtrack() == NULL) {
   1428     assembler->Backtrack();
   1429   } else {
   1430     assembler->PopCurrentPosition();
   1431     assembler->GoTo(backtrack());
   1432   }
   1433 }
   1434 
   1435 
   1436 void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
   1437   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1438 
   1439   // Omit flushing the trace. We discard the entire stack frame anyway.
   1440 
   1441   if (!label()->is_bound()) {
   1442     // We are completely independent of the trace, since we ignore it,
   1443     // so this code can be used as the generic version.
   1444     assembler->Bind(label());
   1445   }
   1446 
   1447   // Throw away everything on the backtrack stack since the start
   1448   // of the negative submatch and restore the character position.
   1449   assembler->ReadCurrentPositionFromRegister(current_position_register_);
   1450   assembler->ReadStackPointerFromRegister(stack_pointer_register_);
   1451   if (clear_capture_count_ > 0) {
   1452     // Clear any captures that might have been performed during the success
   1453     // of the body of the negative look-ahead.
   1454     int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
   1455     assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
   1456   }
   1457   // Now that we have unwound the stack we find at the top of the stack the
   1458   // backtrack that the BeginSubmatch node got.
   1459   assembler->Backtrack();
   1460 }
   1461 
   1462 
   1463 void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   1464   if (!trace->is_trivial()) {
   1465     trace->Flush(compiler, this);
   1466     return;
   1467   }
   1468   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1469   if (!label()->is_bound()) {
   1470     assembler->Bind(label());
   1471   }
   1472   switch (action_) {
   1473     case ACCEPT:
   1474       assembler->Succeed();
   1475       return;
   1476     case BACKTRACK:
   1477       assembler->GoTo(trace->backtrack());
   1478       return;
   1479     case NEGATIVE_SUBMATCH_SUCCESS:
   1480       // This case is handled in a different virtual method.
   1481       UNREACHABLE();
   1482   }
   1483   UNIMPLEMENTED();
   1484 }
   1485 
   1486 
   1487 void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
   1488   if (guards_ == NULL)
   1489     guards_ = new(zone) ZoneList<Guard*>(1, zone);
   1490   guards_->Add(guard, zone);
   1491 }
   1492 
   1493 
   1494 ActionNode* ActionNode::SetRegister(int reg,
   1495                                     int val,
   1496                                     RegExpNode* on_success) {
   1497   ActionNode* result =
   1498       new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
   1499   result->data_.u_store_register.reg = reg;
   1500   result->data_.u_store_register.value = val;
   1501   return result;
   1502 }
   1503 
   1504 
   1505 ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
   1506   ActionNode* result =
   1507       new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
   1508   result->data_.u_increment_register.reg = reg;
   1509   return result;
   1510 }
   1511 
   1512 
   1513 ActionNode* ActionNode::StorePosition(int reg,
   1514                                       bool is_capture,
   1515                                       RegExpNode* on_success) {
   1516   ActionNode* result =
   1517       new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
   1518   result->data_.u_position_register.reg = reg;
   1519   result->data_.u_position_register.is_capture = is_capture;
   1520   return result;
   1521 }
   1522 
   1523 
   1524 ActionNode* ActionNode::ClearCaptures(Interval range,
   1525                                       RegExpNode* on_success) {
   1526   ActionNode* result =
   1527       new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
   1528   result->data_.u_clear_captures.range_from = range.from();
   1529   result->data_.u_clear_captures.range_to = range.to();
   1530   return result;
   1531 }
   1532 
   1533 
   1534 ActionNode* ActionNode::BeginSubmatch(int stack_reg,
   1535                                       int position_reg,
   1536                                       RegExpNode* on_success) {
   1537   ActionNode* result =
   1538       new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
   1539   result->data_.u_submatch.stack_pointer_register = stack_reg;
   1540   result->data_.u_submatch.current_position_register = position_reg;
   1541   return result;
   1542 }
   1543 
   1544 
   1545 ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
   1546                                                 int position_reg,
   1547                                                 int clear_register_count,
   1548                                                 int clear_register_from,
   1549                                                 RegExpNode* on_success) {
   1550   ActionNode* result =
   1551       new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
   1552   result->data_.u_submatch.stack_pointer_register = stack_reg;
   1553   result->data_.u_submatch.current_position_register = position_reg;
   1554   result->data_.u_submatch.clear_register_count = clear_register_count;
   1555   result->data_.u_submatch.clear_register_from = clear_register_from;
   1556   return result;
   1557 }
   1558 
   1559 
   1560 ActionNode* ActionNode::EmptyMatchCheck(int start_register,
   1561                                         int repetition_register,
   1562                                         int repetition_limit,
   1563                                         RegExpNode* on_success) {
   1564   ActionNode* result =
   1565       new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
   1566   result->data_.u_empty_match_check.start_register = start_register;
   1567   result->data_.u_empty_match_check.repetition_register = repetition_register;
   1568   result->data_.u_empty_match_check.repetition_limit = repetition_limit;
   1569   return result;
   1570 }
   1571 
   1572 
   1573 #define DEFINE_ACCEPT(Type)                                          \
   1574   void Type##Node::Accept(NodeVisitor* visitor) {                    \
   1575     visitor->Visit##Type(this);                                      \
   1576   }
   1577 FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
   1578 #undef DEFINE_ACCEPT
   1579 
   1580 
   1581 void LoopChoiceNode::Accept(NodeVisitor* visitor) {
   1582   visitor->VisitLoopChoice(this);
   1583 }
   1584 
   1585 
   1586 // -------------------------------------------------------------------
   1587 // Emit code.
   1588 
   1589 
   1590 void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
   1591                                Guard* guard,
   1592                                Trace* trace) {
   1593   switch (guard->op()) {
   1594     case Guard::LT:
   1595       DCHECK(!trace->mentions_reg(guard->reg()));
   1596       macro_assembler->IfRegisterGE(guard->reg(),
   1597                                     guard->value(),
   1598                                     trace->backtrack());
   1599       break;
   1600     case Guard::GEQ:
   1601       DCHECK(!trace->mentions_reg(guard->reg()));
   1602       macro_assembler->IfRegisterLT(guard->reg(),
   1603                                     guard->value(),
   1604                                     trace->backtrack());
   1605       break;
   1606   }
   1607 }
   1608 
   1609 
   1610 // Returns the number of characters in the equivalence class, omitting those
   1611 // that cannot occur in the source string because it is Latin1.
   1612 static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
   1613                                      bool one_byte_subject,
   1614                                      unibrow::uchar* letters) {
   1615   int length =
   1616       isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
   1617   // Unibrow returns 0 or 1 for characters where case independence is
   1618   // trivial.
   1619   if (length == 0) {
   1620     letters[0] = character;
   1621     length = 1;
   1622   }
   1623 
   1624   if (one_byte_subject) {
   1625     int new_length = 0;
   1626     for (int i = 0; i < length; i++) {
   1627       if (letters[i] <= String::kMaxOneByteCharCode) {
   1628         letters[new_length++] = letters[i];
   1629       }
   1630     }
   1631     length = new_length;
   1632   }
   1633 
   1634   return length;
   1635 }
   1636 
   1637 
   1638 static inline bool EmitSimpleCharacter(Isolate* isolate,
   1639                                        RegExpCompiler* compiler,
   1640                                        uc16 c,
   1641                                        Label* on_failure,
   1642                                        int cp_offset,
   1643                                        bool check,
   1644                                        bool preloaded) {
   1645   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1646   bool bound_checked = false;
   1647   if (!preloaded) {
   1648     assembler->LoadCurrentCharacter(
   1649         cp_offset,
   1650         on_failure,
   1651         check);
   1652     bound_checked = true;
   1653   }
   1654   assembler->CheckNotCharacter(c, on_failure);
   1655   return bound_checked;
   1656 }
   1657 
   1658 
   1659 // Only emits non-letters (things that don't have case).  Only used for case
   1660 // independent matches.
   1661 static inline bool EmitAtomNonLetter(Isolate* isolate,
   1662                                      RegExpCompiler* compiler,
   1663                                      uc16 c,
   1664                                      Label* on_failure,
   1665                                      int cp_offset,
   1666                                      bool check,
   1667                                      bool preloaded) {
   1668   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   1669   bool one_byte = compiler->one_byte();
   1670   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   1671   int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
   1672   if (length < 1) {
   1673     // This can't match.  Must be an one-byte subject and a non-one-byte
   1674     // character.  We do not need to do anything since the one-byte pass
   1675     // already handled this.
   1676     return false;  // Bounds not checked.
   1677   }
   1678   bool checked = false;
   1679   // We handle the length > 1 case in a later pass.
   1680   if (length == 1) {
   1681     if (one_byte && c > String::kMaxOneByteCharCodeU) {
   1682       // Can't match - see above.
   1683       return false;  // Bounds not checked.
   1684     }
   1685     if (!preloaded) {
   1686       macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
   1687       checked = check;
   1688     }
   1689     macro_assembler->CheckNotCharacter(c, on_failure);
   1690   }
   1691   return checked;
   1692 }
   1693 
   1694 
   1695 static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
   1696                                       bool one_byte, uc16 c1, uc16 c2,
   1697                                       Label* on_failure) {
   1698   uc16 char_mask;
   1699   if (one_byte) {
   1700     char_mask = String::kMaxOneByteCharCode;
   1701   } else {
   1702     char_mask = String::kMaxUtf16CodeUnit;
   1703   }
   1704   uc16 exor = c1 ^ c2;
   1705   // Check whether exor has only one bit set.
   1706   if (((exor - 1) & exor) == 0) {
   1707     // If c1 and c2 differ only by one bit.
   1708     // Ecma262UnCanonicalize always gives the highest number last.
   1709     DCHECK(c2 > c1);
   1710     uc16 mask = char_mask ^ exor;
   1711     macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
   1712     return true;
   1713   }
   1714   DCHECK(c2 > c1);
   1715   uc16 diff = c2 - c1;
   1716   if (((diff - 1) & diff) == 0 && c1 >= diff) {
   1717     // If the characters differ by 2^n but don't differ by one bit then
   1718     // subtract the difference from the found character, then do the or
   1719     // trick.  We avoid the theoretical case where negative numbers are
   1720     // involved in order to simplify code generation.
   1721     uc16 mask = char_mask ^ diff;
   1722     macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
   1723                                                     diff,
   1724                                                     mask,
   1725                                                     on_failure);
   1726     return true;
   1727   }
   1728   return false;
   1729 }
   1730 
   1731 
   1732 typedef bool EmitCharacterFunction(Isolate* isolate,
   1733                                    RegExpCompiler* compiler,
   1734                                    uc16 c,
   1735                                    Label* on_failure,
   1736                                    int cp_offset,
   1737                                    bool check,
   1738                                    bool preloaded);
   1739 
   1740 // Only emits letters (things that have case).  Only used for case independent
   1741 // matches.
   1742 static inline bool EmitAtomLetter(Isolate* isolate,
   1743                                   RegExpCompiler* compiler,
   1744                                   uc16 c,
   1745                                   Label* on_failure,
   1746                                   int cp_offset,
   1747                                   bool check,
   1748                                   bool preloaded) {
   1749   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   1750   bool one_byte = compiler->one_byte();
   1751   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   1752   int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
   1753   if (length <= 1) return false;
   1754   // We may not need to check against the end of the input string
   1755   // if this character lies before a character that matched.
   1756   if (!preloaded) {
   1757     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
   1758   }
   1759   Label ok;
   1760   DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
   1761   switch (length) {
   1762     case 2: {
   1763       if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
   1764                                     chars[1], on_failure)) {
   1765       } else {
   1766         macro_assembler->CheckCharacter(chars[0], &ok);
   1767         macro_assembler->CheckNotCharacter(chars[1], on_failure);
   1768         macro_assembler->Bind(&ok);
   1769       }
   1770       break;
   1771     }
   1772     case 4:
   1773       macro_assembler->CheckCharacter(chars[3], &ok);
   1774       // Fall through!
   1775     case 3:
   1776       macro_assembler->CheckCharacter(chars[0], &ok);
   1777       macro_assembler->CheckCharacter(chars[1], &ok);
   1778       macro_assembler->CheckNotCharacter(chars[2], on_failure);
   1779       macro_assembler->Bind(&ok);
   1780       break;
   1781     default:
   1782       UNREACHABLE();
   1783       break;
   1784   }
   1785   return true;
   1786 }
   1787 
   1788 
   1789 static void EmitBoundaryTest(RegExpMacroAssembler* masm,
   1790                              int border,
   1791                              Label* fall_through,
   1792                              Label* above_or_equal,
   1793                              Label* below) {
   1794   if (below != fall_through) {
   1795     masm->CheckCharacterLT(border, below);
   1796     if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
   1797   } else {
   1798     masm->CheckCharacterGT(border - 1, above_or_equal);
   1799   }
   1800 }
   1801 
   1802 
   1803 static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
   1804                                    int first,
   1805                                    int last,
   1806                                    Label* fall_through,
   1807                                    Label* in_range,
   1808                                    Label* out_of_range) {
   1809   if (in_range == fall_through) {
   1810     if (first == last) {
   1811       masm->CheckNotCharacter(first, out_of_range);
   1812     } else {
   1813       masm->CheckCharacterNotInRange(first, last, out_of_range);
   1814     }
   1815   } else {
   1816     if (first == last) {
   1817       masm->CheckCharacter(first, in_range);
   1818     } else {
   1819       masm->CheckCharacterInRange(first, last, in_range);
   1820     }
   1821     if (out_of_range != fall_through) masm->GoTo(out_of_range);
   1822   }
   1823 }
   1824 
   1825 
   1826 // even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
   1827 // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
   1828 static void EmitUseLookupTable(
   1829     RegExpMacroAssembler* masm,
   1830     ZoneList<int>* ranges,
   1831     int start_index,
   1832     int end_index,
   1833     int min_char,
   1834     Label* fall_through,
   1835     Label* even_label,
   1836     Label* odd_label) {
   1837   static const int kSize = RegExpMacroAssembler::kTableSize;
   1838   static const int kMask = RegExpMacroAssembler::kTableMask;
   1839 
   1840   int base = (min_char & ~kMask);
   1841   USE(base);
   1842 
   1843   // Assert that everything is on one kTableSize page.
   1844   for (int i = start_index; i <= end_index; i++) {
   1845     DCHECK_EQ(ranges->at(i) & ~kMask, base);
   1846   }
   1847   DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
   1848 
   1849   char templ[kSize];
   1850   Label* on_bit_set;
   1851   Label* on_bit_clear;
   1852   int bit;
   1853   if (even_label == fall_through) {
   1854     on_bit_set = odd_label;
   1855     on_bit_clear = even_label;
   1856     bit = 1;
   1857   } else {
   1858     on_bit_set = even_label;
   1859     on_bit_clear = odd_label;
   1860     bit = 0;
   1861   }
   1862   for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
   1863     templ[i] = bit;
   1864   }
   1865   int j = 0;
   1866   bit ^= 1;
   1867   for (int i = start_index; i < end_index; i++) {
   1868     for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
   1869       templ[j] = bit;
   1870     }
   1871     bit ^= 1;
   1872   }
   1873   for (int i = j; i < kSize; i++) {
   1874     templ[i] = bit;
   1875   }
   1876   Factory* factory = masm->isolate()->factory();
   1877   // TODO(erikcorry): Cache these.
   1878   Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
   1879   for (int i = 0; i < kSize; i++) {
   1880     ba->set(i, templ[i]);
   1881   }
   1882   masm->CheckBitInTable(ba, on_bit_set);
   1883   if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
   1884 }
   1885 
   1886 
   1887 static void CutOutRange(RegExpMacroAssembler* masm,
   1888                         ZoneList<int>* ranges,
   1889                         int start_index,
   1890                         int end_index,
   1891                         int cut_index,
   1892                         Label* even_label,
   1893                         Label* odd_label) {
   1894   bool odd = (((cut_index - start_index) & 1) == 1);
   1895   Label* in_range_label = odd ? odd_label : even_label;
   1896   Label dummy;
   1897   EmitDoubleBoundaryTest(masm,
   1898                          ranges->at(cut_index),
   1899                          ranges->at(cut_index + 1) - 1,
   1900                          &dummy,
   1901                          in_range_label,
   1902                          &dummy);
   1903   DCHECK(!dummy.is_linked());
   1904   // Cut out the single range by rewriting the array.  This creates a new
   1905   // range that is a merger of the two ranges on either side of the one we
   1906   // are cutting out.  The oddity of the labels is preserved.
   1907   for (int j = cut_index; j > start_index; j--) {
   1908     ranges->at(j) = ranges->at(j - 1);
   1909   }
   1910   for (int j = cut_index + 1; j < end_index; j++) {
   1911     ranges->at(j) = ranges->at(j + 1);
   1912   }
   1913 }
   1914 
   1915 
   1916 // Unicode case.  Split the search space into kSize spaces that are handled
   1917 // with recursion.
   1918 static void SplitSearchSpace(ZoneList<int>* ranges,
   1919                              int start_index,
   1920                              int end_index,
   1921                              int* new_start_index,
   1922                              int* new_end_index,
   1923                              int* border) {
   1924   static const int kSize = RegExpMacroAssembler::kTableSize;
   1925   static const int kMask = RegExpMacroAssembler::kTableMask;
   1926 
   1927   int first = ranges->at(start_index);
   1928   int last = ranges->at(end_index) - 1;
   1929 
   1930   *new_start_index = start_index;
   1931   *border = (ranges->at(start_index) & ~kMask) + kSize;
   1932   while (*new_start_index < end_index) {
   1933     if (ranges->at(*new_start_index) > *border) break;
   1934     (*new_start_index)++;
   1935   }
   1936   // new_start_index is the index of the first edge that is beyond the
   1937   // current kSize space.
   1938 
   1939   // For very large search spaces we do a binary chop search of the non-Latin1
   1940   // space instead of just going to the end of the current kSize space.  The
   1941   // heuristics are complicated a little by the fact that any 128-character
   1942   // encoding space can be quickly tested with a table lookup, so we don't
   1943   // wish to do binary chop search at a smaller granularity than that.  A
   1944   // 128-character space can take up a lot of space in the ranges array if,
   1945   // for example, we only want to match every second character (eg. the lower
   1946   // case characters on some Unicode pages).
   1947   int binary_chop_index = (end_index + start_index) / 2;
   1948   // The first test ensures that we get to the code that handles the Latin1
   1949   // range with a single not-taken branch, speeding up this important
   1950   // character range (even non-Latin1 charset-based text has spaces and
   1951   // punctuation).
   1952   if (*border - 1 > String::kMaxOneByteCharCode &&  // Latin1 case.
   1953       end_index - start_index > (*new_start_index - start_index) * 2 &&
   1954       last - first > kSize * 2 && binary_chop_index > *new_start_index &&
   1955       ranges->at(binary_chop_index) >= first + 2 * kSize) {
   1956     int scan_forward_for_section_border = binary_chop_index;;
   1957     int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
   1958 
   1959     while (scan_forward_for_section_border < end_index) {
   1960       if (ranges->at(scan_forward_for_section_border) > new_border) {
   1961         *new_start_index = scan_forward_for_section_border;
   1962         *border = new_border;
   1963         break;
   1964       }
   1965       scan_forward_for_section_border++;
   1966     }
   1967   }
   1968 
   1969   DCHECK(*new_start_index > start_index);
   1970   *new_end_index = *new_start_index - 1;
   1971   if (ranges->at(*new_end_index) == *border) {
   1972     (*new_end_index)--;
   1973   }
   1974   if (*border >= ranges->at(end_index)) {
   1975     *border = ranges->at(end_index);
   1976     *new_start_index = end_index;  // Won't be used.
   1977     *new_end_index = end_index - 1;
   1978   }
   1979 }
   1980 
   1981 
   1982 // Gets a series of segment boundaries representing a character class.  If the
   1983 // character is in the range between an even and an odd boundary (counting from
   1984 // start_index) then go to even_label, otherwise go to odd_label.  We already
   1985 // know that the character is in the range of min_char to max_char inclusive.
   1986 // Either label can be NULL indicating backtracking.  Either label can also be
   1987 // equal to the fall_through label.
   1988 static void GenerateBranches(RegExpMacroAssembler* masm, ZoneList<int>* ranges,
   1989                              int start_index, int end_index, uc32 min_char,
   1990                              uc32 max_char, Label* fall_through,
   1991                              Label* even_label, Label* odd_label) {
   1992   DCHECK_LE(min_char, String::kMaxUtf16CodeUnit);
   1993   DCHECK_LE(max_char, String::kMaxUtf16CodeUnit);
   1994 
   1995   int first = ranges->at(start_index);
   1996   int last = ranges->at(end_index) - 1;
   1997 
   1998   DCHECK_LT(min_char, first);
   1999 
   2000   // Just need to test if the character is before or on-or-after
   2001   // a particular character.
   2002   if (start_index == end_index) {
   2003     EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
   2004     return;
   2005   }
   2006 
   2007   // Another almost trivial case:  There is one interval in the middle that is
   2008   // different from the end intervals.
   2009   if (start_index + 1 == end_index) {
   2010     EmitDoubleBoundaryTest(
   2011         masm, first, last, fall_through, even_label, odd_label);
   2012     return;
   2013   }
   2014 
   2015   // It's not worth using table lookup if there are very few intervals in the
   2016   // character class.
   2017   if (end_index - start_index <= 6) {
   2018     // It is faster to test for individual characters, so we look for those
   2019     // first, then try arbitrary ranges in the second round.
   2020     static int kNoCutIndex = -1;
   2021     int cut = kNoCutIndex;
   2022     for (int i = start_index; i < end_index; i++) {
   2023       if (ranges->at(i) == ranges->at(i + 1) - 1) {
   2024         cut = i;
   2025         break;
   2026       }
   2027     }
   2028     if (cut == kNoCutIndex) cut = start_index;
   2029     CutOutRange(
   2030         masm, ranges, start_index, end_index, cut, even_label, odd_label);
   2031     DCHECK_GE(end_index - start_index, 2);
   2032     GenerateBranches(masm,
   2033                      ranges,
   2034                      start_index + 1,
   2035                      end_index - 1,
   2036                      min_char,
   2037                      max_char,
   2038                      fall_through,
   2039                      even_label,
   2040                      odd_label);
   2041     return;
   2042   }
   2043 
   2044   // If there are a lot of intervals in the regexp, then we will use tables to
   2045   // determine whether the character is inside or outside the character class.
   2046   static const int kBits = RegExpMacroAssembler::kTableSizeBits;
   2047 
   2048   if ((max_char >> kBits) == (min_char >> kBits)) {
   2049     EmitUseLookupTable(masm,
   2050                        ranges,
   2051                        start_index,
   2052                        end_index,
   2053                        min_char,
   2054                        fall_through,
   2055                        even_label,
   2056                        odd_label);
   2057     return;
   2058   }
   2059 
   2060   if ((min_char >> kBits) != (first >> kBits)) {
   2061     masm->CheckCharacterLT(first, odd_label);
   2062     GenerateBranches(masm,
   2063                      ranges,
   2064                      start_index + 1,
   2065                      end_index,
   2066                      first,
   2067                      max_char,
   2068                      fall_through,
   2069                      odd_label,
   2070                      even_label);
   2071     return;
   2072   }
   2073 
   2074   int new_start_index = 0;
   2075   int new_end_index = 0;
   2076   int border = 0;
   2077 
   2078   SplitSearchSpace(ranges,
   2079                    start_index,
   2080                    end_index,
   2081                    &new_start_index,
   2082                    &new_end_index,
   2083                    &border);
   2084 
   2085   Label handle_rest;
   2086   Label* above = &handle_rest;
   2087   if (border == last + 1) {
   2088     // We didn't find any section that started after the limit, so everything
   2089     // above the border is one of the terminal labels.
   2090     above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
   2091     DCHECK(new_end_index == end_index - 1);
   2092   }
   2093 
   2094   DCHECK_LE(start_index, new_end_index);
   2095   DCHECK_LE(new_start_index, end_index);
   2096   DCHECK_LT(start_index, new_start_index);
   2097   DCHECK_LT(new_end_index, end_index);
   2098   DCHECK(new_end_index + 1 == new_start_index ||
   2099          (new_end_index + 2 == new_start_index &&
   2100           border == ranges->at(new_end_index + 1)));
   2101   DCHECK_LT(min_char, border - 1);
   2102   DCHECK_LT(border, max_char);
   2103   DCHECK_LT(ranges->at(new_end_index), border);
   2104   DCHECK(border < ranges->at(new_start_index) ||
   2105          (border == ranges->at(new_start_index) &&
   2106           new_start_index == end_index &&
   2107           new_end_index == end_index - 1 &&
   2108           border == last + 1));
   2109   DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
   2110 
   2111   masm->CheckCharacterGT(border - 1, above);
   2112   Label dummy;
   2113   GenerateBranches(masm,
   2114                    ranges,
   2115                    start_index,
   2116                    new_end_index,
   2117                    min_char,
   2118                    border - 1,
   2119                    &dummy,
   2120                    even_label,
   2121                    odd_label);
   2122   if (handle_rest.is_linked()) {
   2123     masm->Bind(&handle_rest);
   2124     bool flip = (new_start_index & 1) != (start_index & 1);
   2125     GenerateBranches(masm,
   2126                      ranges,
   2127                      new_start_index,
   2128                      end_index,
   2129                      border,
   2130                      max_char,
   2131                      &dummy,
   2132                      flip ? odd_label : even_label,
   2133                      flip ? even_label : odd_label);
   2134   }
   2135 }
   2136 
   2137 
   2138 static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
   2139                           RegExpCharacterClass* cc, bool one_byte,
   2140                           Label* on_failure, int cp_offset, bool check_offset,
   2141                           bool preloaded, Zone* zone) {
   2142   ZoneList<CharacterRange>* ranges = cc->ranges(zone);
   2143   CharacterRange::Canonicalize(ranges);
   2144 
   2145   int max_char;
   2146   if (one_byte) {
   2147     max_char = String::kMaxOneByteCharCode;
   2148   } else {
   2149     max_char = String::kMaxUtf16CodeUnit;
   2150   }
   2151 
   2152   int range_count = ranges->length();
   2153 
   2154   int last_valid_range = range_count - 1;
   2155   while (last_valid_range >= 0) {
   2156     CharacterRange& range = ranges->at(last_valid_range);
   2157     if (range.from() <= max_char) {
   2158       break;
   2159     }
   2160     last_valid_range--;
   2161   }
   2162 
   2163   if (last_valid_range < 0) {
   2164     if (!cc->is_negated()) {
   2165       macro_assembler->GoTo(on_failure);
   2166     }
   2167     if (check_offset) {
   2168       macro_assembler->CheckPosition(cp_offset, on_failure);
   2169     }
   2170     return;
   2171   }
   2172 
   2173   if (last_valid_range == 0 &&
   2174       ranges->at(0).IsEverything(max_char)) {
   2175     if (cc->is_negated()) {
   2176       macro_assembler->GoTo(on_failure);
   2177     } else {
   2178       // This is a common case hit by non-anchored expressions.
   2179       if (check_offset) {
   2180         macro_assembler->CheckPosition(cp_offset, on_failure);
   2181       }
   2182     }
   2183     return;
   2184   }
   2185 
   2186   if (!preloaded) {
   2187     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
   2188   }
   2189 
   2190   if (cc->is_standard(zone) &&
   2191       macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
   2192                                                   on_failure)) {
   2193       return;
   2194   }
   2195 
   2196 
   2197   // A new list with ascending entries.  Each entry is a code unit
   2198   // where there is a boundary between code units that are part of
   2199   // the class and code units that are not.  Normally we insert an
   2200   // entry at zero which goes to the failure label, but if there
   2201   // was already one there we fall through for success on that entry.
   2202   // Subsequent entries have alternating meaning (success/failure).
   2203   ZoneList<int>* range_boundaries =
   2204       new(zone) ZoneList<int>(last_valid_range, zone);
   2205 
   2206   bool zeroth_entry_is_failure = !cc->is_negated();
   2207 
   2208   for (int i = 0; i <= last_valid_range; i++) {
   2209     CharacterRange& range = ranges->at(i);
   2210     if (range.from() == 0) {
   2211       DCHECK_EQ(i, 0);
   2212       zeroth_entry_is_failure = !zeroth_entry_is_failure;
   2213     } else {
   2214       range_boundaries->Add(range.from(), zone);
   2215     }
   2216     range_boundaries->Add(range.to() + 1, zone);
   2217   }
   2218   int end_index = range_boundaries->length() - 1;
   2219   if (range_boundaries->at(end_index) > max_char) {
   2220     end_index--;
   2221   }
   2222 
   2223   Label fall_through;
   2224   GenerateBranches(macro_assembler,
   2225                    range_boundaries,
   2226                    0,  // start_index.
   2227                    end_index,
   2228                    0,  // min_char.
   2229                    max_char,
   2230                    &fall_through,
   2231                    zeroth_entry_is_failure ? &fall_through : on_failure,
   2232                    zeroth_entry_is_failure ? on_failure : &fall_through);
   2233   macro_assembler->Bind(&fall_through);
   2234 }
   2235 
   2236 
   2237 RegExpNode::~RegExpNode() {
   2238 }
   2239 
   2240 
   2241 RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
   2242                                                   Trace* trace) {
   2243   // If we are generating a greedy loop then don't stop and don't reuse code.
   2244   if (trace->stop_node() != NULL) {
   2245     return CONTINUE;
   2246   }
   2247 
   2248   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   2249   if (trace->is_trivial()) {
   2250     if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) {
   2251       // If a generic version is already scheduled to be generated or we have
   2252       // recursed too deeply then just generate a jump to that code.
   2253       macro_assembler->GoTo(&label_);
   2254       // This will queue it up for generation of a generic version if it hasn't
   2255       // already been queued.
   2256       compiler->AddWork(this);
   2257       return DONE;
   2258     }
   2259     // Generate generic version of the node and bind the label for later use.
   2260     macro_assembler->Bind(&label_);
   2261     return CONTINUE;
   2262   }
   2263 
   2264   // We are being asked to make a non-generic version.  Keep track of how many
   2265   // non-generic versions we generate so as not to overdo it.
   2266   trace_count_++;
   2267   if (KeepRecursing(compiler) && compiler->optimize() &&
   2268       trace_count_ < kMaxCopiesCodeGenerated) {
   2269     return CONTINUE;
   2270   }
   2271 
   2272   // If we get here code has been generated for this node too many times or
   2273   // recursion is too deep.  Time to switch to a generic version.  The code for
   2274   // generic versions above can handle deep recursion properly.
   2275   bool was_limiting = compiler->limiting_recursion();
   2276   compiler->set_limiting_recursion(true);
   2277   trace->Flush(compiler, this);
   2278   compiler->set_limiting_recursion(was_limiting);
   2279   return DONE;
   2280 }
   2281 
   2282 
   2283 bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) {
   2284   return !compiler->limiting_recursion() &&
   2285          compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion;
   2286 }
   2287 
   2288 
   2289 int ActionNode::EatsAtLeast(int still_to_find,
   2290                             int budget,
   2291                             bool not_at_start) {
   2292   if (budget <= 0) return 0;
   2293   if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0;  // Rewinds input!
   2294   return on_success()->EatsAtLeast(still_to_find,
   2295                                    budget - 1,
   2296                                    not_at_start);
   2297 }
   2298 
   2299 
   2300 void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
   2301                               BoyerMooreLookahead* bm, bool not_at_start) {
   2302   if (action_type_ == BEGIN_SUBMATCH) {
   2303     bm->SetRest(offset);
   2304   } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
   2305     on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
   2306   }
   2307   SaveBMInfo(bm, not_at_start, offset);
   2308 }
   2309 
   2310 
   2311 int AssertionNode::EatsAtLeast(int still_to_find,
   2312                                int budget,
   2313                                bool not_at_start) {
   2314   if (budget <= 0) return 0;
   2315   // If we know we are not at the start and we are asked "how many characters
   2316   // will you match if you succeed?" then we can answer anything since false
   2317   // implies false.  So lets just return the max answer (still_to_find) since
   2318   // that won't prevent us from preloading a lot of characters for the other
   2319   // branches in the node graph.
   2320   if (assertion_type() == AT_START && not_at_start) return still_to_find;
   2321   return on_success()->EatsAtLeast(still_to_find,
   2322                                    budget - 1,
   2323                                    not_at_start);
   2324 }
   2325 
   2326 
   2327 void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
   2328                                  BoyerMooreLookahead* bm, bool not_at_start) {
   2329   // Match the behaviour of EatsAtLeast on this node.
   2330   if (assertion_type() == AT_START && not_at_start) return;
   2331   on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
   2332   SaveBMInfo(bm, not_at_start, offset);
   2333 }
   2334 
   2335 
   2336 int BackReferenceNode::EatsAtLeast(int still_to_find,
   2337                                    int budget,
   2338                                    bool not_at_start) {
   2339   if (read_backward()) return 0;
   2340   if (budget <= 0) return 0;
   2341   return on_success()->EatsAtLeast(still_to_find,
   2342                                    budget - 1,
   2343                                    not_at_start);
   2344 }
   2345 
   2346 
   2347 int TextNode::EatsAtLeast(int still_to_find,
   2348                           int budget,
   2349                           bool not_at_start) {
   2350   if (read_backward()) return 0;
   2351   int answer = Length();
   2352   if (answer >= still_to_find) return answer;
   2353   if (budget <= 0) return answer;
   2354   // We are not at start after this node so we set the last argument to 'true'.
   2355   return answer + on_success()->EatsAtLeast(still_to_find - answer,
   2356                                             budget - 1,
   2357                                             true);
   2358 }
   2359 
   2360 
   2361 int NegativeLookaroundChoiceNode::EatsAtLeast(int still_to_find, int budget,
   2362                                               bool not_at_start) {
   2363   if (budget <= 0) return 0;
   2364   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   2365   // afterwards.
   2366   RegExpNode* node = alternatives_->at(1).node();
   2367   return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
   2368 }
   2369 
   2370 
   2371 void NegativeLookaroundChoiceNode::GetQuickCheckDetails(
   2372     QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in,
   2373     bool not_at_start) {
   2374   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   2375   // afterwards.
   2376   RegExpNode* node = alternatives_->at(1).node();
   2377   return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
   2378 }
   2379 
   2380 
   2381 int ChoiceNode::EatsAtLeastHelper(int still_to_find,
   2382                                   int budget,
   2383                                   RegExpNode* ignore_this_node,
   2384                                   bool not_at_start) {
   2385   if (budget <= 0) return 0;
   2386   int min = 100;
   2387   int choice_count = alternatives_->length();
   2388   budget = (budget - 1) / choice_count;
   2389   for (int i = 0; i < choice_count; i++) {
   2390     RegExpNode* node = alternatives_->at(i).node();
   2391     if (node == ignore_this_node) continue;
   2392     int node_eats_at_least =
   2393         node->EatsAtLeast(still_to_find, budget, not_at_start);
   2394     if (node_eats_at_least < min) min = node_eats_at_least;
   2395     if (min == 0) return 0;
   2396   }
   2397   return min;
   2398 }
   2399 
   2400 
   2401 int LoopChoiceNode::EatsAtLeast(int still_to_find,
   2402                                 int budget,
   2403                                 bool not_at_start) {
   2404   return EatsAtLeastHelper(still_to_find,
   2405                            budget - 1,
   2406                            loop_node_,
   2407                            not_at_start);
   2408 }
   2409 
   2410 
   2411 int ChoiceNode::EatsAtLeast(int still_to_find,
   2412                             int budget,
   2413                             bool not_at_start) {
   2414   return EatsAtLeastHelper(still_to_find,
   2415                            budget,
   2416                            NULL,
   2417                            not_at_start);
   2418 }
   2419 
   2420 
   2421 // Takes the left-most 1-bit and smears it out, setting all bits to its right.
   2422 static inline uint32_t SmearBitsRight(uint32_t v) {
   2423   v |= v >> 1;
   2424   v |= v >> 2;
   2425   v |= v >> 4;
   2426   v |= v >> 8;
   2427   v |= v >> 16;
   2428   return v;
   2429 }
   2430 
   2431 
   2432 bool QuickCheckDetails::Rationalize(bool asc) {
   2433   bool found_useful_op = false;
   2434   uint32_t char_mask;
   2435   if (asc) {
   2436     char_mask = String::kMaxOneByteCharCode;
   2437   } else {
   2438     char_mask = String::kMaxUtf16CodeUnit;
   2439   }
   2440   mask_ = 0;
   2441   value_ = 0;
   2442   int char_shift = 0;
   2443   for (int i = 0; i < characters_; i++) {
   2444     Position* pos = &positions_[i];
   2445     if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
   2446       found_useful_op = true;
   2447     }
   2448     mask_ |= (pos->mask & char_mask) << char_shift;
   2449     value_ |= (pos->value & char_mask) << char_shift;
   2450     char_shift += asc ? 8 : 16;
   2451   }
   2452   return found_useful_op;
   2453 }
   2454 
   2455 
   2456 bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
   2457                                 Trace* bounds_check_trace,
   2458                                 Trace* trace,
   2459                                 bool preload_has_checked_bounds,
   2460                                 Label* on_possible_success,
   2461                                 QuickCheckDetails* details,
   2462                                 bool fall_through_on_failure) {
   2463   if (details->characters() == 0) return false;
   2464   GetQuickCheckDetails(
   2465       details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
   2466   if (details->cannot_match()) return false;
   2467   if (!details->Rationalize(compiler->one_byte())) return false;
   2468   DCHECK(details->characters() == 1 ||
   2469          compiler->macro_assembler()->CanReadUnaligned());
   2470   uint32_t mask = details->mask();
   2471   uint32_t value = details->value();
   2472 
   2473   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   2474 
   2475   if (trace->characters_preloaded() != details->characters()) {
   2476     DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
   2477     // We are attempting to preload the minimum number of characters
   2478     // any choice would eat, so if the bounds check fails, then none of the
   2479     // choices can succeed, so we can just immediately backtrack, rather
   2480     // than go to the next choice.
   2481     assembler->LoadCurrentCharacter(trace->cp_offset(),
   2482                                     bounds_check_trace->backtrack(),
   2483                                     !preload_has_checked_bounds,
   2484                                     details->characters());
   2485   }
   2486 
   2487 
   2488   bool need_mask = true;
   2489 
   2490   if (details->characters() == 1) {
   2491     // If number of characters preloaded is 1 then we used a byte or 16 bit
   2492     // load so the value is already masked down.
   2493     uint32_t char_mask;
   2494     if (compiler->one_byte()) {
   2495       char_mask = String::kMaxOneByteCharCode;
   2496     } else {
   2497       char_mask = String::kMaxUtf16CodeUnit;
   2498     }
   2499     if ((mask & char_mask) == char_mask) need_mask = false;
   2500     mask &= char_mask;
   2501   } else {
   2502     // For 2-character preloads in one-byte mode or 1-character preloads in
   2503     // two-byte mode we also use a 16 bit load with zero extend.
   2504     static const uint32_t kTwoByteMask = 0xffff;
   2505     static const uint32_t kFourByteMask = 0xffffffff;
   2506     if (details->characters() == 2 && compiler->one_byte()) {
   2507       if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false;
   2508     } else if (details->characters() == 1 && !compiler->one_byte()) {
   2509       if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false;
   2510     } else {
   2511       if (mask == kFourByteMask) need_mask = false;
   2512     }
   2513   }
   2514 
   2515   if (fall_through_on_failure) {
   2516     if (need_mask) {
   2517       assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
   2518     } else {
   2519       assembler->CheckCharacter(value, on_possible_success);
   2520     }
   2521   } else {
   2522     if (need_mask) {
   2523       assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
   2524     } else {
   2525       assembler->CheckNotCharacter(value, trace->backtrack());
   2526     }
   2527   }
   2528   return true;
   2529 }
   2530 
   2531 
   2532 // Here is the meat of GetQuickCheckDetails (see also the comment on the
   2533 // super-class in the .h file).
   2534 //
   2535 // We iterate along the text object, building up for each character a
   2536 // mask and value that can be used to test for a quick failure to match.
   2537 // The masks and values for the positions will be combined into a single
   2538 // machine word for the current character width in order to be used in
   2539 // generating a quick check.
   2540 void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2541                                     RegExpCompiler* compiler,
   2542                                     int characters_filled_in,
   2543                                     bool not_at_start) {
   2544   // Do not collect any quick check details if the text node reads backward,
   2545   // since it reads in the opposite direction than we use for quick checks.
   2546   if (read_backward()) return;
   2547   Isolate* isolate = compiler->macro_assembler()->isolate();
   2548   DCHECK(characters_filled_in < details->characters());
   2549   int characters = details->characters();
   2550   int char_mask;
   2551   if (compiler->one_byte()) {
   2552     char_mask = String::kMaxOneByteCharCode;
   2553   } else {
   2554     char_mask = String::kMaxUtf16CodeUnit;
   2555   }
   2556   for (int k = 0; k < elements()->length(); k++) {
   2557     TextElement elm = elements()->at(k);
   2558     if (elm.text_type() == TextElement::ATOM) {
   2559       Vector<const uc16> quarks = elm.atom()->data();
   2560       for (int i = 0; i < characters && i < quarks.length(); i++) {
   2561         QuickCheckDetails::Position* pos =
   2562             details->positions(characters_filled_in);
   2563         uc16 c = quarks[i];
   2564         if (compiler->ignore_case()) {
   2565           unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   2566           int length = GetCaseIndependentLetters(isolate, c,
   2567                                                  compiler->one_byte(), chars);
   2568           if (length == 0) {
   2569             // This can happen because all case variants are non-Latin1, but we
   2570             // know the input is Latin1.
   2571             details->set_cannot_match();
   2572             pos->determines_perfectly = false;
   2573             return;
   2574           }
   2575           if (length == 1) {
   2576             // This letter has no case equivalents, so it's nice and simple
   2577             // and the mask-compare will determine definitely whether we have
   2578             // a match at this character position.
   2579             pos->mask = char_mask;
   2580             pos->value = c;
   2581             pos->determines_perfectly = true;
   2582           } else {
   2583             uint32_t common_bits = char_mask;
   2584             uint32_t bits = chars[0];
   2585             for (int j = 1; j < length; j++) {
   2586               uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
   2587               common_bits ^= differing_bits;
   2588               bits &= common_bits;
   2589             }
   2590             // If length is 2 and common bits has only one zero in it then
   2591             // our mask and compare instruction will determine definitely
   2592             // whether we have a match at this character position.  Otherwise
   2593             // it can only be an approximate check.
   2594             uint32_t one_zero = (common_bits | ~char_mask);
   2595             if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
   2596               pos->determines_perfectly = true;
   2597             }
   2598             pos->mask = common_bits;
   2599             pos->value = bits;
   2600           }
   2601         } else {
   2602           // Don't ignore case.  Nice simple case where the mask-compare will
   2603           // determine definitely whether we have a match at this character
   2604           // position.
   2605           if (c > char_mask) {
   2606             details->set_cannot_match();
   2607             pos->determines_perfectly = false;
   2608             return;
   2609           }
   2610           pos->mask = char_mask;
   2611           pos->value = c;
   2612           pos->determines_perfectly = true;
   2613         }
   2614         characters_filled_in++;
   2615         DCHECK(characters_filled_in <= details->characters());
   2616         if (characters_filled_in == details->characters()) {
   2617           return;
   2618         }
   2619       }
   2620     } else {
   2621       QuickCheckDetails::Position* pos =
   2622           details->positions(characters_filled_in);
   2623       RegExpCharacterClass* tree = elm.char_class();
   2624       ZoneList<CharacterRange>* ranges = tree->ranges(zone());
   2625       if (tree->is_negated()) {
   2626         // A quick check uses multi-character mask and compare.  There is no
   2627         // useful way to incorporate a negative char class into this scheme
   2628         // so we just conservatively create a mask and value that will always
   2629         // succeed.
   2630         pos->mask = 0;
   2631         pos->value = 0;
   2632       } else {
   2633         int first_range = 0;
   2634         while (ranges->at(first_range).from() > char_mask) {
   2635           first_range++;
   2636           if (first_range == ranges->length()) {
   2637             details->set_cannot_match();
   2638             pos->determines_perfectly = false;
   2639             return;
   2640           }
   2641         }
   2642         CharacterRange range = ranges->at(first_range);
   2643         uc16 from = range.from();
   2644         uc16 to = range.to();
   2645         if (to > char_mask) {
   2646           to = char_mask;
   2647         }
   2648         uint32_t differing_bits = (from ^ to);
   2649         // A mask and compare is only perfect if the differing bits form a
   2650         // number like 00011111 with one single block of trailing 1s.
   2651         if ((differing_bits & (differing_bits + 1)) == 0 &&
   2652              from + differing_bits == to) {
   2653           pos->determines_perfectly = true;
   2654         }
   2655         uint32_t common_bits = ~SmearBitsRight(differing_bits);
   2656         uint32_t bits = (from & common_bits);
   2657         for (int i = first_range + 1; i < ranges->length(); i++) {
   2658           CharacterRange range = ranges->at(i);
   2659           uc16 from = range.from();
   2660           uc16 to = range.to();
   2661           if (from > char_mask) continue;
   2662           if (to > char_mask) to = char_mask;
   2663           // Here we are combining more ranges into the mask and compare
   2664           // value.  With each new range the mask becomes more sparse and
   2665           // so the chances of a false positive rise.  A character class
   2666           // with multiple ranges is assumed never to be equivalent to a
   2667           // mask and compare operation.
   2668           pos->determines_perfectly = false;
   2669           uint32_t new_common_bits = (from ^ to);
   2670           new_common_bits = ~SmearBitsRight(new_common_bits);
   2671           common_bits &= new_common_bits;
   2672           bits &= new_common_bits;
   2673           uint32_t differing_bits = (from & common_bits) ^ bits;
   2674           common_bits ^= differing_bits;
   2675           bits &= common_bits;
   2676         }
   2677         pos->mask = common_bits;
   2678         pos->value = bits;
   2679       }
   2680       characters_filled_in++;
   2681       DCHECK(characters_filled_in <= details->characters());
   2682       if (characters_filled_in == details->characters()) {
   2683         return;
   2684       }
   2685     }
   2686   }
   2687   DCHECK(characters_filled_in != details->characters());
   2688   if (!details->cannot_match()) {
   2689     on_success()-> GetQuickCheckDetails(details,
   2690                                         compiler,
   2691                                         characters_filled_in,
   2692                                         true);
   2693   }
   2694 }
   2695 
   2696 
   2697 void QuickCheckDetails::Clear() {
   2698   for (int i = 0; i < characters_; i++) {
   2699     positions_[i].mask = 0;
   2700     positions_[i].value = 0;
   2701     positions_[i].determines_perfectly = false;
   2702   }
   2703   characters_ = 0;
   2704 }
   2705 
   2706 
   2707 void QuickCheckDetails::Advance(int by, bool one_byte) {
   2708   if (by >= characters_ || by < 0) {
   2709     DCHECK_IMPLIES(by < 0, characters_ == 0);
   2710     Clear();
   2711     return;
   2712   }
   2713   DCHECK_LE(characters_ - by, 4);
   2714   DCHECK_LE(characters_, 4);
   2715   for (int i = 0; i < characters_ - by; i++) {
   2716     positions_[i] = positions_[by + i];
   2717   }
   2718   for (int i = characters_ - by; i < characters_; i++) {
   2719     positions_[i].mask = 0;
   2720     positions_[i].value = 0;
   2721     positions_[i].determines_perfectly = false;
   2722   }
   2723   characters_ -= by;
   2724   // We could change mask_ and value_ here but we would never advance unless
   2725   // they had already been used in a check and they won't be used again because
   2726   // it would gain us nothing.  So there's no point.
   2727 }
   2728 
   2729 
   2730 void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
   2731   DCHECK(characters_ == other->characters_);
   2732   if (other->cannot_match_) {
   2733     return;
   2734   }
   2735   if (cannot_match_) {
   2736     *this = *other;
   2737     return;
   2738   }
   2739   for (int i = from_index; i < characters_; i++) {
   2740     QuickCheckDetails::Position* pos = positions(i);
   2741     QuickCheckDetails::Position* other_pos = other->positions(i);
   2742     if (pos->mask != other_pos->mask ||
   2743         pos->value != other_pos->value ||
   2744         !other_pos->determines_perfectly) {
   2745       // Our mask-compare operation will be approximate unless we have the
   2746       // exact same operation on both sides of the alternation.
   2747       pos->determines_perfectly = false;
   2748     }
   2749     pos->mask &= other_pos->mask;
   2750     pos->value &= pos->mask;
   2751     other_pos->value &= pos->mask;
   2752     uc16 differing_bits = (pos->value ^ other_pos->value);
   2753     pos->mask &= ~differing_bits;
   2754     pos->value &= pos->mask;
   2755   }
   2756 }
   2757 
   2758 
   2759 class VisitMarker {
   2760  public:
   2761   explicit VisitMarker(NodeInfo* info) : info_(info) {
   2762     DCHECK(!info->visited);
   2763     info->visited = true;
   2764   }
   2765   ~VisitMarker() {
   2766     info_->visited = false;
   2767   }
   2768  private:
   2769   NodeInfo* info_;
   2770 };
   2771 
   2772 
   2773 RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
   2774   if (info()->replacement_calculated) return replacement();
   2775   if (depth < 0) return this;
   2776   DCHECK(!info()->visited);
   2777   VisitMarker marker(info());
   2778   return FilterSuccessor(depth - 1, ignore_case);
   2779 }
   2780 
   2781 
   2782 RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
   2783   RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
   2784   if (next == NULL) return set_replacement(NULL);
   2785   on_success_ = next;
   2786   return set_replacement(this);
   2787 }
   2788 
   2789 
   2790 // We need to check for the following characters: 0x39c 0x3bc 0x178.
   2791 static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
   2792   // TODO(dcarney): this could be a lot more efficient.
   2793   return range.Contains(0x39c) ||
   2794       range.Contains(0x3bc) || range.Contains(0x178);
   2795 }
   2796 
   2797 
   2798 static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
   2799   for (int i = 0; i < ranges->length(); i++) {
   2800     // TODO(dcarney): this could be a lot more efficient.
   2801     if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
   2802   }
   2803   return false;
   2804 }
   2805 
   2806 
   2807 RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
   2808   if (info()->replacement_calculated) return replacement();
   2809   if (depth < 0) return this;
   2810   DCHECK(!info()->visited);
   2811   VisitMarker marker(info());
   2812   int element_count = elements()->length();
   2813   for (int i = 0; i < element_count; i++) {
   2814     TextElement elm = elements()->at(i);
   2815     if (elm.text_type() == TextElement::ATOM) {
   2816       Vector<const uc16> quarks = elm.atom()->data();
   2817       for (int j = 0; j < quarks.length(); j++) {
   2818         uint16_t c = quarks[j];
   2819         if (c <= String::kMaxOneByteCharCode) continue;
   2820         if (!ignore_case) return set_replacement(NULL);
   2821         // Here, we need to check for characters whose upper and lower cases
   2822         // are outside the Latin-1 range.
   2823         uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
   2824         // Character is outside Latin-1 completely
   2825         if (converted == 0) return set_replacement(NULL);
   2826         // Convert quark to Latin-1 in place.
   2827         uint16_t* copy = const_cast<uint16_t*>(quarks.start());
   2828         copy[j] = converted;
   2829       }
   2830     } else {
   2831       DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
   2832       RegExpCharacterClass* cc = elm.char_class();
   2833       ZoneList<CharacterRange>* ranges = cc->ranges(zone());
   2834       CharacterRange::Canonicalize(ranges);
   2835       // Now they are in order so we only need to look at the first.
   2836       int range_count = ranges->length();
   2837       if (cc->is_negated()) {
   2838         if (range_count != 0 &&
   2839             ranges->at(0).from() == 0 &&
   2840             ranges->at(0).to() >= String::kMaxOneByteCharCode) {
   2841           // This will be handled in a later filter.
   2842           if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
   2843           return set_replacement(NULL);
   2844         }
   2845       } else {
   2846         if (range_count == 0 ||
   2847             ranges->at(0).from() > String::kMaxOneByteCharCode) {
   2848           // This will be handled in a later filter.
   2849           if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
   2850           return set_replacement(NULL);
   2851         }
   2852       }
   2853     }
   2854   }
   2855   return FilterSuccessor(depth - 1, ignore_case);
   2856 }
   2857 
   2858 
   2859 RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
   2860   if (info()->replacement_calculated) return replacement();
   2861   if (depth < 0) return this;
   2862   if (info()->visited) return this;
   2863   {
   2864     VisitMarker marker(info());
   2865 
   2866     RegExpNode* continue_replacement =
   2867         continue_node_->FilterOneByte(depth - 1, ignore_case);
   2868     // If we can't continue after the loop then there is no sense in doing the
   2869     // loop.
   2870     if (continue_replacement == NULL) return set_replacement(NULL);
   2871   }
   2872 
   2873   return ChoiceNode::FilterOneByte(depth - 1, ignore_case);
   2874 }
   2875 
   2876 
   2877 RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
   2878   if (info()->replacement_calculated) return replacement();
   2879   if (depth < 0) return this;
   2880   if (info()->visited) return this;
   2881   VisitMarker marker(info());
   2882   int choice_count = alternatives_->length();
   2883 
   2884   for (int i = 0; i < choice_count; i++) {
   2885     GuardedAlternative alternative = alternatives_->at(i);
   2886     if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
   2887       set_replacement(this);
   2888       return this;
   2889     }
   2890   }
   2891 
   2892   int surviving = 0;
   2893   RegExpNode* survivor = NULL;
   2894   for (int i = 0; i < choice_count; i++) {
   2895     GuardedAlternative alternative = alternatives_->at(i);
   2896     RegExpNode* replacement =
   2897         alternative.node()->FilterOneByte(depth - 1, ignore_case);
   2898     DCHECK(replacement != this);  // No missing EMPTY_MATCH_CHECK.
   2899     if (replacement != NULL) {
   2900       alternatives_->at(i).set_node(replacement);
   2901       surviving++;
   2902       survivor = replacement;
   2903     }
   2904   }
   2905   if (surviving < 2) return set_replacement(survivor);
   2906 
   2907   set_replacement(this);
   2908   if (surviving == choice_count) {
   2909     return this;
   2910   }
   2911   // Only some of the nodes survived the filtering.  We need to rebuild the
   2912   // alternatives list.
   2913   ZoneList<GuardedAlternative>* new_alternatives =
   2914       new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
   2915   for (int i = 0; i < choice_count; i++) {
   2916     RegExpNode* replacement =
   2917         alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
   2918     if (replacement != NULL) {
   2919       alternatives_->at(i).set_node(replacement);
   2920       new_alternatives->Add(alternatives_->at(i), zone());
   2921     }
   2922   }
   2923   alternatives_ = new_alternatives;
   2924   return this;
   2925 }
   2926 
   2927 
   2928 RegExpNode* NegativeLookaroundChoiceNode::FilterOneByte(int depth,
   2929                                                         bool ignore_case) {
   2930   if (info()->replacement_calculated) return replacement();
   2931   if (depth < 0) return this;
   2932   if (info()->visited) return this;
   2933   VisitMarker marker(info());
   2934   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   2935   // afterwards.
   2936   RegExpNode* node = alternatives_->at(1).node();
   2937   RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
   2938   if (replacement == NULL) return set_replacement(NULL);
   2939   alternatives_->at(1).set_node(replacement);
   2940 
   2941   RegExpNode* neg_node = alternatives_->at(0).node();
   2942   RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
   2943   // If the negative lookahead is always going to fail then
   2944   // we don't need to check it.
   2945   if (neg_replacement == NULL) return set_replacement(replacement);
   2946   alternatives_->at(0).set_node(neg_replacement);
   2947   return set_replacement(this);
   2948 }
   2949 
   2950 
   2951 void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2952                                           RegExpCompiler* compiler,
   2953                                           int characters_filled_in,
   2954                                           bool not_at_start) {
   2955   if (body_can_be_zero_length_ || info()->visited) return;
   2956   VisitMarker marker(info());
   2957   return ChoiceNode::GetQuickCheckDetails(details,
   2958                                           compiler,
   2959                                           characters_filled_in,
   2960                                           not_at_start);
   2961 }
   2962 
   2963 
   2964 void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
   2965                                   BoyerMooreLookahead* bm, bool not_at_start) {
   2966   if (body_can_be_zero_length_ || budget <= 0) {
   2967     bm->SetRest(offset);
   2968     SaveBMInfo(bm, not_at_start, offset);
   2969     return;
   2970   }
   2971   ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
   2972   SaveBMInfo(bm, not_at_start, offset);
   2973 }
   2974 
   2975 
   2976 void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2977                                       RegExpCompiler* compiler,
   2978                                       int characters_filled_in,
   2979                                       bool not_at_start) {
   2980   not_at_start = (not_at_start || not_at_start_);
   2981   int choice_count = alternatives_->length();
   2982   DCHECK(choice_count > 0);
   2983   alternatives_->at(0).node()->GetQuickCheckDetails(details,
   2984                                                     compiler,
   2985                                                     characters_filled_in,
   2986                                                     not_at_start);
   2987   for (int i = 1; i < choice_count; i++) {
   2988     QuickCheckDetails new_details(details->characters());
   2989     RegExpNode* node = alternatives_->at(i).node();
   2990     node->GetQuickCheckDetails(&new_details, compiler,
   2991                                characters_filled_in,
   2992                                not_at_start);
   2993     // Here we merge the quick match details of the two branches.
   2994     details->Merge(&new_details, characters_filled_in);
   2995   }
   2996 }
   2997 
   2998 
   2999 // Check for [0-9A-Z_a-z].
   3000 static void EmitWordCheck(RegExpMacroAssembler* assembler,
   3001                           Label* word,
   3002                           Label* non_word,
   3003                           bool fall_through_on_word) {
   3004   if (assembler->CheckSpecialCharacterClass(
   3005           fall_through_on_word ? 'w' : 'W',
   3006           fall_through_on_word ? non_word : word)) {
   3007     // Optimized implementation available.
   3008     return;
   3009   }
   3010   assembler->CheckCharacterGT('z', non_word);
   3011   assembler->CheckCharacterLT('0', non_word);
   3012   assembler->CheckCharacterGT('a' - 1, word);
   3013   assembler->CheckCharacterLT('9' + 1, word);
   3014   assembler->CheckCharacterLT('A', non_word);
   3015   assembler->CheckCharacterLT('Z' + 1, word);
   3016   if (fall_through_on_word) {
   3017     assembler->CheckNotCharacter('_', non_word);
   3018   } else {
   3019     assembler->CheckCharacter('_', word);
   3020   }
   3021 }
   3022 
   3023 
   3024 // Emit the code to check for a ^ in multiline mode (1-character lookbehind
   3025 // that matches newline or the start of input).
   3026 static void EmitHat(RegExpCompiler* compiler,
   3027                     RegExpNode* on_success,
   3028                     Trace* trace) {
   3029   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3030   // We will be loading the previous character into the current character
   3031   // register.
   3032   Trace new_trace(*trace);
   3033   new_trace.InvalidateCurrentCharacter();
   3034 
   3035   Label ok;
   3036   if (new_trace.cp_offset() == 0) {
   3037     // The start of input counts as a newline in this context, so skip to
   3038     // ok if we are at the start.
   3039     assembler->CheckAtStart(&ok);
   3040   }
   3041   // We already checked that we are not at the start of input so it must be
   3042   // OK to load the previous character.
   3043   assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
   3044                                   new_trace.backtrack(),
   3045                                   false);
   3046   if (!assembler->CheckSpecialCharacterClass('n',
   3047                                              new_trace.backtrack())) {
   3048     // Newline means \n, \r, 0x2028 or 0x2029.
   3049     if (!compiler->one_byte()) {
   3050       assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
   3051     }
   3052     assembler->CheckCharacter('\n', &ok);
   3053     assembler->CheckNotCharacter('\r', new_trace.backtrack());
   3054   }
   3055   assembler->Bind(&ok);
   3056   on_success->Emit(compiler, &new_trace);
   3057 }
   3058 
   3059 
   3060 // Emit the code to handle \b and \B (word-boundary or non-word-boundary).
   3061 void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
   3062   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3063   Isolate* isolate = assembler->isolate();
   3064   Trace::TriBool next_is_word_character = Trace::UNKNOWN;
   3065   bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
   3066   BoyerMooreLookahead* lookahead = bm_info(not_at_start);
   3067   if (lookahead == NULL) {
   3068     int eats_at_least =
   3069         Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
   3070                                                     kRecursionBudget,
   3071                                                     not_at_start));
   3072     if (eats_at_least >= 1) {
   3073       BoyerMooreLookahead* bm =
   3074           new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
   3075       FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start);
   3076       if (bm->at(0)->is_non_word())
   3077         next_is_word_character = Trace::FALSE_VALUE;
   3078       if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
   3079     }
   3080   } else {
   3081     if (lookahead->at(0)->is_non_word())
   3082       next_is_word_character = Trace::FALSE_VALUE;
   3083     if (lookahead->at(0)->is_word())
   3084       next_is_word_character = Trace::TRUE_VALUE;
   3085   }
   3086   bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
   3087   if (next_is_word_character == Trace::UNKNOWN) {
   3088     Label before_non_word;
   3089     Label before_word;
   3090     if (trace->characters_preloaded() != 1) {
   3091       assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
   3092     }
   3093     // Fall through on non-word.
   3094     EmitWordCheck(assembler, &before_word, &before_non_word, false);
   3095     // Next character is not a word character.
   3096     assembler->Bind(&before_non_word);
   3097     Label ok;
   3098     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
   3099     assembler->GoTo(&ok);
   3100 
   3101     assembler->Bind(&before_word);
   3102     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
   3103     assembler->Bind(&ok);
   3104   } else if (next_is_word_character == Trace::TRUE_VALUE) {
   3105     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
   3106   } else {
   3107     DCHECK(next_is_word_character == Trace::FALSE_VALUE);
   3108     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
   3109   }
   3110 }
   3111 
   3112 
   3113 void AssertionNode::BacktrackIfPrevious(
   3114     RegExpCompiler* compiler,
   3115     Trace* trace,
   3116     AssertionNode::IfPrevious backtrack_if_previous) {
   3117   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3118   Trace new_trace(*trace);
   3119   new_trace.InvalidateCurrentCharacter();
   3120 
   3121   Label fall_through, dummy;
   3122 
   3123   Label* non_word = backtrack_if_previous == kIsNonWord ?
   3124                     new_trace.backtrack() :
   3125                     &fall_through;
   3126   Label* word = backtrack_if_previous == kIsNonWord ?
   3127                 &fall_through :
   3128                 new_trace.backtrack();
   3129 
   3130   if (new_trace.cp_offset() == 0) {
   3131     // The start of input counts as a non-word character, so the question is
   3132     // decided if we are at the start.
   3133     assembler->CheckAtStart(non_word);
   3134   }
   3135   // We already checked that we are not at the start of input so it must be
   3136   // OK to load the previous character.
   3137   assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
   3138   EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
   3139 
   3140   assembler->Bind(&fall_through);
   3141   on_success()->Emit(compiler, &new_trace);
   3142 }
   3143 
   3144 
   3145 void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
   3146                                          RegExpCompiler* compiler,
   3147                                          int filled_in,
   3148                                          bool not_at_start) {
   3149   if (assertion_type_ == AT_START && not_at_start) {
   3150     details->set_cannot_match();
   3151     return;
   3152   }
   3153   return on_success()->GetQuickCheckDetails(details,
   3154                                             compiler,
   3155                                             filled_in,
   3156                                             not_at_start);
   3157 }
   3158 
   3159 
   3160 void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3161   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3162   switch (assertion_type_) {
   3163     case AT_END: {
   3164       Label ok;
   3165       assembler->CheckPosition(trace->cp_offset(), &ok);
   3166       assembler->GoTo(trace->backtrack());
   3167       assembler->Bind(&ok);
   3168       break;
   3169     }
   3170     case AT_START: {
   3171       if (trace->at_start() == Trace::FALSE_VALUE) {
   3172         assembler->GoTo(trace->backtrack());
   3173         return;
   3174       }
   3175       if (trace->at_start() == Trace::UNKNOWN) {
   3176         assembler->CheckNotAtStart(trace->cp_offset(), trace->backtrack());
   3177         Trace at_start_trace = *trace;
   3178         at_start_trace.set_at_start(Trace::TRUE_VALUE);
   3179         on_success()->Emit(compiler, &at_start_trace);
   3180         return;
   3181       }
   3182     }
   3183     break;
   3184     case AFTER_NEWLINE:
   3185       EmitHat(compiler, on_success(), trace);
   3186       return;
   3187     case AT_BOUNDARY:
   3188     case AT_NON_BOUNDARY: {
   3189       EmitBoundaryCheck(compiler, trace);
   3190       return;
   3191     }
   3192   }
   3193   on_success()->Emit(compiler, trace);
   3194 }
   3195 
   3196 
   3197 static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
   3198   if (quick_check == NULL) return false;
   3199   if (offset >= quick_check->characters()) return false;
   3200   return quick_check->positions(offset)->determines_perfectly;
   3201 }
   3202 
   3203 
   3204 static void UpdateBoundsCheck(int index, int* checked_up_to) {
   3205   if (index > *checked_up_to) {
   3206     *checked_up_to = index;
   3207   }
   3208 }
   3209 
   3210 
   3211 // We call this repeatedly to generate code for each pass over the text node.
   3212 // The passes are in increasing order of difficulty because we hope one
   3213 // of the first passes will fail in which case we are saved the work of the
   3214 // later passes.  for example for the case independent regexp /%[asdfghjkl]a/
   3215 // we will check the '%' in the first pass, the case independent 'a' in the
   3216 // second pass and the character class in the last pass.
   3217 //
   3218 // The passes are done from right to left, so for example to test for /bar/
   3219 // we will first test for an 'r' with offset 2, then an 'a' with offset 1
   3220 // and then a 'b' with offset 0.  This means we can avoid the end-of-input
   3221 // bounds check most of the time.  In the example we only need to check for
   3222 // end-of-input when loading the putative 'r'.
   3223 //
   3224 // A slight complication involves the fact that the first character may already
   3225 // be fetched into a register by the previous node.  In this case we want to
   3226 // do the test for that character first.  We do this in separate passes.  The
   3227 // 'preloaded' argument indicates that we are doing such a 'pass'.  If such a
   3228 // pass has been performed then subsequent passes will have true in
   3229 // first_element_checked to indicate that that character does not need to be
   3230 // checked again.
   3231 //
   3232 // In addition to all this we are passed a Trace, which can
   3233 // contain an AlternativeGeneration object.  In this AlternativeGeneration
   3234 // object we can see details of any quick check that was already passed in
   3235 // order to get to the code we are now generating.  The quick check can involve
   3236 // loading characters, which means we do not need to recheck the bounds
   3237 // up to the limit the quick check already checked.  In addition the quick
   3238 // check can have involved a mask and compare operation which may simplify
   3239 // or obviate the need for further checks at some character positions.
   3240 void TextNode::TextEmitPass(RegExpCompiler* compiler,
   3241                             TextEmitPassType pass,
   3242                             bool preloaded,
   3243                             Trace* trace,
   3244                             bool first_element_checked,
   3245                             int* checked_up_to) {
   3246   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3247   Isolate* isolate = assembler->isolate();
   3248   bool one_byte = compiler->one_byte();
   3249   Label* backtrack = trace->backtrack();
   3250   QuickCheckDetails* quick_check = trace->quick_check_performed();
   3251   int element_count = elements()->length();
   3252   int backward_offset = read_backward() ? -Length() : 0;
   3253   for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
   3254     TextElement elm = elements()->at(i);
   3255     int cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset;
   3256     if (elm.text_type() == TextElement::ATOM) {
   3257       Vector<const uc16> quarks = elm.atom()->data();
   3258       for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
   3259         if (first_element_checked && i == 0 && j == 0) continue;
   3260         if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
   3261         EmitCharacterFunction* emit_function = NULL;
   3262         switch (pass) {
   3263           case NON_LATIN1_MATCH:
   3264             DCHECK(one_byte);
   3265             if (quarks[j] > String::kMaxOneByteCharCode) {
   3266               assembler->GoTo(backtrack);
   3267               return;
   3268             }
   3269             break;
   3270           case NON_LETTER_CHARACTER_MATCH:
   3271             emit_function = &EmitAtomNonLetter;
   3272             break;
   3273           case SIMPLE_CHARACTER_MATCH:
   3274             emit_function = &EmitSimpleCharacter;
   3275             break;
   3276           case CASE_CHARACTER_MATCH:
   3277             emit_function = &EmitAtomLetter;
   3278             break;
   3279           default:
   3280             break;
   3281         }
   3282         if (emit_function != NULL) {
   3283           bool bounds_check = *checked_up_to < cp_offset + j || read_backward();
   3284           bool bound_checked =
   3285               emit_function(isolate, compiler, quarks[j], backtrack,
   3286                             cp_offset + j, bounds_check, preloaded);
   3287           if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
   3288         }
   3289       }
   3290     } else {
   3291       DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
   3292       if (pass == CHARACTER_CLASS_MATCH) {
   3293         if (first_element_checked && i == 0) continue;
   3294         if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
   3295         RegExpCharacterClass* cc = elm.char_class();
   3296         bool bounds_check = *checked_up_to < cp_offset || read_backward();
   3297         EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
   3298                       bounds_check, preloaded, zone());
   3299         UpdateBoundsCheck(cp_offset, checked_up_to);
   3300       }
   3301     }
   3302   }
   3303 }
   3304 
   3305 
   3306 int TextNode::Length() {
   3307   TextElement elm = elements()->last();
   3308   DCHECK(elm.cp_offset() >= 0);
   3309   return elm.cp_offset() + elm.length();
   3310 }
   3311 
   3312 
   3313 bool TextNode::SkipPass(int int_pass, bool ignore_case) {
   3314   TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
   3315   if (ignore_case) {
   3316     return pass == SIMPLE_CHARACTER_MATCH;
   3317   } else {
   3318     return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
   3319   }
   3320 }
   3321 
   3322 
   3323 TextNode* TextNode::CreateForCharacterRanges(Zone* zone,
   3324                                              ZoneList<CharacterRange>* ranges,
   3325                                              bool read_backward,
   3326                                              RegExpNode* on_success) {
   3327   DCHECK_NOT_NULL(ranges);
   3328   ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(1, zone);
   3329   elms->Add(
   3330       TextElement::CharClass(new (zone) RegExpCharacterClass(ranges, false)),
   3331       zone);
   3332   return new (zone) TextNode(elms, read_backward, on_success);
   3333 }
   3334 
   3335 
   3336 TextNode* TextNode::CreateForSurrogatePair(Zone* zone, CharacterRange lead,
   3337                                            CharacterRange trail,
   3338                                            bool read_backward,
   3339                                            RegExpNode* on_success) {
   3340   ZoneList<CharacterRange>* lead_ranges = CharacterRange::List(zone, lead);
   3341   ZoneList<CharacterRange>* trail_ranges = CharacterRange::List(zone, trail);
   3342   ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(2, zone);
   3343   elms->Add(TextElement::CharClass(
   3344                 new (zone) RegExpCharacterClass(lead_ranges, false)),
   3345             zone);
   3346   elms->Add(TextElement::CharClass(
   3347                 new (zone) RegExpCharacterClass(trail_ranges, false)),
   3348             zone);
   3349   return new (zone) TextNode(elms, read_backward, on_success);
   3350 }
   3351 
   3352 
   3353 // This generates the code to match a text node.  A text node can contain
   3354 // straight character sequences (possibly to be matched in a case-independent
   3355 // way) and character classes.  For efficiency we do not do this in a single
   3356 // pass from left to right.  Instead we pass over the text node several times,
   3357 // emitting code for some character positions every time.  See the comment on
   3358 // TextEmitPass for details.
   3359 void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3360   LimitResult limit_result = LimitVersions(compiler, trace);
   3361   if (limit_result == DONE) return;
   3362   DCHECK(limit_result == CONTINUE);
   3363 
   3364   if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
   3365     compiler->SetRegExpTooBig();
   3366     return;
   3367   }
   3368 
   3369   if (compiler->one_byte()) {
   3370     int dummy = 0;
   3371     TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
   3372   }
   3373 
   3374   bool first_elt_done = false;
   3375   int bound_checked_to = trace->cp_offset() - 1;
   3376   bound_checked_to += trace->bound_checked_up_to();
   3377 
   3378   // If a character is preloaded into the current character register then
   3379   // check that now.
   3380   if (trace->characters_preloaded() == 1) {
   3381     for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
   3382       if (!SkipPass(pass, compiler->ignore_case())) {
   3383         TextEmitPass(compiler,
   3384                      static_cast<TextEmitPassType>(pass),
   3385                      true,
   3386                      trace,
   3387                      false,
   3388                      &bound_checked_to);
   3389       }
   3390     }
   3391     first_elt_done = true;
   3392   }
   3393 
   3394   for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
   3395     if (!SkipPass(pass, compiler->ignore_case())) {
   3396       TextEmitPass(compiler,
   3397                    static_cast<TextEmitPassType>(pass),
   3398                    false,
   3399                    trace,
   3400                    first_elt_done,
   3401                    &bound_checked_to);
   3402     }
   3403   }
   3404 
   3405   Trace successor_trace(*trace);
   3406   // If we advance backward, we may end up at the start.
   3407   successor_trace.AdvanceCurrentPositionInTrace(
   3408       read_backward() ? -Length() : Length(), compiler);
   3409   successor_trace.set_at_start(read_backward() ? Trace::UNKNOWN
   3410                                                : Trace::FALSE_VALUE);
   3411   RecursionCheck rc(compiler);
   3412   on_success()->Emit(compiler, &successor_trace);
   3413 }
   3414 
   3415 
   3416 void Trace::InvalidateCurrentCharacter() {
   3417   characters_preloaded_ = 0;
   3418 }
   3419 
   3420 
   3421 void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
   3422   // We don't have an instruction for shifting the current character register
   3423   // down or for using a shifted value for anything so lets just forget that
   3424   // we preloaded any characters into it.
   3425   characters_preloaded_ = 0;
   3426   // Adjust the offsets of the quick check performed information.  This
   3427   // information is used to find out what we already determined about the
   3428   // characters by means of mask and compare.
   3429   quick_check_performed_.Advance(by, compiler->one_byte());
   3430   cp_offset_ += by;
   3431   if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
   3432     compiler->SetRegExpTooBig();
   3433     cp_offset_ = 0;
   3434   }
   3435   bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
   3436 }
   3437 
   3438 
   3439 void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) {
   3440   int element_count = elements()->length();
   3441   for (int i = 0; i < element_count; i++) {
   3442     TextElement elm = elements()->at(i);
   3443     if (elm.text_type() == TextElement::CHAR_CLASS) {
   3444       RegExpCharacterClass* cc = elm.char_class();
   3445       // None of the standard character classes is different in the case
   3446       // independent case and it slows us down if we don't know that.
   3447       if (cc->is_standard(zone())) continue;
   3448       ZoneList<CharacterRange>* ranges = cc->ranges(zone());
   3449       CharacterRange::AddCaseEquivalents(isolate, zone(), ranges, is_one_byte);
   3450     }
   3451   }
   3452 }
   3453 
   3454 
   3455 int TextNode::GreedyLoopTextLength() { return Length(); }
   3456 
   3457 
   3458 RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
   3459     RegExpCompiler* compiler) {
   3460   if (read_backward()) return NULL;
   3461   if (elements()->length() != 1) return NULL;
   3462   TextElement elm = elements()->at(0);
   3463   if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
   3464   RegExpCharacterClass* node = elm.char_class();
   3465   ZoneList<CharacterRange>* ranges = node->ranges(zone());
   3466   CharacterRange::Canonicalize(ranges);
   3467   if (node->is_negated()) {
   3468     return ranges->length() == 0 ? on_success() : NULL;
   3469   }
   3470   if (ranges->length() != 1) return NULL;
   3471   uint32_t max_char;
   3472   if (compiler->one_byte()) {
   3473     max_char = String::kMaxOneByteCharCode;
   3474   } else {
   3475     max_char = String::kMaxUtf16CodeUnit;
   3476   }
   3477   return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
   3478 }
   3479 
   3480 
   3481 // Finds the fixed match length of a sequence of nodes that goes from
   3482 // this alternative and back to this choice node.  If there are variable
   3483 // length nodes or other complications in the way then return a sentinel
   3484 // value indicating that a greedy loop cannot be constructed.
   3485 int ChoiceNode::GreedyLoopTextLengthForAlternative(
   3486     GuardedAlternative* alternative) {
   3487   int length = 0;
   3488   RegExpNode* node = alternative->node();
   3489   // Later we will generate code for all these text nodes using recursion
   3490   // so we have to limit the max number.
   3491   int recursion_depth = 0;
   3492   while (node != this) {
   3493     if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
   3494       return kNodeIsTooComplexForGreedyLoops;
   3495     }
   3496     int node_length = node->GreedyLoopTextLength();
   3497     if (node_length == kNodeIsTooComplexForGreedyLoops) {
   3498       return kNodeIsTooComplexForGreedyLoops;
   3499     }
   3500     length += node_length;
   3501     SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
   3502     node = seq_node->on_success();
   3503   }
   3504   return read_backward() ? -length : length;
   3505 }
   3506 
   3507 
   3508 void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
   3509   DCHECK_NULL(loop_node_);
   3510   AddAlternative(alt);
   3511   loop_node_ = alt.node();
   3512 }
   3513 
   3514 
   3515 void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
   3516   DCHECK_NULL(continue_node_);
   3517   AddAlternative(alt);
   3518   continue_node_ = alt.node();
   3519 }
   3520 
   3521 
   3522 void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3523   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   3524   if (trace->stop_node() == this) {
   3525     // Back edge of greedy optimized loop node graph.
   3526     int text_length =
   3527         GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
   3528     DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
   3529     // Update the counter-based backtracking info on the stack.  This is an
   3530     // optimization for greedy loops (see below).
   3531     DCHECK(trace->cp_offset() == text_length);
   3532     macro_assembler->AdvanceCurrentPosition(text_length);
   3533     macro_assembler->GoTo(trace->loop_label());
   3534     return;
   3535   }
   3536   DCHECK_NULL(trace->stop_node());
   3537   if (!trace->is_trivial()) {
   3538     trace->Flush(compiler, this);
   3539     return;
   3540   }
   3541   ChoiceNode::Emit(compiler, trace);
   3542 }
   3543 
   3544 
   3545 int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
   3546                                            int eats_at_least) {
   3547   int preload_characters = Min(4, eats_at_least);
   3548   if (compiler->macro_assembler()->CanReadUnaligned()) {
   3549     bool one_byte = compiler->one_byte();
   3550     if (one_byte) {
   3551       if (preload_characters > 4) preload_characters = 4;
   3552       // We can't preload 3 characters because there is no machine instruction
   3553       // to do that.  We can't just load 4 because we could be reading
   3554       // beyond the end of the string, which could cause a memory fault.
   3555       if (preload_characters == 3) preload_characters = 2;
   3556     } else {
   3557       if (preload_characters > 2) preload_characters = 2;
   3558     }
   3559   } else {
   3560     if (preload_characters > 1) preload_characters = 1;
   3561   }
   3562   return preload_characters;
   3563 }
   3564 
   3565 
   3566 // This class is used when generating the alternatives in a choice node.  It
   3567 // records the way the alternative is being code generated.
   3568 class AlternativeGeneration: public Malloced {
   3569  public:
   3570   AlternativeGeneration()
   3571       : possible_success(),
   3572         expects_preload(false),
   3573         after(),
   3574         quick_check_details() { }
   3575   Label possible_success;
   3576   bool expects_preload;
   3577   Label after;
   3578   QuickCheckDetails quick_check_details;
   3579 };
   3580 
   3581 
   3582 // Creates a list of AlternativeGenerations.  If the list has a reasonable
   3583 // size then it is on the stack, otherwise the excess is on the heap.
   3584 class AlternativeGenerationList {
   3585  public:
   3586   AlternativeGenerationList(int count, Zone* zone)
   3587       : alt_gens_(count, zone) {
   3588     for (int i = 0; i < count && i < kAFew; i++) {
   3589       alt_gens_.Add(a_few_alt_gens_ + i, zone);
   3590     }
   3591     for (int i = kAFew; i < count; i++) {
   3592       alt_gens_.Add(new AlternativeGeneration(), zone);
   3593     }
   3594   }
   3595   ~AlternativeGenerationList() {
   3596     for (int i = kAFew; i < alt_gens_.length(); i++) {
   3597       delete alt_gens_[i];
   3598       alt_gens_[i] = NULL;
   3599     }
   3600   }
   3601 
   3602   AlternativeGeneration* at(int i) {
   3603     return alt_gens_[i];
   3604   }
   3605 
   3606  private:
   3607   static const int kAFew = 10;
   3608   ZoneList<AlternativeGeneration*> alt_gens_;
   3609   AlternativeGeneration a_few_alt_gens_[kAFew];
   3610 };
   3611 
   3612 
   3613 static const uc32 kRangeEndMarker = 0x110000;
   3614 
   3615 // The '2' variant is has inclusive from and exclusive to.
   3616 // This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
   3617 // which include WhiteSpace (7.2) or LineTerminator (7.3) values.
   3618 static const int kSpaceRanges[] = {
   3619     '\t',   '\r' + 1, ' ',    ' ' + 1, 0x00A0, 0x00A1, 0x1680,         0x1681,
   3620     0x180E, 0x180F,   0x2000, 0x200B,  0x2028, 0x202A, 0x202F,         0x2030,
   3621     0x205F, 0x2060,   0x3000, 0x3001,  0xFEFF, 0xFF00, kRangeEndMarker};
   3622 static const int kSpaceRangeCount = arraysize(kSpaceRanges);
   3623 
   3624 static const int kWordRanges[] = {
   3625     '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, kRangeEndMarker};
   3626 static const int kWordRangeCount = arraysize(kWordRanges);
   3627 static const int kDigitRanges[] = {'0', '9' + 1, kRangeEndMarker};
   3628 static const int kDigitRangeCount = arraysize(kDigitRanges);
   3629 static const int kSurrogateRanges[] = {
   3630     kLeadSurrogateStart, kLeadSurrogateStart + 1, kRangeEndMarker};
   3631 static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
   3632 static const int kLineTerminatorRanges[] = {
   3633     0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, kRangeEndMarker};
   3634 static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
   3635 
   3636 void BoyerMoorePositionInfo::Set(int character) {
   3637   SetInterval(Interval(character, character));
   3638 }
   3639 
   3640 
   3641 void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
   3642   s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
   3643   w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
   3644   d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
   3645   surrogate_ =
   3646       AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
   3647   if (interval.to() - interval.from() >= kMapSize - 1) {
   3648     if (map_count_ != kMapSize) {
   3649       map_count_ = kMapSize;
   3650       for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
   3651     }
   3652     return;
   3653   }
   3654   for (int i = interval.from(); i <= interval.to(); i++) {
   3655     int mod_character = (i & kMask);
   3656     if (!map_->at(mod_character)) {
   3657       map_count_++;
   3658       map_->at(mod_character) = true;
   3659     }
   3660     if (map_count_ == kMapSize) return;
   3661   }
   3662 }
   3663 
   3664 
   3665 void BoyerMoorePositionInfo::SetAll() {
   3666   s_ = w_ = d_ = kLatticeUnknown;
   3667   if (map_count_ != kMapSize) {
   3668     map_count_ = kMapSize;
   3669     for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
   3670   }
   3671 }
   3672 
   3673 
   3674 BoyerMooreLookahead::BoyerMooreLookahead(
   3675     int length, RegExpCompiler* compiler, Zone* zone)
   3676     : length_(length),
   3677       compiler_(compiler) {
   3678   if (compiler->one_byte()) {
   3679     max_char_ = String::kMaxOneByteCharCode;
   3680   } else {
   3681     max_char_ = String::kMaxUtf16CodeUnit;
   3682   }
   3683   bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
   3684   for (int i = 0; i < length; i++) {
   3685     bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
   3686   }
   3687 }
   3688 
   3689 
   3690 // Find the longest range of lookahead that has the fewest number of different
   3691 // characters that can occur at a given position.  Since we are optimizing two
   3692 // different parameters at once this is a tradeoff.
   3693 bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
   3694   int biggest_points = 0;
   3695   // If more than 32 characters out of 128 can occur it is unlikely that we can
   3696   // be lucky enough to step forwards much of the time.
   3697   const int kMaxMax = 32;
   3698   for (int max_number_of_chars = 4;
   3699        max_number_of_chars < kMaxMax;
   3700        max_number_of_chars *= 2) {
   3701     biggest_points =
   3702         FindBestInterval(max_number_of_chars, biggest_points, from, to);
   3703   }
   3704   if (biggest_points == 0) return false;
   3705   return true;
   3706 }
   3707 
   3708 
   3709 // Find the highest-points range between 0 and length_ where the character
   3710 // information is not too vague.  'Too vague' means that there are more than
   3711 // max_number_of_chars that can occur at this position.  Calculates the number
   3712 // of points as the product of width-of-the-range and
   3713 // probability-of-finding-one-of-the-characters, where the probability is
   3714 // calculated using the frequency distribution of the sample subject string.
   3715 int BoyerMooreLookahead::FindBestInterval(
   3716     int max_number_of_chars, int old_biggest_points, int* from, int* to) {
   3717   int biggest_points = old_biggest_points;
   3718   static const int kSize = RegExpMacroAssembler::kTableSize;
   3719   for (int i = 0; i < length_; ) {
   3720     while (i < length_ && Count(i) > max_number_of_chars) i++;
   3721     if (i == length_) break;
   3722     int remembered_from = i;
   3723     bool union_map[kSize];
   3724     for (int j = 0; j < kSize; j++) union_map[j] = false;
   3725     while (i < length_ && Count(i) <= max_number_of_chars) {
   3726       BoyerMoorePositionInfo* map = bitmaps_->at(i);
   3727       for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
   3728       i++;
   3729     }
   3730     int frequency = 0;
   3731     for (int j = 0; j < kSize; j++) {
   3732       if (union_map[j]) {
   3733         // Add 1 to the frequency to give a small per-character boost for
   3734         // the cases where our sampling is not good enough and many
   3735         // characters have a frequency of zero.  This means the frequency
   3736         // can theoretically be up to 2*kSize though we treat it mostly as
   3737         // a fraction of kSize.
   3738         frequency += compiler_->frequency_collator()->Frequency(j) + 1;
   3739       }
   3740     }
   3741     // We use the probability of skipping times the distance we are skipping to
   3742     // judge the effectiveness of this.  Actually we have a cut-off:  By
   3743     // dividing by 2 we switch off the skipping if the probability of skipping
   3744     // is less than 50%.  This is because the multibyte mask-and-compare
   3745     // skipping in quickcheck is more likely to do well on this case.
   3746     bool in_quickcheck_range =
   3747         ((i - remembered_from < 4) ||
   3748          (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
   3749     // Called 'probability' but it is only a rough estimate and can actually
   3750     // be outside the 0-kSize range.
   3751     int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
   3752     int points = (i - remembered_from) * probability;
   3753     if (points > biggest_points) {
   3754       *from = remembered_from;
   3755       *to = i - 1;
   3756       biggest_points = points;
   3757     }
   3758   }
   3759   return biggest_points;
   3760 }
   3761 
   3762 
   3763 // Take all the characters that will not prevent a successful match if they
   3764 // occur in the subject string in the range between min_lookahead and
   3765 // max_lookahead (inclusive) measured from the current position.  If the
   3766 // character at max_lookahead offset is not one of these characters, then we
   3767 // can safely skip forwards by the number of characters in the range.
   3768 int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
   3769                                       int max_lookahead,
   3770                                       Handle<ByteArray> boolean_skip_table) {
   3771   const int kSize = RegExpMacroAssembler::kTableSize;
   3772 
   3773   const int kSkipArrayEntry = 0;
   3774   const int kDontSkipArrayEntry = 1;
   3775 
   3776   for (int i = 0; i < kSize; i++) {
   3777     boolean_skip_table->set(i, kSkipArrayEntry);
   3778   }
   3779   int skip = max_lookahead + 1 - min_lookahead;
   3780 
   3781   for (int i = max_lookahead; i >= min_lookahead; i--) {
   3782     BoyerMoorePositionInfo* map = bitmaps_->at(i);
   3783     for (int j = 0; j < kSize; j++) {
   3784       if (map->at(j)) {
   3785         boolean_skip_table->set(j, kDontSkipArrayEntry);
   3786       }
   3787     }
   3788   }
   3789 
   3790   return skip;
   3791 }
   3792 
   3793 
   3794 // See comment above on the implementation of GetSkipTable.
   3795 void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
   3796   const int kSize = RegExpMacroAssembler::kTableSize;
   3797 
   3798   int min_lookahead = 0;
   3799   int max_lookahead = 0;
   3800 
   3801   if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
   3802 
   3803   bool found_single_character = false;
   3804   int single_character = 0;
   3805   for (int i = max_lookahead; i >= min_lookahead; i--) {
   3806     BoyerMoorePositionInfo* map = bitmaps_->at(i);
   3807     if (map->map_count() > 1 ||
   3808         (found_single_character && map->map_count() != 0)) {
   3809       found_single_character = false;
   3810       break;
   3811     }
   3812     for (int j = 0; j < kSize; j++) {
   3813       if (map->at(j)) {
   3814         found_single_character = true;
   3815         single_character = j;
   3816         break;
   3817       }
   3818     }
   3819   }
   3820 
   3821   int lookahead_width = max_lookahead + 1 - min_lookahead;
   3822 
   3823   if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
   3824     // The mask-compare can probably handle this better.
   3825     return;
   3826   }
   3827 
   3828   if (found_single_character) {
   3829     Label cont, again;
   3830     masm->Bind(&again);
   3831     masm->LoadCurrentCharacter(max_lookahead, &cont, true);
   3832     if (max_char_ > kSize) {
   3833       masm->CheckCharacterAfterAnd(single_character,
   3834                                    RegExpMacroAssembler::kTableMask,
   3835                                    &cont);
   3836     } else {
   3837       masm->CheckCharacter(single_character, &cont);
   3838     }
   3839     masm->AdvanceCurrentPosition(lookahead_width);
   3840     masm->GoTo(&again);
   3841     masm->Bind(&cont);
   3842     return;
   3843   }
   3844 
   3845   Factory* factory = masm->isolate()->factory();
   3846   Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
   3847   int skip_distance = GetSkipTable(
   3848       min_lookahead, max_lookahead, boolean_skip_table);
   3849   DCHECK(skip_distance != 0);
   3850 
   3851   Label cont, again;
   3852   masm->Bind(&again);
   3853   masm->LoadCurrentCharacter(max_lookahead, &cont, true);
   3854   masm->CheckBitInTable(boolean_skip_table, &cont);
   3855   masm->AdvanceCurrentPosition(skip_distance);
   3856   masm->GoTo(&again);
   3857   masm->Bind(&cont);
   3858 }
   3859 
   3860 
   3861 /* Code generation for choice nodes.
   3862  *
   3863  * We generate quick checks that do a mask and compare to eliminate a
   3864  * choice.  If the quick check succeeds then it jumps to the continuation to
   3865  * do slow checks and check subsequent nodes.  If it fails (the common case)
   3866  * it falls through to the next choice.
   3867  *
   3868  * Here is the desired flow graph.  Nodes directly below each other imply
   3869  * fallthrough.  Alternatives 1 and 2 have quick checks.  Alternative
   3870  * 3 doesn't have a quick check so we have to call the slow check.
   3871  * Nodes are marked Qn for quick checks and Sn for slow checks.  The entire
   3872  * regexp continuation is generated directly after the Sn node, up to the
   3873  * next GoTo if we decide to reuse some already generated code.  Some
   3874  * nodes expect preload_characters to be preloaded into the current
   3875  * character register.  R nodes do this preloading.  Vertices are marked
   3876  * F for failures and S for success (possible success in the case of quick
   3877  * nodes).  L, V, < and > are used as arrow heads.
   3878  *
   3879  * ----------> R
   3880  *             |
   3881  *             V
   3882  *            Q1 -----> S1
   3883  *             |   S   /
   3884  *            F|      /
   3885  *             |    F/
   3886  *             |    /
   3887  *             |   R
   3888  *             |  /
   3889  *             V L
   3890  *            Q2 -----> S2
   3891  *             |   S   /
   3892  *            F|      /
   3893  *             |    F/
   3894  *             |    /
   3895  *             |   R
   3896  *             |  /
   3897  *             V L
   3898  *            S3
   3899  *             |
   3900  *            F|
   3901  *             |
   3902  *             R
   3903  *             |
   3904  * backtrack   V
   3905  * <----------Q4
   3906  *   \    F    |
   3907  *    \        |S
   3908  *     \   F   V
   3909  *      \-----S4
   3910  *
   3911  * For greedy loops we push the current position, then generate the code that
   3912  * eats the input specially in EmitGreedyLoop.  The other choice (the
   3913  * continuation) is generated by the normal code in EmitChoices, and steps back
   3914  * in the input to the starting position when it fails to match.  The loop code
   3915  * looks like this (U is the unwind code that steps back in the greedy loop).
   3916  *
   3917  *              _____
   3918  *             /     \
   3919  *             V     |
   3920  * ----------> S1    |
   3921  *            /|     |
   3922  *           / |S    |
   3923  *         F/  \_____/
   3924  *         /
   3925  *        |<-----
   3926  *        |      \
   3927  *        V       |S
   3928  *        Q2 ---> U----->backtrack
   3929  *        |  F   /
   3930  *       S|     /
   3931  *        V  F /
   3932  *        S2--/
   3933  */
   3934 
   3935 GreedyLoopState::GreedyLoopState(bool not_at_start) {
   3936   counter_backtrack_trace_.set_backtrack(&label_);
   3937   if (not_at_start) counter_backtrack_trace_.set_at_start(Trace::FALSE_VALUE);
   3938 }
   3939 
   3940 
   3941 void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
   3942 #ifdef DEBUG
   3943   int choice_count = alternatives_->length();
   3944   for (int i = 0; i < choice_count - 1; i++) {
   3945     GuardedAlternative alternative = alternatives_->at(i);
   3946     ZoneList<Guard*>* guards = alternative.guards();
   3947     int guard_count = (guards == NULL) ? 0 : guards->length();
   3948     for (int j = 0; j < guard_count; j++) {
   3949       DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
   3950     }
   3951   }
   3952 #endif
   3953 }
   3954 
   3955 
   3956 void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
   3957                               Trace* current_trace,
   3958                               PreloadState* state) {
   3959     if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
   3960       // Save some time by looking at most one machine word ahead.
   3961       state->eats_at_least_ =
   3962           EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget,
   3963                       current_trace->at_start() == Trace::FALSE_VALUE);
   3964     }
   3965     state->preload_characters_ =
   3966         CalculatePreloadCharacters(compiler, state->eats_at_least_);
   3967 
   3968     state->preload_is_current_ =
   3969         (current_trace->characters_preloaded() == state->preload_characters_);
   3970     state->preload_has_checked_bounds_ = state->preload_is_current_;
   3971 }
   3972 
   3973 
   3974 void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3975   int choice_count = alternatives_->length();
   3976 
   3977   if (choice_count == 1 && alternatives_->at(0).guards() == NULL) {
   3978     alternatives_->at(0).node()->Emit(compiler, trace);
   3979     return;
   3980   }
   3981 
   3982   AssertGuardsMentionRegisters(trace);
   3983 
   3984   LimitResult limit_result = LimitVersions(compiler, trace);
   3985   if (limit_result == DONE) return;
   3986   DCHECK(limit_result == CONTINUE);
   3987 
   3988   // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
   3989   // other choice nodes we only flush if we are out of code size budget.
   3990   if (trace->flush_budget() == 0 && trace->actions() != NULL) {
   3991     trace->Flush(compiler, this);
   3992     return;
   3993   }
   3994 
   3995   RecursionCheck rc(compiler);
   3996 
   3997   PreloadState preload;
   3998   preload.init();
   3999   GreedyLoopState greedy_loop_state(not_at_start());
   4000 
   4001   int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
   4002   AlternativeGenerationList alt_gens(choice_count, zone());
   4003 
   4004   if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
   4005     trace = EmitGreedyLoop(compiler,
   4006                            trace,
   4007                            &alt_gens,
   4008                            &preload,
   4009                            &greedy_loop_state,
   4010                            text_length);
   4011   } else {
   4012     // TODO(erikcorry): Delete this.  We don't need this label, but it makes us
   4013     // match the traces produced pre-cleanup.
   4014     Label second_choice;
   4015     compiler->macro_assembler()->Bind(&second_choice);
   4016 
   4017     preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
   4018 
   4019     EmitChoices(compiler,
   4020                 &alt_gens,
   4021                 0,
   4022                 trace,
   4023                 &preload);
   4024   }
   4025 
   4026   // At this point we need to generate slow checks for the alternatives where
   4027   // the quick check was inlined.  We can recognize these because the associated
   4028   // label was bound.
   4029   int new_flush_budget = trace->flush_budget() / choice_count;
   4030   for (int i = 0; i < choice_count; i++) {
   4031     AlternativeGeneration* alt_gen = alt_gens.at(i);
   4032     Trace new_trace(*trace);
   4033     // If there are actions to be flushed we have to limit how many times
   4034     // they are flushed.  Take the budget of the parent trace and distribute
   4035     // it fairly amongst the children.
   4036     if (new_trace.actions() != NULL) {
   4037       new_trace.set_flush_budget(new_flush_budget);
   4038     }
   4039     bool next_expects_preload =
   4040         i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
   4041     EmitOutOfLineContinuation(compiler,
   4042                               &new_trace,
   4043                               alternatives_->at(i),
   4044                               alt_gen,
   4045                               preload.preload_characters_,
   4046                               next_expects_preload);
   4047   }
   4048 }
   4049 
   4050 
   4051 Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
   4052                                   Trace* trace,
   4053                                   AlternativeGenerationList* alt_gens,
   4054                                   PreloadState* preload,
   4055                                   GreedyLoopState* greedy_loop_state,
   4056                                   int text_length) {
   4057   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4058   // Here we have special handling for greedy loops containing only text nodes
   4059   // and other simple nodes.  These are handled by pushing the current
   4060   // position on the stack and then incrementing the current position each
   4061   // time around the switch.  On backtrack we decrement the current position
   4062   // and check it against the pushed value.  This avoids pushing backtrack
   4063   // information for each iteration of the loop, which could take up a lot of
   4064   // space.
   4065   DCHECK(trace->stop_node() == NULL);
   4066   macro_assembler->PushCurrentPosition();
   4067   Label greedy_match_failed;
   4068   Trace greedy_match_trace;
   4069   if (not_at_start()) greedy_match_trace.set_at_start(Trace::FALSE_VALUE);
   4070   greedy_match_trace.set_backtrack(&greedy_match_failed);
   4071   Label loop_label;
   4072   macro_assembler->Bind(&loop_label);
   4073   greedy_match_trace.set_stop_node(this);
   4074   greedy_match_trace.set_loop_label(&loop_label);
   4075   alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
   4076   macro_assembler->Bind(&greedy_match_failed);
   4077 
   4078   Label second_choice;  // For use in greedy matches.
   4079   macro_assembler->Bind(&second_choice);
   4080 
   4081   Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
   4082 
   4083   EmitChoices(compiler,
   4084               alt_gens,
   4085               1,
   4086               new_trace,
   4087               preload);
   4088 
   4089   macro_assembler->Bind(greedy_loop_state->label());
   4090   // If we have unwound to the bottom then backtrack.
   4091   macro_assembler->CheckGreedyLoop(trace->backtrack());
   4092   // Otherwise try the second priority at an earlier position.
   4093   macro_assembler->AdvanceCurrentPosition(-text_length);
   4094   macro_assembler->GoTo(&second_choice);
   4095   return new_trace;
   4096 }
   4097 
   4098 int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
   4099                                               Trace* trace) {
   4100   int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
   4101   if (alternatives_->length() != 2) return eats_at_least;
   4102 
   4103   GuardedAlternative alt1 = alternatives_->at(1);
   4104   if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
   4105     return eats_at_least;
   4106   }
   4107   RegExpNode* eats_anything_node = alt1.node();
   4108   if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
   4109     return eats_at_least;
   4110   }
   4111 
   4112   // Really we should be creating a new trace when we execute this function,
   4113   // but there is no need, because the code it generates cannot backtrack, and
   4114   // we always arrive here with a trivial trace (since it's the entry to a
   4115   // loop.  That also implies that there are no preloaded characters, which is
   4116   // good, because it means we won't be violating any assumptions by
   4117   // overwriting those characters with new load instructions.
   4118   DCHECK(trace->is_trivial());
   4119 
   4120   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4121   Isolate* isolate = macro_assembler->isolate();
   4122   // At this point we know that we are at a non-greedy loop that will eat
   4123   // any character one at a time.  Any non-anchored regexp has such a
   4124   // loop prepended to it in order to find where it starts.  We look for
   4125   // a pattern of the form ...abc... where we can look 6 characters ahead
   4126   // and step forwards 3 if the character is not one of abc.  Abc need
   4127   // not be atoms, they can be any reasonably limited character class or
   4128   // small alternation.
   4129   BoyerMooreLookahead* bm = bm_info(false);
   4130   if (bm == NULL) {
   4131     eats_at_least = Min(kMaxLookaheadForBoyerMoore,
   4132                         EatsAtLeast(kMaxLookaheadForBoyerMoore,
   4133                                     kRecursionBudget,
   4134                                     false));
   4135     if (eats_at_least >= 1) {
   4136       bm = new(zone()) BoyerMooreLookahead(eats_at_least,
   4137                                            compiler,
   4138                                            zone());
   4139       GuardedAlternative alt0 = alternatives_->at(0);
   4140       alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false);
   4141     }
   4142   }
   4143   if (bm != NULL) {
   4144     bm->EmitSkipInstructions(macro_assembler);
   4145   }
   4146   return eats_at_least;
   4147 }
   4148 
   4149 
   4150 void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
   4151                              AlternativeGenerationList* alt_gens,
   4152                              int first_choice,
   4153                              Trace* trace,
   4154                              PreloadState* preload) {
   4155   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4156   SetUpPreLoad(compiler, trace, preload);
   4157 
   4158   // For now we just call all choices one after the other.  The idea ultimately
   4159   // is to use the Dispatch table to try only the relevant ones.
   4160   int choice_count = alternatives_->length();
   4161 
   4162   int new_flush_budget = trace->flush_budget() / choice_count;
   4163 
   4164   for (int i = first_choice; i < choice_count; i++) {
   4165     bool is_last = i == choice_count - 1;
   4166     bool fall_through_on_failure = !is_last;
   4167     GuardedAlternative alternative = alternatives_->at(i);
   4168     AlternativeGeneration* alt_gen = alt_gens->at(i);
   4169     alt_gen->quick_check_details.set_characters(preload->preload_characters_);
   4170     ZoneList<Guard*>* guards = alternative.guards();
   4171     int guard_count = (guards == NULL) ? 0 : guards->length();
   4172     Trace new_trace(*trace);
   4173     new_trace.set_characters_preloaded(preload->preload_is_current_ ?
   4174                                          preload->preload_characters_ :
   4175                                          0);
   4176     if (preload->preload_has_checked_bounds_) {
   4177       new_trace.set_bound_checked_up_to(preload->preload_characters_);
   4178     }
   4179     new_trace.quick_check_performed()->Clear();
   4180     if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
   4181     if (!is_last) {
   4182       new_trace.set_backtrack(&alt_gen->after);
   4183     }
   4184     alt_gen->expects_preload = preload->preload_is_current_;
   4185     bool generate_full_check_inline = false;
   4186     if (compiler->optimize() &&
   4187         try_to_emit_quick_check_for_alternative(i == 0) &&
   4188         alternative.node()->EmitQuickCheck(
   4189             compiler, trace, &new_trace, preload->preload_has_checked_bounds_,
   4190             &alt_gen->possible_success, &alt_gen->quick_check_details,
   4191             fall_through_on_failure)) {
   4192       // Quick check was generated for this choice.
   4193       preload->preload_is_current_ = true;
   4194       preload->preload_has_checked_bounds_ = true;
   4195       // If we generated the quick check to fall through on possible success,
   4196       // we now need to generate the full check inline.
   4197       if (!fall_through_on_failure) {
   4198         macro_assembler->Bind(&alt_gen->possible_success);
   4199         new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
   4200         new_trace.set_characters_preloaded(preload->preload_characters_);
   4201         new_trace.set_bound_checked_up_to(preload->preload_characters_);
   4202         generate_full_check_inline = true;
   4203       }
   4204     } else if (alt_gen->quick_check_details.cannot_match()) {
   4205       if (!fall_through_on_failure) {
   4206         macro_assembler->GoTo(trace->backtrack());
   4207       }
   4208       continue;
   4209     } else {
   4210       // No quick check was generated.  Put the full code here.
   4211       // If this is not the first choice then there could be slow checks from
   4212       // previous cases that go here when they fail.  There's no reason to
   4213       // insist that they preload characters since the slow check we are about
   4214       // to generate probably can't use it.
   4215       if (i != first_choice) {
   4216         alt_gen->expects_preload = false;
   4217         new_trace.InvalidateCurrentCharacter();
   4218       }
   4219       generate_full_check_inline = true;
   4220     }
   4221     if (generate_full_check_inline) {
   4222       if (new_trace.actions() != NULL) {
   4223         new_trace.set_flush_budget(new_flush_budget);
   4224       }
   4225       for (int j = 0; j < guard_count; j++) {
   4226         GenerateGuard(macro_assembler, guards->at(j), &new_trace);
   4227       }
   4228       alternative.node()->Emit(compiler, &new_trace);
   4229       preload->preload_is_current_ = false;
   4230     }
   4231     macro_assembler->Bind(&alt_gen->after);
   4232   }
   4233 }
   4234 
   4235 
   4236 void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
   4237                                            Trace* trace,
   4238                                            GuardedAlternative alternative,
   4239                                            AlternativeGeneration* alt_gen,
   4240                                            int preload_characters,
   4241                                            bool next_expects_preload) {
   4242   if (!alt_gen->possible_success.is_linked()) return;
   4243 
   4244   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4245   macro_assembler->Bind(&alt_gen->possible_success);
   4246   Trace out_of_line_trace(*trace);
   4247   out_of_line_trace.set_characters_preloaded(preload_characters);
   4248   out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
   4249   if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
   4250   ZoneList<Guard*>* guards = alternative.guards();
   4251   int guard_count = (guards == NULL) ? 0 : guards->length();
   4252   if (next_expects_preload) {
   4253     Label reload_current_char;
   4254     out_of_line_trace.set_backtrack(&reload_current_char);
   4255     for (int j = 0; j < guard_count; j++) {
   4256       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
   4257     }
   4258     alternative.node()->Emit(compiler, &out_of_line_trace);
   4259     macro_assembler->Bind(&reload_current_char);
   4260     // Reload the current character, since the next quick check expects that.
   4261     // We don't need to check bounds here because we only get into this
   4262     // code through a quick check which already did the checked load.
   4263     macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
   4264                                           NULL,
   4265                                           false,
   4266                                           preload_characters);
   4267     macro_assembler->GoTo(&(alt_gen->after));
   4268   } else {
   4269     out_of_line_trace.set_backtrack(&(alt_gen->after));
   4270     for (int j = 0; j < guard_count; j++) {
   4271       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
   4272     }
   4273     alternative.node()->Emit(compiler, &out_of_line_trace);
   4274   }
   4275 }
   4276 
   4277 
   4278 void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   4279   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   4280   LimitResult limit_result = LimitVersions(compiler, trace);
   4281   if (limit_result == DONE) return;
   4282   DCHECK(limit_result == CONTINUE);
   4283 
   4284   RecursionCheck rc(compiler);
   4285 
   4286   switch (action_type_) {
   4287     case STORE_POSITION: {
   4288       Trace::DeferredCapture
   4289           new_capture(data_.u_position_register.reg,
   4290                       data_.u_position_register.is_capture,
   4291                       trace);
   4292       Trace new_trace = *trace;
   4293       new_trace.add_action(&new_capture);
   4294       on_success()->Emit(compiler, &new_trace);
   4295       break;
   4296     }
   4297     case INCREMENT_REGISTER: {
   4298       Trace::DeferredIncrementRegister
   4299           new_increment(data_.u_increment_register.reg);
   4300       Trace new_trace = *trace;
   4301       new_trace.add_action(&new_increment);
   4302       on_success()->Emit(compiler, &new_trace);
   4303       break;
   4304     }
   4305     case SET_REGISTER: {
   4306       Trace::DeferredSetRegister
   4307           new_set(data_.u_store_register.reg, data_.u_store_register.value);
   4308       Trace new_trace = *trace;
   4309       new_trace.add_action(&new_set);
   4310       on_success()->Emit(compiler, &new_trace);
   4311       break;
   4312     }
   4313     case CLEAR_CAPTURES: {
   4314       Trace::DeferredClearCaptures
   4315         new_capture(Interval(data_.u_clear_captures.range_from,
   4316                              data_.u_clear_captures.range_to));
   4317       Trace new_trace = *trace;
   4318       new_trace.add_action(&new_capture);
   4319       on_success()->Emit(compiler, &new_trace);
   4320       break;
   4321     }
   4322     case BEGIN_SUBMATCH:
   4323       if (!trace->is_trivial()) {
   4324         trace->Flush(compiler, this);
   4325       } else {
   4326         assembler->WriteCurrentPositionToRegister(
   4327             data_.u_submatch.current_position_register, 0);
   4328         assembler->WriteStackPointerToRegister(
   4329             data_.u_submatch.stack_pointer_register);
   4330         on_success()->Emit(compiler, trace);
   4331       }
   4332       break;
   4333     case EMPTY_MATCH_CHECK: {
   4334       int start_pos_reg = data_.u_empty_match_check.start_register;
   4335       int stored_pos = 0;
   4336       int rep_reg = data_.u_empty_match_check.repetition_register;
   4337       bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
   4338       bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
   4339       if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
   4340         // If we know we haven't advanced and there is no minimum we
   4341         // can just backtrack immediately.
   4342         assembler->GoTo(trace->backtrack());
   4343       } else if (know_dist && stored_pos < trace->cp_offset()) {
   4344         // If we know we've advanced we can generate the continuation
   4345         // immediately.
   4346         on_success()->Emit(compiler, trace);
   4347       } else if (!trace->is_trivial()) {
   4348         trace->Flush(compiler, this);
   4349       } else {
   4350         Label skip_empty_check;
   4351         // If we have a minimum number of repetitions we check the current
   4352         // number first and skip the empty check if it's not enough.
   4353         if (has_minimum) {
   4354           int limit = data_.u_empty_match_check.repetition_limit;
   4355           assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
   4356         }
   4357         // If the match is empty we bail out, otherwise we fall through
   4358         // to the on-success continuation.
   4359         assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
   4360                                    trace->backtrack());
   4361         assembler->Bind(&skip_empty_check);
   4362         on_success()->Emit(compiler, trace);
   4363       }
   4364       break;
   4365     }
   4366     case POSITIVE_SUBMATCH_SUCCESS: {
   4367       if (!trace->is_trivial()) {
   4368         trace->Flush(compiler, this);
   4369         return;
   4370       }
   4371       assembler->ReadCurrentPositionFromRegister(
   4372           data_.u_submatch.current_position_register);
   4373       assembler->ReadStackPointerFromRegister(
   4374           data_.u_submatch.stack_pointer_register);
   4375       int clear_register_count = data_.u_submatch.clear_register_count;
   4376       if (clear_register_count == 0) {
   4377         on_success()->Emit(compiler, trace);
   4378         return;
   4379       }
   4380       int clear_registers_from = data_.u_submatch.clear_register_from;
   4381       Label clear_registers_backtrack;
   4382       Trace new_trace = *trace;
   4383       new_trace.set_backtrack(&clear_registers_backtrack);
   4384       on_success()->Emit(compiler, &new_trace);
   4385 
   4386       assembler->Bind(&clear_registers_backtrack);
   4387       int clear_registers_to = clear_registers_from + clear_register_count - 1;
   4388       assembler->ClearRegisters(clear_registers_from, clear_registers_to);
   4389 
   4390       DCHECK(trace->backtrack() == NULL);
   4391       assembler->Backtrack();
   4392       return;
   4393     }
   4394     default:
   4395       UNREACHABLE();
   4396   }
   4397 }
   4398 
   4399 
   4400 void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   4401   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   4402   if (!trace->is_trivial()) {
   4403     trace->Flush(compiler, this);
   4404     return;
   4405   }
   4406 
   4407   LimitResult limit_result = LimitVersions(compiler, trace);
   4408   if (limit_result == DONE) return;
   4409   DCHECK(limit_result == CONTINUE);
   4410 
   4411   RecursionCheck rc(compiler);
   4412 
   4413   DCHECK_EQ(start_reg_ + 1, end_reg_);
   4414   if (compiler->ignore_case()) {
   4415     assembler->CheckNotBackReferenceIgnoreCase(
   4416         start_reg_, read_backward(), compiler->unicode(), trace->backtrack());
   4417   } else {
   4418     assembler->CheckNotBackReference(start_reg_, read_backward(),
   4419                                      trace->backtrack());
   4420   }
   4421   // We are going to advance backward, so we may end up at the start.
   4422   if (read_backward()) trace->set_at_start(Trace::UNKNOWN);
   4423 
   4424   // Check that the back reference does not end inside a surrogate pair.
   4425   if (compiler->unicode() && !compiler->one_byte()) {
   4426     assembler->CheckNotInSurrogatePair(trace->cp_offset(), trace->backtrack());
   4427   }
   4428   on_success()->Emit(compiler, trace);
   4429 }
   4430 
   4431 
   4432 // -------------------------------------------------------------------
   4433 // Dot/dotty output
   4434 
   4435 
   4436 #ifdef DEBUG
   4437 
   4438 
   4439 class DotPrinter: public NodeVisitor {
   4440  public:
   4441   DotPrinter(std::ostream& os, bool ignore_case)  // NOLINT
   4442       : os_(os),
   4443         ignore_case_(ignore_case) {}
   4444   void PrintNode(const char* label, RegExpNode* node);
   4445   void Visit(RegExpNode* node);
   4446   void PrintAttributes(RegExpNode* from);
   4447   void PrintOnFailure(RegExpNode* from, RegExpNode* to);
   4448 #define DECLARE_VISIT(Type)                                          \
   4449   virtual void Visit##Type(Type##Node* that);
   4450 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   4451 #undef DECLARE_VISIT
   4452  private:
   4453   std::ostream& os_;
   4454   bool ignore_case_;
   4455 };
   4456 
   4457 
   4458 void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
   4459   os_ << "digraph G {\n  graph [label=\"";
   4460   for (int i = 0; label[i]; i++) {
   4461     switch (label[i]) {
   4462       case '\\':
   4463         os_ << "\\\\";
   4464         break;
   4465       case '"':
   4466         os_ << "\"";
   4467         break;
   4468       default:
   4469         os_ << label[i];
   4470         break;
   4471     }
   4472   }
   4473   os_ << "\"];\n";
   4474   Visit(node);
   4475   os_ << "}" << std::endl;
   4476 }
   4477 
   4478 
   4479 void DotPrinter::Visit(RegExpNode* node) {
   4480   if (node->info()->visited) return;
   4481   node->info()->visited = true;
   4482   node->Accept(this);
   4483 }
   4484 
   4485 
   4486 void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
   4487   os_ << "  n" << from << " -> n" << on_failure << " [style=dotted];\n";
   4488   Visit(on_failure);
   4489 }
   4490 
   4491 
   4492 class TableEntryBodyPrinter {
   4493  public:
   4494   TableEntryBodyPrinter(std::ostream& os, ChoiceNode* choice)  // NOLINT
   4495       : os_(os),
   4496         choice_(choice) {}
   4497   void Call(uc16 from, DispatchTable::Entry entry) {
   4498     OutSet* out_set = entry.out_set();
   4499     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   4500       if (out_set->Get(i)) {
   4501         os_ << "    n" << choice() << ":s" << from << "o" << i << " -> n"
   4502             << choice()->alternatives()->at(i).node() << ";\n";
   4503       }
   4504     }
   4505   }
   4506  private:
   4507   ChoiceNode* choice() { return choice_; }
   4508   std::ostream& os_;
   4509   ChoiceNode* choice_;
   4510 };
   4511 
   4512 
   4513 class TableEntryHeaderPrinter {
   4514  public:
   4515   explicit TableEntryHeaderPrinter(std::ostream& os)  // NOLINT
   4516       : first_(true),
   4517         os_(os) {}
   4518   void Call(uc16 from, DispatchTable::Entry entry) {
   4519     if (first_) {
   4520       first_ = false;
   4521     } else {
   4522       os_ << "|";
   4523     }
   4524     os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
   4525     OutSet* out_set = entry.out_set();
   4526     int priority = 0;
   4527     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   4528       if (out_set->Get(i)) {
   4529         if (priority > 0) os_ << "|";
   4530         os_ << "<s" << from << "o" << i << "> " << priority;
   4531         priority++;
   4532       }
   4533     }
   4534     os_ << "}}";
   4535   }
   4536 
   4537  private:
   4538   bool first_;
   4539   std::ostream& os_;
   4540 };
   4541 
   4542 
   4543 class AttributePrinter {
   4544  public:
   4545   explicit AttributePrinter(std::ostream& os)  // NOLINT
   4546       : os_(os),
   4547         first_(true) {}
   4548   void PrintSeparator() {
   4549     if (first_) {
   4550       first_ = false;
   4551     } else {
   4552       os_ << "|";
   4553     }
   4554   }
   4555   void PrintBit(const char* name, bool value) {
   4556     if (!value) return;
   4557     PrintSeparator();
   4558     os_ << "{" << name << "}";
   4559   }
   4560   void PrintPositive(const char* name, int value) {
   4561     if (value < 0) return;
   4562     PrintSeparator();
   4563     os_ << "{" << name << "|" << value << "}";
   4564   }
   4565 
   4566  private:
   4567   std::ostream& os_;
   4568   bool first_;
   4569 };
   4570 
   4571 
   4572 void DotPrinter::PrintAttributes(RegExpNode* that) {
   4573   os_ << "  a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
   4574       << "margin=0.1, fontsize=10, label=\"{";
   4575   AttributePrinter printer(os_);
   4576   NodeInfo* info = that->info();
   4577   printer.PrintBit("NI", info->follows_newline_interest);
   4578   printer.PrintBit("WI", info->follows_word_interest);
   4579   printer.PrintBit("SI", info->follows_start_interest);
   4580   Label* label = that->label();
   4581   if (label->is_bound())
   4582     printer.PrintPositive("@", label->pos());
   4583   os_ << "}\"];\n"
   4584       << "  a" << that << " -> n" << that
   4585       << " [style=dashed, color=grey, arrowhead=none];\n";
   4586 }
   4587 
   4588 
   4589 static const bool kPrintDispatchTable = false;
   4590 void DotPrinter::VisitChoice(ChoiceNode* that) {
   4591   if (kPrintDispatchTable) {
   4592     os_ << "  n" << that << " [shape=Mrecord, label=\"";
   4593     TableEntryHeaderPrinter header_printer(os_);
   4594     that->GetTable(ignore_case_)->ForEach(&header_printer);
   4595     os_ << "\"]\n";
   4596     PrintAttributes(that);
   4597     TableEntryBodyPrinter body_printer(os_, that);
   4598     that->GetTable(ignore_case_)->ForEach(&body_printer);
   4599   } else {
   4600     os_ << "  n" << that << " [shape=Mrecord, label=\"?\"];\n";
   4601     for (int i = 0; i < that->alternatives()->length(); i++) {
   4602       GuardedAlternative alt = that->alternatives()->at(i);
   4603       os_ << "  n" << that << " -> n" << alt.node();
   4604     }
   4605   }
   4606   for (int i = 0; i < that->alternatives()->length(); i++) {
   4607     GuardedAlternative alt = that->alternatives()->at(i);
   4608     alt.node()->Accept(this);
   4609   }
   4610 }
   4611 
   4612 
   4613 void DotPrinter::VisitText(TextNode* that) {
   4614   Zone* zone = that->zone();
   4615   os_ << "  n" << that << " [label=\"";
   4616   for (int i = 0; i < that->elements()->length(); i++) {
   4617     if (i > 0) os_ << " ";
   4618     TextElement elm = that->elements()->at(i);
   4619     switch (elm.text_type()) {
   4620       case TextElement::ATOM: {
   4621         Vector<const uc16> data = elm.atom()->data();
   4622         for (int i = 0; i < data.length(); i++) {
   4623           os_ << static_cast<char>(data[i]);
   4624         }
   4625         break;
   4626       }
   4627       case TextElement::CHAR_CLASS: {
   4628         RegExpCharacterClass* node = elm.char_class();
   4629         os_ << "[";
   4630         if (node->is_negated()) os_ << "^";
   4631         for (int j = 0; j < node->ranges(zone)->length(); j++) {
   4632           CharacterRange range = node->ranges(zone)->at(j);
   4633           os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
   4634         }
   4635         os_ << "]";
   4636         break;
   4637       }
   4638       default:
   4639         UNREACHABLE();
   4640     }
   4641   }
   4642   os_ << "\", shape=box, peripheries=2];\n";
   4643   PrintAttributes(that);
   4644   os_ << "  n" << that << " -> n" << that->on_success() << ";\n";
   4645   Visit(that->on_success());
   4646 }
   4647 
   4648 
   4649 void DotPrinter::VisitBackReference(BackReferenceNode* that) {
   4650   os_ << "  n" << that << " [label=\"$" << that->start_register() << "..$"
   4651       << that->end_register() << "\", shape=doubleoctagon];\n";
   4652   PrintAttributes(that);
   4653   os_ << "  n" << that << " -> n" << that->on_success() << ";\n";
   4654   Visit(that->on_success());
   4655 }
   4656 
   4657 
   4658 void DotPrinter::VisitEnd(EndNode* that) {
   4659   os_ << "  n" << that << " [style=bold, shape=point];\n";
   4660   PrintAttributes(that);
   4661 }
   4662 
   4663 
   4664 void DotPrinter::VisitAssertion(AssertionNode* that) {
   4665   os_ << "  n" << that << " [";
   4666   switch (that->assertion_type()) {
   4667     case AssertionNode::AT_END:
   4668       os_ << "label=\"$\", shape=septagon";
   4669       break;
   4670     case AssertionNode::AT_START:
   4671       os_ << "label=\"^\", shape=septagon";
   4672       break;
   4673     case AssertionNode::AT_BOUNDARY:
   4674       os_ << "label=\"\\b\", shape=septagon";
   4675       break;
   4676     case AssertionNode::AT_NON_BOUNDARY:
   4677       os_ << "label=\"\\B\", shape=septagon";
   4678       break;
   4679     case AssertionNode::AFTER_NEWLINE:
   4680       os_ << "label=\"(?<=\\n)\", shape=septagon";
   4681       break;
   4682   }
   4683   os_ << "];\n";
   4684   PrintAttributes(that);
   4685   RegExpNode* successor = that->on_success();
   4686   os_ << "  n" << that << " -> n" << successor << ";\n";
   4687   Visit(successor);
   4688 }
   4689 
   4690 
   4691 void DotPrinter::VisitAction(ActionNode* that) {
   4692   os_ << "  n" << that << " [";
   4693   switch (that->action_type_) {
   4694     case ActionNode::SET_REGISTER:
   4695       os_ << "label=\"$" << that->data_.u_store_register.reg
   4696           << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
   4697       break;
   4698     case ActionNode::INCREMENT_REGISTER:
   4699       os_ << "label=\"$" << that->data_.u_increment_register.reg
   4700           << "++\", shape=octagon";
   4701       break;
   4702     case ActionNode::STORE_POSITION:
   4703       os_ << "label=\"$" << that->data_.u_position_register.reg
   4704           << ":=$pos\", shape=octagon";
   4705       break;
   4706     case ActionNode::BEGIN_SUBMATCH:
   4707       os_ << "label=\"$" << that->data_.u_submatch.current_position_register
   4708           << ":=$pos,begin\", shape=septagon";
   4709       break;
   4710     case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
   4711       os_ << "label=\"escape\", shape=septagon";
   4712       break;
   4713     case ActionNode::EMPTY_MATCH_CHECK:
   4714       os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
   4715           << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
   4716           << "<" << that->data_.u_empty_match_check.repetition_limit
   4717           << "?\", shape=septagon";
   4718       break;
   4719     case ActionNode::CLEAR_CAPTURES: {
   4720       os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
   4721           << " to $" << that->data_.u_clear_captures.range_to
   4722           << "\", shape=septagon";
   4723       break;
   4724     }
   4725   }
   4726   os_ << "];\n";
   4727   PrintAttributes(that);
   4728   RegExpNode* successor = that->on_success();
   4729   os_ << "  n" << that << " -> n" << successor << ";\n";
   4730   Visit(successor);
   4731 }
   4732 
   4733 
   4734 class DispatchTableDumper {
   4735  public:
   4736   explicit DispatchTableDumper(std::ostream& os) : os_(os) {}
   4737   void Call(uc16 key, DispatchTable::Entry entry);
   4738  private:
   4739   std::ostream& os_;
   4740 };
   4741 
   4742 
   4743 void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
   4744   os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
   4745   OutSet* set = entry.out_set();
   4746   bool first = true;
   4747   for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   4748     if (set->Get(i)) {
   4749       if (first) {
   4750         first = false;
   4751       } else {
   4752         os_ << ", ";
   4753       }
   4754       os_ << i;
   4755     }
   4756   }
   4757   os_ << "}\n";
   4758 }
   4759 
   4760 
   4761 void DispatchTable::Dump() {
   4762   OFStream os(stderr);
   4763   DispatchTableDumper dumper(os);
   4764   tree()->ForEach(&dumper);
   4765 }
   4766 
   4767 
   4768 void RegExpEngine::DotPrint(const char* label,
   4769                             RegExpNode* node,
   4770                             bool ignore_case) {
   4771   OFStream os(stdout);
   4772   DotPrinter printer(os, ignore_case);
   4773   printer.PrintNode(label, node);
   4774 }
   4775 
   4776 
   4777 #endif  // DEBUG
   4778 
   4779 
   4780 // -------------------------------------------------------------------
   4781 // Tree to graph conversion
   4782 
   4783 RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
   4784                                RegExpNode* on_success) {
   4785   ZoneList<TextElement>* elms =
   4786       new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
   4787   elms->Add(TextElement::Atom(this), compiler->zone());
   4788   return new (compiler->zone())
   4789       TextNode(elms, compiler->read_backward(), on_success);
   4790 }
   4791 
   4792 
   4793 RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
   4794                                RegExpNode* on_success) {
   4795   return new (compiler->zone())
   4796       TextNode(elements(), compiler->read_backward(), on_success);
   4797 }
   4798 
   4799 
   4800 static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
   4801                                  const int* special_class,
   4802                                  int length) {
   4803   length--;  // Remove final marker.
   4804   DCHECK(special_class[length] == kRangeEndMarker);
   4805   DCHECK(ranges->length() != 0);
   4806   DCHECK(length != 0);
   4807   DCHECK(special_class[0] != 0);
   4808   if (ranges->length() != (length >> 1) + 1) {
   4809     return false;
   4810   }
   4811   CharacterRange range = ranges->at(0);
   4812   if (range.from() != 0) {
   4813     return false;
   4814   }
   4815   for (int i = 0; i < length; i += 2) {
   4816     if (special_class[i] != (range.to() + 1)) {
   4817       return false;
   4818     }
   4819     range = ranges->at((i >> 1) + 1);
   4820     if (special_class[i+1] != range.from()) {
   4821       return false;
   4822     }
   4823   }
   4824   if (range.to() != String::kMaxCodePoint) {
   4825     return false;
   4826   }
   4827   return true;
   4828 }
   4829 
   4830 
   4831 static bool CompareRanges(ZoneList<CharacterRange>* ranges,
   4832                           const int* special_class,
   4833                           int length) {
   4834   length--;  // Remove final marker.
   4835   DCHECK(special_class[length] == kRangeEndMarker);
   4836   if (ranges->length() * 2 != length) {
   4837     return false;
   4838   }
   4839   for (int i = 0; i < length; i += 2) {
   4840     CharacterRange range = ranges->at(i >> 1);
   4841     if (range.from() != special_class[i] ||
   4842         range.to() != special_class[i + 1] - 1) {
   4843       return false;
   4844     }
   4845   }
   4846   return true;
   4847 }
   4848 
   4849 
   4850 bool RegExpCharacterClass::is_standard(Zone* zone) {
   4851   // TODO(lrn): Remove need for this function, by not throwing away information
   4852   // along the way.
   4853   if (is_negated_) {
   4854     return false;
   4855   }
   4856   if (set_.is_standard()) {
   4857     return true;
   4858   }
   4859   if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
   4860     set_.set_standard_set_type('s');
   4861     return true;
   4862   }
   4863   if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
   4864     set_.set_standard_set_type('S');
   4865     return true;
   4866   }
   4867   if (CompareInverseRanges(set_.ranges(zone),
   4868                            kLineTerminatorRanges,
   4869                            kLineTerminatorRangeCount)) {
   4870     set_.set_standard_set_type('.');
   4871     return true;
   4872   }
   4873   if (CompareRanges(set_.ranges(zone),
   4874                     kLineTerminatorRanges,
   4875                     kLineTerminatorRangeCount)) {
   4876     set_.set_standard_set_type('n');
   4877     return true;
   4878   }
   4879   if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
   4880     set_.set_standard_set_type('w');
   4881     return true;
   4882   }
   4883   if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
   4884     set_.set_standard_set_type('W');
   4885     return true;
   4886   }
   4887   return false;
   4888 }
   4889 
   4890 
   4891 UnicodeRangeSplitter::UnicodeRangeSplitter(Zone* zone,
   4892                                            ZoneList<CharacterRange>* base)
   4893     : zone_(zone),
   4894       table_(zone),
   4895       bmp_(nullptr),
   4896       lead_surrogates_(nullptr),
   4897       trail_surrogates_(nullptr),
   4898       non_bmp_(nullptr) {
   4899   // The unicode range splitter categorizes given character ranges into:
   4900   // - Code points from the BMP representable by one code unit.
   4901   // - Code points outside the BMP that need to be split into surrogate pairs.
   4902   // - Lone lead surrogates.
   4903   // - Lone trail surrogates.
   4904   // Lone surrogates are valid code points, even though no actual characters.
   4905   // They require special matching to make sure we do not split surrogate pairs.
   4906   // We use the dispatch table to accomplish this. The base range is split up
   4907   // by the table by the overlay ranges, and the Call callback is used to
   4908   // filter and collect ranges for each category.
   4909   for (int i = 0; i < base->length(); i++) {
   4910     table_.AddRange(base->at(i), kBase, zone_);
   4911   }
   4912   // Add overlay ranges.
   4913   table_.AddRange(CharacterRange::Range(0, kLeadSurrogateStart - 1),
   4914                   kBmpCodePoints, zone_);
   4915   table_.AddRange(CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd),
   4916                   kLeadSurrogates, zone_);
   4917   table_.AddRange(
   4918       CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd),
   4919       kTrailSurrogates, zone_);
   4920   table_.AddRange(
   4921       CharacterRange::Range(kTrailSurrogateEnd + 1, kNonBmpStart - 1),
   4922       kBmpCodePoints, zone_);
   4923   table_.AddRange(CharacterRange::Range(kNonBmpStart, kNonBmpEnd),
   4924                   kNonBmpCodePoints, zone_);
   4925   table_.ForEach(this);
   4926 }
   4927 
   4928 
   4929 void UnicodeRangeSplitter::Call(uc32 from, DispatchTable::Entry entry) {
   4930   OutSet* outset = entry.out_set();
   4931   if (!outset->Get(kBase)) return;
   4932   ZoneList<CharacterRange>** target = NULL;
   4933   if (outset->Get(kBmpCodePoints)) {
   4934     target = &bmp_;
   4935   } else if (outset->Get(kLeadSurrogates)) {
   4936     target = &lead_surrogates_;
   4937   } else if (outset->Get(kTrailSurrogates)) {
   4938     target = &trail_surrogates_;
   4939   } else {
   4940     DCHECK(outset->Get(kNonBmpCodePoints));
   4941     target = &non_bmp_;
   4942   }
   4943   if (*target == NULL) *target = new (zone_) ZoneList<CharacterRange>(2, zone_);
   4944   (*target)->Add(CharacterRange::Range(entry.from(), entry.to()), zone_);
   4945 }
   4946 
   4947 
   4948 void AddBmpCharacters(RegExpCompiler* compiler, ChoiceNode* result,
   4949                       RegExpNode* on_success, UnicodeRangeSplitter* splitter) {
   4950   ZoneList<CharacterRange>* bmp = splitter->bmp();
   4951   if (bmp == nullptr) return;
   4952   result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges(
   4953       compiler->zone(), bmp, compiler->read_backward(), on_success)));
   4954 }
   4955 
   4956 
   4957 void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, ChoiceNode* result,
   4958                              RegExpNode* on_success,
   4959                              UnicodeRangeSplitter* splitter) {
   4960   ZoneList<CharacterRange>* non_bmp = splitter->non_bmp();
   4961   if (non_bmp == nullptr) return;
   4962   DCHECK(compiler->unicode());
   4963   DCHECK(!compiler->one_byte());
   4964   Zone* zone = compiler->zone();
   4965   CharacterRange::Canonicalize(non_bmp);
   4966   for (int i = 0; i < non_bmp->length(); i++) {
   4967     // Match surrogate pair.
   4968     // E.g. [\u10005-\u11005] becomes
   4969     //      \ud800[\udc05-\udfff]|
   4970     //      [\ud801-\ud803][\udc00-\udfff]|
   4971     //      \ud804[\udc00-\udc05]
   4972     uc32 from = non_bmp->at(i).from();
   4973     uc32 to = non_bmp->at(i).to();
   4974     uc16 from_l = unibrow::Utf16::LeadSurrogate(from);
   4975     uc16 from_t = unibrow::Utf16::TrailSurrogate(from);
   4976     uc16 to_l = unibrow::Utf16::LeadSurrogate(to);
   4977     uc16 to_t = unibrow::Utf16::TrailSurrogate(to);
   4978     if (from_l == to_l) {
   4979       // The lead surrogate is the same.
   4980       result->AddAlternative(
   4981           GuardedAlternative(TextNode::CreateForSurrogatePair(
   4982               zone, CharacterRange::Singleton(from_l),
   4983               CharacterRange::Range(from_t, to_t), compiler->read_backward(),
   4984               on_success)));
   4985     } else {
   4986       if (from_t != kTrailSurrogateStart) {
   4987         // Add [from_l][from_t-\udfff]
   4988         result->AddAlternative(
   4989             GuardedAlternative(TextNode::CreateForSurrogatePair(
   4990                 zone, CharacterRange::Singleton(from_l),
   4991                 CharacterRange::Range(from_t, kTrailSurrogateEnd),
   4992                 compiler->read_backward(), on_success)));
   4993         from_l++;
   4994       }
   4995       if (to_t != kTrailSurrogateEnd) {
   4996         // Add [to_l][\udc00-to_t]
   4997         result->AddAlternative(
   4998             GuardedAlternative(TextNode::CreateForSurrogatePair(
   4999                 zone, CharacterRange::Singleton(to_l),
   5000                 CharacterRange::Range(kTrailSurrogateStart, to_t),
   5001                 compiler->read_backward(), on_success)));
   5002         to_l--;
   5003       }
   5004       if (from_l <= to_l) {
   5005         // Add [from_l-to_l][\udc00-\udfff]
   5006         result->AddAlternative(
   5007             GuardedAlternative(TextNode::CreateForSurrogatePair(
   5008                 zone, CharacterRange::Range(from_l, to_l),
   5009                 CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd),
   5010                 compiler->read_backward(), on_success)));
   5011       }
   5012     }
   5013   }
   5014 }
   5015 
   5016 
   5017 RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch(
   5018     RegExpCompiler* compiler, ZoneList<CharacterRange>* lookbehind,
   5019     ZoneList<CharacterRange>* match, RegExpNode* on_success,
   5020     bool read_backward) {
   5021   Zone* zone = compiler->zone();
   5022   RegExpNode* match_node = TextNode::CreateForCharacterRanges(
   5023       zone, match, read_backward, on_success);
   5024   int stack_register = compiler->UnicodeLookaroundStackRegister();
   5025   int position_register = compiler->UnicodeLookaroundPositionRegister();
   5026   RegExpLookaround::Builder lookaround(false, match_node, stack_register,
   5027                                        position_register);
   5028   RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
   5029       zone, lookbehind, !read_backward, lookaround.on_match_success());
   5030   return lookaround.ForMatch(negative_match);
   5031 }
   5032 
   5033 
   5034 RegExpNode* MatchAndNegativeLookaroundInReadDirection(
   5035     RegExpCompiler* compiler, ZoneList<CharacterRange>* match,
   5036     ZoneList<CharacterRange>* lookahead, RegExpNode* on_success,
   5037     bool read_backward) {
   5038   Zone* zone = compiler->zone();
   5039   int stack_register = compiler->UnicodeLookaroundStackRegister();
   5040   int position_register = compiler->UnicodeLookaroundPositionRegister();
   5041   RegExpLookaround::Builder lookaround(false, on_success, stack_register,
   5042                                        position_register);
   5043   RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
   5044       zone, lookahead, read_backward, lookaround.on_match_success());
   5045   return TextNode::CreateForCharacterRanges(
   5046       zone, match, read_backward, lookaround.ForMatch(negative_match));
   5047 }
   5048 
   5049 
   5050 void AddLoneLeadSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
   5051                            RegExpNode* on_success,
   5052                            UnicodeRangeSplitter* splitter) {
   5053   ZoneList<CharacterRange>* lead_surrogates = splitter->lead_surrogates();
   5054   if (lead_surrogates == nullptr) return;
   5055   Zone* zone = compiler->zone();
   5056   // E.g. \ud801 becomes \ud801(?![\udc00-\udfff]).
   5057   ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List(
   5058       zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd));
   5059 
   5060   RegExpNode* match;
   5061   if (compiler->read_backward()) {
   5062     // Reading backward. Assert that reading forward, there is no trail
   5063     // surrogate, and then backward match the lead surrogate.
   5064     match = NegativeLookaroundAgainstReadDirectionAndMatch(
   5065         compiler, trail_surrogates, lead_surrogates, on_success, true);
   5066   } else {
   5067     // Reading forward. Forward match the lead surrogate and assert that
   5068     // no trail surrogate follows.
   5069     match = MatchAndNegativeLookaroundInReadDirection(
   5070         compiler, lead_surrogates, trail_surrogates, on_success, false);
   5071   }
   5072   result->AddAlternative(GuardedAlternative(match));
   5073 }
   5074 
   5075 
   5076 void AddLoneTrailSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
   5077                             RegExpNode* on_success,
   5078                             UnicodeRangeSplitter* splitter) {
   5079   ZoneList<CharacterRange>* trail_surrogates = splitter->trail_surrogates();
   5080   if (trail_surrogates == nullptr) return;
   5081   Zone* zone = compiler->zone();
   5082   // E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01
   5083   ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List(
   5084       zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd));
   5085 
   5086   RegExpNode* match;
   5087   if (compiler->read_backward()) {
   5088     // Reading backward. Backward match the trail surrogate and assert that no
   5089     // lead surrogate precedes it.
   5090     match = MatchAndNegativeLookaroundInReadDirection(
   5091         compiler, trail_surrogates, lead_surrogates, on_success, true);
   5092   } else {
   5093     // Reading forward. Assert that reading backward, there is no lead
   5094     // surrogate, and then forward match the trail surrogate.
   5095     match = NegativeLookaroundAgainstReadDirectionAndMatch(
   5096         compiler, lead_surrogates, trail_surrogates, on_success, false);
   5097   }
   5098   result->AddAlternative(GuardedAlternative(match));
   5099 }
   5100 
   5101 RegExpNode* UnanchoredAdvance(RegExpCompiler* compiler,
   5102                               RegExpNode* on_success) {
   5103   // This implements ES2015 21.2.5.2.3, AdvanceStringIndex.
   5104   DCHECK(!compiler->read_backward());
   5105   Zone* zone = compiler->zone();
   5106   // Advance any character. If the character happens to be a lead surrogate and
   5107   // we advanced into the middle of a surrogate pair, it will work out, as
   5108   // nothing will match from there. We will have to advance again, consuming
   5109   // the associated trail surrogate.
   5110   ZoneList<CharacterRange>* range = CharacterRange::List(
   5111       zone, CharacterRange::Range(0, String::kMaxUtf16CodeUnit));
   5112   return TextNode::CreateForCharacterRanges(zone, range, false, on_success);
   5113 }
   5114 
   5115 
   5116 void AddUnicodeCaseEquivalents(RegExpCompiler* compiler,
   5117                                ZoneList<CharacterRange>* ranges) {
   5118 #ifdef V8_I18N_SUPPORT
   5119   // Use ICU to compute the case fold closure over the ranges.
   5120   DCHECK(compiler->unicode());
   5121   DCHECK(compiler->ignore_case());
   5122   USet* set = uset_openEmpty();
   5123   for (int i = 0; i < ranges->length(); i++) {
   5124     uset_addRange(set, ranges->at(i).from(), ranges->at(i).to());
   5125   }
   5126   ranges->Clear();
   5127   uset_closeOver(set, USET_CASE_INSENSITIVE);
   5128   // Full case mapping map single characters to multiple characters.
   5129   // Those are represented as strings in the set. Remove them so that
   5130   // we end up with only simple and common case mappings.
   5131   uset_removeAllStrings(set);
   5132   int item_count = uset_getItemCount(set);
   5133   int item_result = 0;
   5134   UErrorCode ec = U_ZERO_ERROR;
   5135   Zone* zone = compiler->zone();
   5136   for (int i = 0; i < item_count; i++) {
   5137     uc32 start = 0;
   5138     uc32 end = 0;
   5139     item_result += uset_getItem(set, i, &start, &end, nullptr, 0, &ec);
   5140     ranges->Add(CharacterRange::Range(start, end), zone);
   5141   }
   5142   // No errors and everything we collected have been ranges.
   5143   DCHECK_EQ(U_ZERO_ERROR, ec);
   5144   DCHECK_EQ(0, item_result);
   5145   uset_close(set);
   5146 #else
   5147   // Fallback if ICU is not included.
   5148   CharacterRange::AddCaseEquivalents(compiler->isolate(), compiler->zone(),
   5149                                      ranges, compiler->one_byte());
   5150 #endif  // V8_I18N_SUPPORT
   5151   CharacterRange::Canonicalize(ranges);
   5152 }
   5153 
   5154 
   5155 RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
   5156                                          RegExpNode* on_success) {
   5157   set_.Canonicalize();
   5158   Zone* zone = compiler->zone();
   5159   ZoneList<CharacterRange>* ranges = this->ranges(zone);
   5160   if (compiler->unicode() && compiler->ignore_case()) {
   5161     AddUnicodeCaseEquivalents(compiler, ranges);
   5162   }
   5163   if (compiler->unicode() && !compiler->one_byte()) {
   5164     if (is_negated()) {
   5165       ZoneList<CharacterRange>* negated =
   5166           new (zone) ZoneList<CharacterRange>(2, zone);
   5167       CharacterRange::Negate(ranges, negated, zone);
   5168       ranges = negated;
   5169     }
   5170     if (ranges->length() == 0) {
   5171       ranges->Add(CharacterRange::Everything(), zone);
   5172       RegExpCharacterClass* fail =
   5173           new (zone) RegExpCharacterClass(ranges, true);
   5174       return new (zone) TextNode(fail, compiler->read_backward(), on_success);
   5175     }
   5176     if (standard_type() == '*') {
   5177       return UnanchoredAdvance(compiler, on_success);
   5178     } else {
   5179       ChoiceNode* result = new (zone) ChoiceNode(2, zone);
   5180       UnicodeRangeSplitter splitter(zone, ranges);
   5181       AddBmpCharacters(compiler, result, on_success, &splitter);
   5182       AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter);
   5183       AddLoneLeadSurrogates(compiler, result, on_success, &splitter);
   5184       AddLoneTrailSurrogates(compiler, result, on_success, &splitter);
   5185       return result;
   5186     }
   5187   } else {
   5188     return new (zone) TextNode(this, compiler->read_backward(), on_success);
   5189   }
   5190 }
   5191 
   5192 
   5193 int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
   5194   RegExpAtom* atom1 = (*a)->AsAtom();
   5195   RegExpAtom* atom2 = (*b)->AsAtom();
   5196   uc16 character1 = atom1->data().at(0);
   5197   uc16 character2 = atom2->data().at(0);
   5198   if (character1 < character2) return -1;
   5199   if (character1 > character2) return 1;
   5200   return 0;
   5201 }
   5202 
   5203 
   5204 static unibrow::uchar Canonical(
   5205     unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
   5206     unibrow::uchar c) {
   5207   unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth];
   5208   int length = canonicalize->get(c, '\0', chars);
   5209   DCHECK_LE(length, 1);
   5210   unibrow::uchar canonical = c;
   5211   if (length == 1) canonical = chars[0];
   5212   return canonical;
   5213 }
   5214 
   5215 
   5216 int CompareFirstCharCaseIndependent(
   5217     unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
   5218     RegExpTree* const* a, RegExpTree* const* b) {
   5219   RegExpAtom* atom1 = (*a)->AsAtom();
   5220   RegExpAtom* atom2 = (*b)->AsAtom();
   5221   unibrow::uchar character1 = atom1->data().at(0);
   5222   unibrow::uchar character2 = atom2->data().at(0);
   5223   if (character1 == character2) return 0;
   5224   if (character1 >= 'a' || character2 >= 'a') {
   5225     character1 = Canonical(canonicalize, character1);
   5226     character2 = Canonical(canonicalize, character2);
   5227   }
   5228   return static_cast<int>(character1) - static_cast<int>(character2);
   5229 }
   5230 
   5231 
   5232 // We can stable sort runs of atoms, since the order does not matter if they
   5233 // start with different characters.
   5234 // Returns true if any consecutive atoms were found.
   5235 bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) {
   5236   ZoneList<RegExpTree*>* alternatives = this->alternatives();
   5237   int length = alternatives->length();
   5238   bool found_consecutive_atoms = false;
   5239   for (int i = 0; i < length; i++) {
   5240     while (i < length) {
   5241       RegExpTree* alternative = alternatives->at(i);
   5242       if (alternative->IsAtom()) break;
   5243       i++;
   5244     }
   5245     // i is length or it is the index of an atom.
   5246     if (i == length) break;
   5247     int first_atom = i;
   5248     i++;
   5249     while (i < length) {
   5250       RegExpTree* alternative = alternatives->at(i);
   5251       if (!alternative->IsAtom()) break;
   5252       i++;
   5253     }
   5254     // Sort atoms to get ones with common prefixes together.
   5255     // This step is more tricky if we are in a case-independent regexp,
   5256     // because it would change /is|I/ to /I|is/, and order matters when
   5257     // the regexp parts don't match only disjoint starting points. To fix
   5258     // this we have a version of CompareFirstChar that uses case-
   5259     // independent character classes for comparison.
   5260     DCHECK_LT(first_atom, alternatives->length());
   5261     DCHECK_LE(i, alternatives->length());
   5262     DCHECK_LE(first_atom, i);
   5263     if (compiler->ignore_case()) {
   5264       unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
   5265           compiler->isolate()->regexp_macro_assembler_canonicalize();
   5266       auto compare_closure =
   5267           [canonicalize](RegExpTree* const* a, RegExpTree* const* b) {
   5268             return CompareFirstCharCaseIndependent(canonicalize, a, b);
   5269           };
   5270       alternatives->StableSort(compare_closure, first_atom, i - first_atom);
   5271     } else {
   5272       alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom);
   5273     }
   5274     if (i - first_atom > 1) found_consecutive_atoms = true;
   5275   }
   5276   return found_consecutive_atoms;
   5277 }
   5278 
   5279 
   5280 // Optimizes ab|ac|az to a(?:b|c|d).
   5281 void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) {
   5282   Zone* zone = compiler->zone();
   5283   ZoneList<RegExpTree*>* alternatives = this->alternatives();
   5284   int length = alternatives->length();
   5285 
   5286   int write_posn = 0;
   5287   int i = 0;
   5288   while (i < length) {
   5289     RegExpTree* alternative = alternatives->at(i);
   5290     if (!alternative->IsAtom()) {
   5291       alternatives->at(write_posn++) = alternatives->at(i);
   5292       i++;
   5293       continue;
   5294     }
   5295     RegExpAtom* atom = alternative->AsAtom();
   5296     unibrow::uchar common_prefix = atom->data().at(0);
   5297     int first_with_prefix = i;
   5298     int prefix_length = atom->length();
   5299     i++;
   5300     while (i < length) {
   5301       alternative = alternatives->at(i);
   5302       if (!alternative->IsAtom()) break;
   5303       atom = alternative->AsAtom();
   5304       unibrow::uchar new_prefix = atom->data().at(0);
   5305       if (new_prefix != common_prefix) {
   5306         if (!compiler->ignore_case()) break;
   5307         unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
   5308             compiler->isolate()->regexp_macro_assembler_canonicalize();
   5309         new_prefix = Canonical(canonicalize, new_prefix);
   5310         common_prefix = Canonical(canonicalize, common_prefix);
   5311         if (new_prefix != common_prefix) break;
   5312       }
   5313       prefix_length = Min(prefix_length, atom->length());
   5314       i++;
   5315     }
   5316     if (i > first_with_prefix + 2) {
   5317       // Found worthwhile run of alternatives with common prefix of at least one
   5318       // character.  The sorting function above did not sort on more than one
   5319       // character for reasons of correctness, but there may still be a longer
   5320       // common prefix if the terms were similar or presorted in the input.
   5321       // Find out how long the common prefix is.
   5322       int run_length = i - first_with_prefix;
   5323       atom = alternatives->at(first_with_prefix)->AsAtom();
   5324       for (int j = 1; j < run_length && prefix_length > 1; j++) {
   5325         RegExpAtom* old_atom =
   5326             alternatives->at(j + first_with_prefix)->AsAtom();
   5327         for (int k = 1; k < prefix_length; k++) {
   5328           if (atom->data().at(k) != old_atom->data().at(k)) {
   5329             prefix_length = k;
   5330             break;
   5331           }
   5332         }
   5333       }
   5334       RegExpAtom* prefix =
   5335           new (zone) RegExpAtom(atom->data().SubVector(0, prefix_length));
   5336       ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone);
   5337       pair->Add(prefix, zone);
   5338       ZoneList<RegExpTree*>* suffixes =
   5339           new (zone) ZoneList<RegExpTree*>(run_length, zone);
   5340       for (int j = 0; j < run_length; j++) {
   5341         RegExpAtom* old_atom =
   5342             alternatives->at(j + first_with_prefix)->AsAtom();
   5343         int len = old_atom->length();
   5344         if (len == prefix_length) {
   5345           suffixes->Add(new (zone) RegExpEmpty(), zone);
   5346         } else {
   5347           RegExpTree* suffix = new (zone) RegExpAtom(
   5348               old_atom->data().SubVector(prefix_length, old_atom->length()));
   5349           suffixes->Add(suffix, zone);
   5350         }
   5351       }
   5352       pair->Add(new (zone) RegExpDisjunction(suffixes), zone);
   5353       alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair);
   5354     } else {
   5355       // Just copy any non-worthwhile alternatives.
   5356       for (int j = first_with_prefix; j < i; j++) {
   5357         alternatives->at(write_posn++) = alternatives->at(j);
   5358       }
   5359     }
   5360   }
   5361   alternatives->Rewind(write_posn);  // Trim end of array.
   5362 }
   5363 
   5364 
   5365 // Optimizes b|c|z to [bcz].
   5366 void RegExpDisjunction::FixSingleCharacterDisjunctions(
   5367     RegExpCompiler* compiler) {
   5368   Zone* zone = compiler->zone();
   5369   ZoneList<RegExpTree*>* alternatives = this->alternatives();
   5370   int length = alternatives->length();
   5371 
   5372   int write_posn = 0;
   5373   int i = 0;
   5374   while (i < length) {
   5375     RegExpTree* alternative = alternatives->at(i);
   5376     if (!alternative->IsAtom()) {
   5377       alternatives->at(write_posn++) = alternatives->at(i);
   5378       i++;
   5379       continue;
   5380     }
   5381     RegExpAtom* atom = alternative->AsAtom();
   5382     if (atom->length() != 1) {
   5383       alternatives->at(write_posn++) = alternatives->at(i);
   5384       i++;
   5385       continue;
   5386     }
   5387     int first_in_run = i;
   5388     i++;
   5389     while (i < length) {
   5390       alternative = alternatives->at(i);
   5391       if (!alternative->IsAtom()) break;
   5392       atom = alternative->AsAtom();
   5393       if (atom->length() != 1) break;
   5394       i++;
   5395     }
   5396     if (i > first_in_run + 1) {
   5397       // Found non-trivial run of single-character alternatives.
   5398       int run_length = i - first_in_run;
   5399       ZoneList<CharacterRange>* ranges =
   5400           new (zone) ZoneList<CharacterRange>(2, zone);
   5401       for (int j = 0; j < run_length; j++) {
   5402         RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom();
   5403         DCHECK_EQ(old_atom->length(), 1);
   5404         ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone);
   5405       }
   5406       alternatives->at(write_posn++) =
   5407           new (zone) RegExpCharacterClass(ranges, false);
   5408     } else {
   5409       // Just copy any trivial alternatives.
   5410       for (int j = first_in_run; j < i; j++) {
   5411         alternatives->at(write_posn++) = alternatives->at(j);
   5412       }
   5413     }
   5414   }
   5415   alternatives->Rewind(write_posn);  // Trim end of array.
   5416 }
   5417 
   5418 
   5419 RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
   5420                                       RegExpNode* on_success) {
   5421   ZoneList<RegExpTree*>* alternatives = this->alternatives();
   5422 
   5423   if (alternatives->length() > 2) {
   5424     bool found_consecutive_atoms = SortConsecutiveAtoms(compiler);
   5425     if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler);
   5426     FixSingleCharacterDisjunctions(compiler);
   5427     if (alternatives->length() == 1) {
   5428       return alternatives->at(0)->ToNode(compiler, on_success);
   5429     }
   5430   }
   5431 
   5432   int length = alternatives->length();
   5433 
   5434   ChoiceNode* result =
   5435       new(compiler->zone()) ChoiceNode(length, compiler->zone());
   5436   for (int i = 0; i < length; i++) {
   5437     GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
   5438                                                                on_success));
   5439     result->AddAlternative(alternative);
   5440   }
   5441   return result;
   5442 }
   5443 
   5444 
   5445 RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
   5446                                      RegExpNode* on_success) {
   5447   return ToNode(min(),
   5448                 max(),
   5449                 is_greedy(),
   5450                 body(),
   5451                 compiler,
   5452                 on_success);
   5453 }
   5454 
   5455 
   5456 // Scoped object to keep track of how much we unroll quantifier loops in the
   5457 // regexp graph generator.
   5458 class RegExpExpansionLimiter {
   5459  public:
   5460   static const int kMaxExpansionFactor = 6;
   5461   RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
   5462       : compiler_(compiler),
   5463         saved_expansion_factor_(compiler->current_expansion_factor()),
   5464         ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
   5465     DCHECK(factor > 0);
   5466     if (ok_to_expand_) {
   5467       if (factor > kMaxExpansionFactor) {
   5468         // Avoid integer overflow of the current expansion factor.
   5469         ok_to_expand_ = false;
   5470         compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
   5471       } else {
   5472         int new_factor = saved_expansion_factor_ * factor;
   5473         ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
   5474         compiler->set_current_expansion_factor(new_factor);
   5475       }
   5476     }
   5477   }
   5478 
   5479   ~RegExpExpansionLimiter() {
   5480     compiler_->set_current_expansion_factor(saved_expansion_factor_);
   5481   }
   5482 
   5483   bool ok_to_expand() { return ok_to_expand_; }
   5484 
   5485  private:
   5486   RegExpCompiler* compiler_;
   5487   int saved_expansion_factor_;
   5488   bool ok_to_expand_;
   5489 
   5490   DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
   5491 };
   5492 
   5493 
   5494 RegExpNode* RegExpQuantifier::ToNode(int min,
   5495                                      int max,
   5496                                      bool is_greedy,
   5497                                      RegExpTree* body,
   5498                                      RegExpCompiler* compiler,
   5499                                      RegExpNode* on_success,
   5500                                      bool not_at_start) {
   5501   // x{f, t} becomes this:
   5502   //
   5503   //             (r++)<-.
   5504   //               |     `
   5505   //               |     (x)
   5506   //               v     ^
   5507   //      (r=0)-->(?)---/ [if r < t]
   5508   //               |
   5509   //   [if r >= f] \----> ...
   5510   //
   5511 
   5512   // 15.10.2.5 RepeatMatcher algorithm.
   5513   // The parser has already eliminated the case where max is 0.  In the case
   5514   // where max_match is zero the parser has removed the quantifier if min was
   5515   // > 0 and removed the atom if min was 0.  See AddQuantifierToAtom.
   5516 
   5517   // If we know that we cannot match zero length then things are a little
   5518   // simpler since we don't need to make the special zero length match check
   5519   // from step 2.1.  If the min and max are small we can unroll a little in
   5520   // this case.
   5521   static const int kMaxUnrolledMinMatches = 3;  // Unroll (foo)+ and (foo){3,}
   5522   static const int kMaxUnrolledMaxMatches = 3;  // Unroll (foo)? and (foo){x,3}
   5523   if (max == 0) return on_success;  // This can happen due to recursion.
   5524   bool body_can_be_empty = (body->min_match() == 0);
   5525   int body_start_reg = RegExpCompiler::kNoRegister;
   5526   Interval capture_registers = body->CaptureRegisters();
   5527   bool needs_capture_clearing = !capture_registers.is_empty();
   5528   Zone* zone = compiler->zone();
   5529 
   5530   if (body_can_be_empty) {
   5531     body_start_reg = compiler->AllocateRegister();
   5532   } else if (compiler->optimize() && !needs_capture_clearing) {
   5533     // Only unroll if there are no captures and the body can't be
   5534     // empty.
   5535     {
   5536       RegExpExpansionLimiter limiter(
   5537           compiler, min + ((max != min) ? 1 : 0));
   5538       if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
   5539         int new_max = (max == kInfinity) ? max : max - min;
   5540         // Recurse once to get the loop or optional matches after the fixed
   5541         // ones.
   5542         RegExpNode* answer = ToNode(
   5543             0, new_max, is_greedy, body, compiler, on_success, true);
   5544         // Unroll the forced matches from 0 to min.  This can cause chains of
   5545         // TextNodes (which the parser does not generate).  These should be
   5546         // combined if it turns out they hinder good code generation.
   5547         for (int i = 0; i < min; i++) {
   5548           answer = body->ToNode(compiler, answer);
   5549         }
   5550         return answer;
   5551       }
   5552     }
   5553     if (max <= kMaxUnrolledMaxMatches && min == 0) {
   5554       DCHECK(max > 0);  // Due to the 'if' above.
   5555       RegExpExpansionLimiter limiter(compiler, max);
   5556       if (limiter.ok_to_expand()) {
   5557         // Unroll the optional matches up to max.
   5558         RegExpNode* answer = on_success;
   5559         for (int i = 0; i < max; i++) {
   5560           ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
   5561           if (is_greedy) {
   5562             alternation->AddAlternative(
   5563                 GuardedAlternative(body->ToNode(compiler, answer)));
   5564             alternation->AddAlternative(GuardedAlternative(on_success));
   5565           } else {
   5566             alternation->AddAlternative(GuardedAlternative(on_success));
   5567             alternation->AddAlternative(
   5568                 GuardedAlternative(body->ToNode(compiler, answer)));
   5569           }
   5570           answer = alternation;
   5571           if (not_at_start && !compiler->read_backward()) {
   5572             alternation->set_not_at_start();
   5573           }
   5574         }
   5575         return answer;
   5576       }
   5577     }
   5578   }
   5579   bool has_min = min > 0;
   5580   bool has_max = max < RegExpTree::kInfinity;
   5581   bool needs_counter = has_min || has_max;
   5582   int reg_ctr = needs_counter
   5583       ? compiler->AllocateRegister()
   5584       : RegExpCompiler::kNoRegister;
   5585   LoopChoiceNode* center = new (zone)
   5586       LoopChoiceNode(body->min_match() == 0, compiler->read_backward(), zone);
   5587   if (not_at_start && !compiler->read_backward()) center->set_not_at_start();
   5588   RegExpNode* loop_return = needs_counter
   5589       ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
   5590       : static_cast<RegExpNode*>(center);
   5591   if (body_can_be_empty) {
   5592     // If the body can be empty we need to check if it was and then
   5593     // backtrack.
   5594     loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
   5595                                               reg_ctr,
   5596                                               min,
   5597                                               loop_return);
   5598   }
   5599   RegExpNode* body_node = body->ToNode(compiler, loop_return);
   5600   if (body_can_be_empty) {
   5601     // If the body can be empty we need to store the start position
   5602     // so we can bail out if it was empty.
   5603     body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
   5604   }
   5605   if (needs_capture_clearing) {
   5606     // Before entering the body of this loop we need to clear captures.
   5607     body_node = ActionNode::ClearCaptures(capture_registers, body_node);
   5608   }
   5609   GuardedAlternative body_alt(body_node);
   5610   if (has_max) {
   5611     Guard* body_guard =
   5612         new(zone) Guard(reg_ctr, Guard::LT, max);
   5613     body_alt.AddGuard(body_guard, zone);
   5614   }
   5615   GuardedAlternative rest_alt(on_success);
   5616   if (has_min) {
   5617     Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
   5618     rest_alt.AddGuard(rest_guard, zone);
   5619   }
   5620   if (is_greedy) {
   5621     center->AddLoopAlternative(body_alt);
   5622     center->AddContinueAlternative(rest_alt);
   5623   } else {
   5624     center->AddContinueAlternative(rest_alt);
   5625     center->AddLoopAlternative(body_alt);
   5626   }
   5627   if (needs_counter) {
   5628     return ActionNode::SetRegister(reg_ctr, 0, center);
   5629   } else {
   5630     return center;
   5631   }
   5632 }
   5633 
   5634 
   5635 RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
   5636                                     RegExpNode* on_success) {
   5637   NodeInfo info;
   5638   Zone* zone = compiler->zone();
   5639 
   5640   switch (assertion_type()) {
   5641     case START_OF_LINE:
   5642       return AssertionNode::AfterNewline(on_success);
   5643     case START_OF_INPUT:
   5644       return AssertionNode::AtStart(on_success);
   5645     case BOUNDARY:
   5646       return AssertionNode::AtBoundary(on_success);
   5647     case NON_BOUNDARY:
   5648       return AssertionNode::AtNonBoundary(on_success);
   5649     case END_OF_INPUT:
   5650       return AssertionNode::AtEnd(on_success);
   5651     case END_OF_LINE: {
   5652       // Compile $ in multiline regexps as an alternation with a positive
   5653       // lookahead in one side and an end-of-input on the other side.
   5654       // We need two registers for the lookahead.
   5655       int stack_pointer_register = compiler->AllocateRegister();
   5656       int position_register = compiler->AllocateRegister();
   5657       // The ChoiceNode to distinguish between a newline and end-of-input.
   5658       ChoiceNode* result = new(zone) ChoiceNode(2, zone);
   5659       // Create a newline atom.
   5660       ZoneList<CharacterRange>* newline_ranges =
   5661           new(zone) ZoneList<CharacterRange>(3, zone);
   5662       CharacterRange::AddClassEscape('n', newline_ranges, zone);
   5663       RegExpCharacterClass* newline_atom = new (zone) RegExpCharacterClass('n');
   5664       TextNode* newline_matcher = new (zone) TextNode(
   5665           newline_atom, false, ActionNode::PositiveSubmatchSuccess(
   5666                                    stack_pointer_register, position_register,
   5667                                    0,   // No captures inside.
   5668                                    -1,  // Ignored if no captures.
   5669                                    on_success));
   5670       // Create an end-of-input matcher.
   5671       RegExpNode* end_of_line = ActionNode::BeginSubmatch(
   5672           stack_pointer_register,
   5673           position_register,
   5674           newline_matcher);
   5675       // Add the two alternatives to the ChoiceNode.
   5676       GuardedAlternative eol_alternative(end_of_line);
   5677       result->AddAlternative(eol_alternative);
   5678       GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
   5679       result->AddAlternative(end_alternative);
   5680       return result;
   5681     }
   5682     default:
   5683       UNREACHABLE();
   5684   }
   5685   return on_success;
   5686 }
   5687 
   5688 
   5689 RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
   5690                                         RegExpNode* on_success) {
   5691   return new (compiler->zone())
   5692       BackReferenceNode(RegExpCapture::StartRegister(index()),
   5693                         RegExpCapture::EndRegister(index()),
   5694                         compiler->read_backward(), on_success);
   5695 }
   5696 
   5697 
   5698 RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
   5699                                 RegExpNode* on_success) {
   5700   return on_success;
   5701 }
   5702 
   5703 
   5704 RegExpLookaround::Builder::Builder(bool is_positive, RegExpNode* on_success,
   5705                                    int stack_pointer_register,
   5706                                    int position_register,
   5707                                    int capture_register_count,
   5708                                    int capture_register_start)
   5709     : is_positive_(is_positive),
   5710       on_success_(on_success),
   5711       stack_pointer_register_(stack_pointer_register),
   5712       position_register_(position_register) {
   5713   if (is_positive_) {
   5714     on_match_success_ = ActionNode::PositiveSubmatchSuccess(
   5715         stack_pointer_register, position_register, capture_register_count,
   5716         capture_register_start, on_success_);
   5717   } else {
   5718     Zone* zone = on_success_->zone();
   5719     on_match_success_ = new (zone) NegativeSubmatchSuccess(
   5720         stack_pointer_register, position_register, capture_register_count,
   5721         capture_register_start, zone);
   5722   }
   5723 }
   5724 
   5725 
   5726 RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) {
   5727   if (is_positive_) {
   5728     return ActionNode::BeginSubmatch(stack_pointer_register_,
   5729                                      position_register_, match);
   5730   } else {
   5731     Zone* zone = on_success_->zone();
   5732     // We use a ChoiceNode to represent the negative lookaround. The first
   5733     // alternative is the negative match. On success, the end node backtracks.
   5734     // On failure, the second alternative is tried and leads to success.
   5735     // NegativeLookaheadChoiceNode is a special ChoiceNode that ignores the
   5736     // first exit when calculating quick checks.
   5737     ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode(
   5738         GuardedAlternative(match), GuardedAlternative(on_success_), zone);
   5739     return ActionNode::BeginSubmatch(stack_pointer_register_,
   5740                                      position_register_, choice_node);
   5741   }
   5742 }
   5743 
   5744 
   5745 RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler,
   5746                                      RegExpNode* on_success) {
   5747   int stack_pointer_register = compiler->AllocateRegister();
   5748   int position_register = compiler->AllocateRegister();
   5749 
   5750   const int registers_per_capture = 2;
   5751   const int register_of_first_capture = 2;
   5752   int register_count = capture_count_ * registers_per_capture;
   5753   int register_start =
   5754     register_of_first_capture + capture_from_ * registers_per_capture;
   5755 
   5756   RegExpNode* result;
   5757   bool was_reading_backward = compiler->read_backward();
   5758   compiler->set_read_backward(type() == LOOKBEHIND);
   5759   Builder builder(is_positive(), on_success, stack_pointer_register,
   5760                   position_register, register_count, register_start);
   5761   RegExpNode* match = body_->ToNode(compiler, builder.on_match_success());
   5762   result = builder.ForMatch(match);
   5763   compiler->set_read_backward(was_reading_backward);
   5764   return result;
   5765 }
   5766 
   5767 
   5768 RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
   5769                                   RegExpNode* on_success) {
   5770   return ToNode(body(), index(), compiler, on_success);
   5771 }
   5772 
   5773 
   5774 RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
   5775                                   int index,
   5776                                   RegExpCompiler* compiler,
   5777                                   RegExpNode* on_success) {
   5778   DCHECK_NOT_NULL(body);
   5779   int start_reg = RegExpCapture::StartRegister(index);
   5780   int end_reg = RegExpCapture::EndRegister(index);
   5781   if (compiler->read_backward()) std::swap(start_reg, end_reg);
   5782   RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
   5783   RegExpNode* body_node = body->ToNode(compiler, store_end);
   5784   return ActionNode::StorePosition(start_reg, true, body_node);
   5785 }
   5786 
   5787 
   5788 RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
   5789                                       RegExpNode* on_success) {
   5790   ZoneList<RegExpTree*>* children = nodes();
   5791   RegExpNode* current = on_success;
   5792   if (compiler->read_backward()) {
   5793     for (int i = 0; i < children->length(); i++) {
   5794       current = children->at(i)->ToNode(compiler, current);
   5795     }
   5796   } else {
   5797     for (int i = children->length() - 1; i >= 0; i--) {
   5798       current = children->at(i)->ToNode(compiler, current);
   5799     }
   5800   }
   5801   return current;
   5802 }
   5803 
   5804 
   5805 static void AddClass(const int* elmv,
   5806                      int elmc,
   5807                      ZoneList<CharacterRange>* ranges,
   5808                      Zone* zone) {
   5809   elmc--;
   5810   DCHECK(elmv[elmc] == kRangeEndMarker);
   5811   for (int i = 0; i < elmc; i += 2) {
   5812     DCHECK(elmv[i] < elmv[i + 1]);
   5813     ranges->Add(CharacterRange::Range(elmv[i], elmv[i + 1] - 1), zone);
   5814   }
   5815 }
   5816 
   5817 
   5818 static void AddClassNegated(const int *elmv,
   5819                             int elmc,
   5820                             ZoneList<CharacterRange>* ranges,
   5821                             Zone* zone) {
   5822   elmc--;
   5823   DCHECK(elmv[elmc] == kRangeEndMarker);
   5824   DCHECK(elmv[0] != 0x0000);
   5825   DCHECK(elmv[elmc - 1] != String::kMaxCodePoint);
   5826   uc16 last = 0x0000;
   5827   for (int i = 0; i < elmc; i += 2) {
   5828     DCHECK(last <= elmv[i] - 1);
   5829     DCHECK(elmv[i] < elmv[i + 1]);
   5830     ranges->Add(CharacterRange::Range(last, elmv[i] - 1), zone);
   5831     last = elmv[i + 1];
   5832   }
   5833   ranges->Add(CharacterRange::Range(last, String::kMaxCodePoint), zone);
   5834 }
   5835 
   5836 
   5837 void CharacterRange::AddClassEscape(uc16 type,
   5838                                     ZoneList<CharacterRange>* ranges,
   5839                                     Zone* zone) {
   5840   switch (type) {
   5841     case 's':
   5842       AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
   5843       break;
   5844     case 'S':
   5845       AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
   5846       break;
   5847     case 'w':
   5848       AddClass(kWordRanges, kWordRangeCount, ranges, zone);
   5849       break;
   5850     case 'W':
   5851       AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
   5852       break;
   5853     case 'd':
   5854       AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
   5855       break;
   5856     case 'D':
   5857       AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
   5858       break;
   5859     case '.':
   5860       AddClassNegated(kLineTerminatorRanges,
   5861                       kLineTerminatorRangeCount,
   5862                       ranges,
   5863                       zone);
   5864       break;
   5865     // This is not a character range as defined by the spec but a
   5866     // convenient shorthand for a character class that matches any
   5867     // character.
   5868     case '*':
   5869       ranges->Add(CharacterRange::Everything(), zone);
   5870       break;
   5871     // This is the set of characters matched by the $ and ^ symbols
   5872     // in multiline mode.
   5873     case 'n':
   5874       AddClass(kLineTerminatorRanges,
   5875                kLineTerminatorRangeCount,
   5876                ranges,
   5877                zone);
   5878       break;
   5879     default:
   5880       UNREACHABLE();
   5881   }
   5882 }
   5883 
   5884 
   5885 Vector<const int> CharacterRange::GetWordBounds() {
   5886   return Vector<const int>(kWordRanges, kWordRangeCount - 1);
   5887 }
   5888 
   5889 
   5890 void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
   5891                                         ZoneList<CharacterRange>* ranges,
   5892                                         bool is_one_byte) {
   5893   CharacterRange::Canonicalize(ranges);
   5894   int range_count = ranges->length();
   5895   for (int i = 0; i < range_count; i++) {
   5896     CharacterRange range = ranges->at(i);
   5897     uc32 bottom = range.from();
   5898     if (bottom > String::kMaxUtf16CodeUnit) return;
   5899     uc32 top = Min(range.to(), String::kMaxUtf16CodeUnit);
   5900     // Nothing to be done for surrogates.
   5901     if (bottom >= kLeadSurrogateStart && top <= kTrailSurrogateEnd) return;
   5902     if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
   5903       if (bottom > String::kMaxOneByteCharCode) return;
   5904       if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
   5905     }
   5906     unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   5907     if (top == bottom) {
   5908       // If this is a singleton we just expand the one character.
   5909       int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
   5910       for (int i = 0; i < length; i++) {
   5911         uc32 chr = chars[i];
   5912         if (chr != bottom) {
   5913           ranges->Add(CharacterRange::Singleton(chars[i]), zone);
   5914         }
   5915       }
   5916     } else {
   5917       // If this is a range we expand the characters block by block, expanding
   5918       // contiguous subranges (blocks) one at a time.  The approach is as
   5919       // follows.  For a given start character we look up the remainder of the
   5920       // block that contains it (represented by the end point), for instance we
   5921       // find 'z' if the character is 'c'.  A block is characterized by the
   5922       // property that all characters uncanonicalize in the same way, except
   5923       // that each entry in the result is incremented by the distance from the
   5924       // first element.  So a-z is a block because 'a' uncanonicalizes to ['a',
   5925       // 'A'] and the k'th letter uncanonicalizes to ['a' + k, 'A' + k].  Once
   5926       // we've found the end point we look up its uncanonicalization and
   5927       // produce a range for each element.  For instance for [c-f] we look up
   5928       // ['z', 'Z'] and produce [c-f] and [C-F].  We then only add a range if
   5929       // it is not already contained in the input, so [c-f] will be skipped but
   5930       // [C-F] will be added.  If this range is not completely contained in a
   5931       // block we do this for all the blocks covered by the range (handling
   5932       // characters that is not in a block as a "singleton block").
   5933       unibrow::uchar equivalents[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   5934       int pos = bottom;
   5935       while (pos <= top) {
   5936         int length =
   5937             isolate->jsregexp_canonrange()->get(pos, '\0', equivalents);
   5938         uc32 block_end;
   5939         if (length == 0) {
   5940           block_end = pos;
   5941         } else {
   5942           DCHECK_EQ(1, length);
   5943           block_end = equivalents[0];
   5944         }
   5945         int end = (block_end > top) ? top : block_end;
   5946         length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0',
   5947                                                          equivalents);
   5948         for (int i = 0; i < length; i++) {
   5949           uc32 c = equivalents[i];
   5950           uc32 range_from = c - (block_end - pos);
   5951           uc32 range_to = c - (block_end - end);
   5952           if (!(bottom <= range_from && range_to <= top)) {
   5953             ranges->Add(CharacterRange::Range(range_from, range_to), zone);
   5954           }
   5955         }
   5956         pos = end + 1;
   5957       }
   5958     }
   5959   }
   5960 }
   5961 
   5962 
   5963 bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
   5964   DCHECK_NOT_NULL(ranges);
   5965   int n = ranges->length();
   5966   if (n <= 1) return true;
   5967   int max = ranges->at(0).to();
   5968   for (int i = 1; i < n; i++) {
   5969     CharacterRange next_range = ranges->at(i);
   5970     if (next_range.from() <= max + 1) return false;
   5971     max = next_range.to();
   5972   }
   5973   return true;
   5974 }
   5975 
   5976 
   5977 ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
   5978   if (ranges_ == NULL) {
   5979     ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
   5980     CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
   5981   }
   5982   return ranges_;
   5983 }
   5984 
   5985 
   5986 // Move a number of elements in a zonelist to another position
   5987 // in the same list. Handles overlapping source and target areas.
   5988 static void MoveRanges(ZoneList<CharacterRange>* list,
   5989                        int from,
   5990                        int to,
   5991                        int count) {
   5992   // Ranges are potentially overlapping.
   5993   if (from < to) {
   5994     for (int i = count - 1; i >= 0; i--) {
   5995       list->at(to + i) = list->at(from + i);
   5996     }
   5997   } else {
   5998     for (int i = 0; i < count; i++) {
   5999       list->at(to + i) = list->at(from + i);
   6000     }
   6001   }
   6002 }
   6003 
   6004 
   6005 static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
   6006                                       int count,
   6007                                       CharacterRange insert) {
   6008   // Inserts a range into list[0..count[, which must be sorted
   6009   // by from value and non-overlapping and non-adjacent, using at most
   6010   // list[0..count] for the result. Returns the number of resulting
   6011   // canonicalized ranges. Inserting a range may collapse existing ranges into
   6012   // fewer ranges, so the return value can be anything in the range 1..count+1.
   6013   uc32 from = insert.from();
   6014   uc32 to = insert.to();
   6015   int start_pos = 0;
   6016   int end_pos = count;
   6017   for (int i = count - 1; i >= 0; i--) {
   6018     CharacterRange current = list->at(i);
   6019     if (current.from() > to + 1) {
   6020       end_pos = i;
   6021     } else if (current.to() + 1 < from) {
   6022       start_pos = i + 1;
   6023       break;
   6024     }
   6025   }
   6026 
   6027   // Inserted range overlaps, or is adjacent to, ranges at positions
   6028   // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
   6029   // not affected by the insertion.
   6030   // If start_pos == end_pos, the range must be inserted before start_pos.
   6031   // if start_pos < end_pos, the entire range from start_pos to end_pos
   6032   // must be merged with the insert range.
   6033 
   6034   if (start_pos == end_pos) {
   6035     // Insert between existing ranges at position start_pos.
   6036     if (start_pos < count) {
   6037       MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
   6038     }
   6039     list->at(start_pos) = insert;
   6040     return count + 1;
   6041   }
   6042   if (start_pos + 1 == end_pos) {
   6043     // Replace single existing range at position start_pos.
   6044     CharacterRange to_replace = list->at(start_pos);
   6045     int new_from = Min(to_replace.from(), from);
   6046     int new_to = Max(to_replace.to(), to);
   6047     list->at(start_pos) = CharacterRange::Range(new_from, new_to);
   6048     return count;
   6049   }
   6050   // Replace a number of existing ranges from start_pos to end_pos - 1.
   6051   // Move the remaining ranges down.
   6052 
   6053   int new_from = Min(list->at(start_pos).from(), from);
   6054   int new_to = Max(list->at(end_pos - 1).to(), to);
   6055   if (end_pos < count) {
   6056     MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
   6057   }
   6058   list->at(start_pos) = CharacterRange::Range(new_from, new_to);
   6059   return count - (end_pos - start_pos) + 1;
   6060 }
   6061 
   6062 
   6063 void CharacterSet::Canonicalize() {
   6064   // Special/default classes are always considered canonical. The result
   6065   // of calling ranges() will be sorted.
   6066   if (ranges_ == NULL) return;
   6067   CharacterRange::Canonicalize(ranges_);
   6068 }
   6069 
   6070 
   6071 void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
   6072   if (character_ranges->length() <= 1) return;
   6073   // Check whether ranges are already canonical (increasing, non-overlapping,
   6074   // non-adjacent).
   6075   int n = character_ranges->length();
   6076   int max = character_ranges->at(0).to();
   6077   int i = 1;
   6078   while (i < n) {
   6079     CharacterRange current = character_ranges->at(i);
   6080     if (current.from() <= max + 1) {
   6081       break;
   6082     }
   6083     max = current.to();
   6084     i++;
   6085   }
   6086   // Canonical until the i'th range. If that's all of them, we are done.
   6087   if (i == n) return;
   6088 
   6089   // The ranges at index i and forward are not canonicalized. Make them so by
   6090   // doing the equivalent of insertion sort (inserting each into the previous
   6091   // list, in order).
   6092   // Notice that inserting a range can reduce the number of ranges in the
   6093   // result due to combining of adjacent and overlapping ranges.
   6094   int read = i;  // Range to insert.
   6095   int num_canonical = i;  // Length of canonicalized part of list.
   6096   do {
   6097     num_canonical = InsertRangeInCanonicalList(character_ranges,
   6098                                                num_canonical,
   6099                                                character_ranges->at(read));
   6100     read++;
   6101   } while (read < n);
   6102   character_ranges->Rewind(num_canonical);
   6103 
   6104   DCHECK(CharacterRange::IsCanonical(character_ranges));
   6105 }
   6106 
   6107 
   6108 void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
   6109                             ZoneList<CharacterRange>* negated_ranges,
   6110                             Zone* zone) {
   6111   DCHECK(CharacterRange::IsCanonical(ranges));
   6112   DCHECK_EQ(0, negated_ranges->length());
   6113   int range_count = ranges->length();
   6114   uc32 from = 0;
   6115   int i = 0;
   6116   if (range_count > 0 && ranges->at(0).from() == 0) {
   6117     from = ranges->at(0).to() + 1;
   6118     i = 1;
   6119   }
   6120   while (i < range_count) {
   6121     CharacterRange range = ranges->at(i);
   6122     negated_ranges->Add(CharacterRange::Range(from, range.from() - 1), zone);
   6123     from = range.to() + 1;
   6124     i++;
   6125   }
   6126   if (from < String::kMaxCodePoint) {
   6127     negated_ranges->Add(CharacterRange::Range(from, String::kMaxCodePoint),
   6128                         zone);
   6129   }
   6130 }
   6131 
   6132 
   6133 // -------------------------------------------------------------------
   6134 // Splay tree
   6135 
   6136 
   6137 OutSet* OutSet::Extend(unsigned value, Zone* zone) {
   6138   if (Get(value))
   6139     return this;
   6140   if (successors(zone) != NULL) {
   6141     for (int i = 0; i < successors(zone)->length(); i++) {
   6142       OutSet* successor = successors(zone)->at(i);
   6143       if (successor->Get(value))
   6144         return successor;
   6145     }
   6146   } else {
   6147     successors_ = new(zone) ZoneList<OutSet*>(2, zone);
   6148   }
   6149   OutSet* result = new(zone) OutSet(first_, remaining_);
   6150   result->Set(value, zone);
   6151   successors(zone)->Add(result, zone);
   6152   return result;
   6153 }
   6154 
   6155 
   6156 void OutSet::Set(unsigned value, Zone *zone) {
   6157   if (value < kFirstLimit) {
   6158     first_ |= (1 << value);
   6159   } else {
   6160     if (remaining_ == NULL)
   6161       remaining_ = new(zone) ZoneList<unsigned>(1, zone);
   6162     if (remaining_->is_empty() || !remaining_->Contains(value))
   6163       remaining_->Add(value, zone);
   6164   }
   6165 }
   6166 
   6167 
   6168 bool OutSet::Get(unsigned value) const {
   6169   if (value < kFirstLimit) {
   6170     return (first_ & (1 << value)) != 0;
   6171   } else if (remaining_ == NULL) {
   6172     return false;
   6173   } else {
   6174     return remaining_->Contains(value);
   6175   }
   6176 }
   6177 
   6178 
   6179 const uc32 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
   6180 
   6181 
   6182 void DispatchTable::AddRange(CharacterRange full_range, int value,
   6183                              Zone* zone) {
   6184   CharacterRange current = full_range;
   6185   if (tree()->is_empty()) {
   6186     // If this is the first range we just insert into the table.
   6187     ZoneSplayTree<Config>::Locator loc;
   6188     bool inserted = tree()->Insert(current.from(), &loc);
   6189     DCHECK(inserted);
   6190     USE(inserted);
   6191     loc.set_value(Entry(current.from(), current.to(),
   6192                         empty()->Extend(value, zone)));
   6193     return;
   6194   }
   6195   // First see if there is a range to the left of this one that
   6196   // overlaps.
   6197   ZoneSplayTree<Config>::Locator loc;
   6198   if (tree()->FindGreatestLessThan(current.from(), &loc)) {
   6199     Entry* entry = &loc.value();
   6200     // If we've found a range that overlaps with this one, and it
   6201     // starts strictly to the left of this one, we have to fix it
   6202     // because the following code only handles ranges that start on
   6203     // or after the start point of the range we're adding.
   6204     if (entry->from() < current.from() && entry->to() >= current.from()) {
   6205       // Snap the overlapping range in half around the start point of
   6206       // the range we're adding.
   6207       CharacterRange left =
   6208           CharacterRange::Range(entry->from(), current.from() - 1);
   6209       CharacterRange right = CharacterRange::Range(current.from(), entry->to());
   6210       // The left part of the overlapping range doesn't overlap.
   6211       // Truncate the whole entry to be just the left part.
   6212       entry->set_to(left.to());
   6213       // The right part is the one that overlaps.  We add this part
   6214       // to the map and let the next step deal with merging it with
   6215       // the range we're adding.
   6216       ZoneSplayTree<Config>::Locator loc;
   6217       bool inserted = tree()->Insert(right.from(), &loc);
   6218       DCHECK(inserted);
   6219       USE(inserted);
   6220       loc.set_value(Entry(right.from(),
   6221                           right.to(),
   6222                           entry->out_set()));
   6223     }
   6224   }
   6225   while (current.is_valid()) {
   6226     if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
   6227         (loc.value().from() <= current.to()) &&
   6228         (loc.value().to() >= current.from())) {
   6229       Entry* entry = &loc.value();
   6230       // We have overlap.  If there is space between the start point of
   6231       // the range we're adding and where the overlapping range starts
   6232       // then we have to add a range covering just that space.
   6233       if (current.from() < entry->from()) {
   6234         ZoneSplayTree<Config>::Locator ins;
   6235         bool inserted = tree()->Insert(current.from(), &ins);
   6236         DCHECK(inserted);
   6237         USE(inserted);
   6238         ins.set_value(Entry(current.from(),
   6239                             entry->from() - 1,
   6240                             empty()->Extend(value, zone)));
   6241         current.set_from(entry->from());
   6242       }
   6243       DCHECK_EQ(current.from(), entry->from());
   6244       // If the overlapping range extends beyond the one we want to add
   6245       // we have to snap the right part off and add it separately.
   6246       if (entry->to() > current.to()) {
   6247         ZoneSplayTree<Config>::Locator ins;
   6248         bool inserted = tree()->Insert(current.to() + 1, &ins);
   6249         DCHECK(inserted);
   6250         USE(inserted);
   6251         ins.set_value(Entry(current.to() + 1,
   6252                             entry->to(),
   6253                             entry->out_set()));
   6254         entry->set_to(current.to());
   6255       }
   6256       DCHECK(entry->to() <= current.to());
   6257       // The overlapping range is now completely contained by the range
   6258       // we're adding so we can just update it and move the start point
   6259       // of the range we're adding just past it.
   6260       entry->AddValue(value, zone);
   6261       DCHECK(entry->to() + 1 > current.from());
   6262       current.set_from(entry->to() + 1);
   6263     } else {
   6264       // There is no overlap so we can just add the range
   6265       ZoneSplayTree<Config>::Locator ins;
   6266       bool inserted = tree()->Insert(current.from(), &ins);
   6267       DCHECK(inserted);
   6268       USE(inserted);
   6269       ins.set_value(Entry(current.from(),
   6270                           current.to(),
   6271                           empty()->Extend(value, zone)));
   6272       break;
   6273     }
   6274   }
   6275 }
   6276 
   6277 
   6278 OutSet* DispatchTable::Get(uc32 value) {
   6279   ZoneSplayTree<Config>::Locator loc;
   6280   if (!tree()->FindGreatestLessThan(value, &loc))
   6281     return empty();
   6282   Entry* entry = &loc.value();
   6283   if (value <= entry->to())
   6284     return entry->out_set();
   6285   else
   6286     return empty();
   6287 }
   6288 
   6289 
   6290 // -------------------------------------------------------------------
   6291 // Analysis
   6292 
   6293 
   6294 void Analysis::EnsureAnalyzed(RegExpNode* that) {
   6295   StackLimitCheck check(isolate());
   6296   if (check.HasOverflowed()) {
   6297     fail("Stack overflow");
   6298     return;
   6299   }
   6300   if (that->info()->been_analyzed || that->info()->being_analyzed)
   6301     return;
   6302   that->info()->being_analyzed = true;
   6303   that->Accept(this);
   6304   that->info()->being_analyzed = false;
   6305   that->info()->been_analyzed = true;
   6306 }
   6307 
   6308 
   6309 void Analysis::VisitEnd(EndNode* that) {
   6310   // nothing to do
   6311 }
   6312 
   6313 
   6314 void TextNode::CalculateOffsets() {
   6315   int element_count = elements()->length();
   6316   // Set up the offsets of the elements relative to the start.  This is a fixed
   6317   // quantity since a TextNode can only contain fixed-width things.
   6318   int cp_offset = 0;
   6319   for (int i = 0; i < element_count; i++) {
   6320     TextElement& elm = elements()->at(i);
   6321     elm.set_cp_offset(cp_offset);
   6322     cp_offset += elm.length();
   6323   }
   6324 }
   6325 
   6326 
   6327 void Analysis::VisitText(TextNode* that) {
   6328   if (ignore_case()) {
   6329     that->MakeCaseIndependent(isolate(), is_one_byte_);
   6330   }
   6331   EnsureAnalyzed(that->on_success());
   6332   if (!has_failed()) {
   6333     that->CalculateOffsets();
   6334   }
   6335 }
   6336 
   6337 
   6338 void Analysis::VisitAction(ActionNode* that) {
   6339   RegExpNode* target = that->on_success();
   6340   EnsureAnalyzed(target);
   6341   if (!has_failed()) {
   6342     // If the next node is interested in what it follows then this node
   6343     // has to be interested too so it can pass the information on.
   6344     that->info()->AddFromFollowing(target->info());
   6345   }
   6346 }
   6347 
   6348 
   6349 void Analysis::VisitChoice(ChoiceNode* that) {
   6350   NodeInfo* info = that->info();
   6351   for (int i = 0; i < that->alternatives()->length(); i++) {
   6352     RegExpNode* node = that->alternatives()->at(i).node();
   6353     EnsureAnalyzed(node);
   6354     if (has_failed()) return;
   6355     // Anything the following nodes need to know has to be known by
   6356     // this node also, so it can pass it on.
   6357     info->AddFromFollowing(node->info());
   6358   }
   6359 }
   6360 
   6361 
   6362 void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
   6363   NodeInfo* info = that->info();
   6364   for (int i = 0; i < that->alternatives()->length(); i++) {
   6365     RegExpNode* node = that->alternatives()->at(i).node();
   6366     if (node != that->loop_node()) {
   6367       EnsureAnalyzed(node);
   6368       if (has_failed()) return;
   6369       info->AddFromFollowing(node->info());
   6370     }
   6371   }
   6372   // Check the loop last since it may need the value of this node
   6373   // to get a correct result.
   6374   EnsureAnalyzed(that->loop_node());
   6375   if (!has_failed()) {
   6376     info->AddFromFollowing(that->loop_node()->info());
   6377   }
   6378 }
   6379 
   6380 
   6381 void Analysis::VisitBackReference(BackReferenceNode* that) {
   6382   EnsureAnalyzed(that->on_success());
   6383 }
   6384 
   6385 
   6386 void Analysis::VisitAssertion(AssertionNode* that) {
   6387   EnsureAnalyzed(that->on_success());
   6388 }
   6389 
   6390 
   6391 void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
   6392                                      BoyerMooreLookahead* bm,
   6393                                      bool not_at_start) {
   6394   // Working out the set of characters that a backreference can match is too
   6395   // hard, so we just say that any character can match.
   6396   bm->SetRest(offset);
   6397   SaveBMInfo(bm, not_at_start, offset);
   6398 }
   6399 
   6400 
   6401 STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
   6402               RegExpMacroAssembler::kTableSize);
   6403 
   6404 
   6405 void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
   6406                               BoyerMooreLookahead* bm, bool not_at_start) {
   6407   ZoneList<GuardedAlternative>* alts = alternatives();
   6408   budget = (budget - 1) / alts->length();
   6409   for (int i = 0; i < alts->length(); i++) {
   6410     GuardedAlternative& alt = alts->at(i);
   6411     if (alt.guards() != NULL && alt.guards()->length() != 0) {
   6412       bm->SetRest(offset);  // Give up trying to fill in info.
   6413       SaveBMInfo(bm, not_at_start, offset);
   6414       return;
   6415     }
   6416     alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start);
   6417   }
   6418   SaveBMInfo(bm, not_at_start, offset);
   6419 }
   6420 
   6421 
   6422 void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget,
   6423                             BoyerMooreLookahead* bm, bool not_at_start) {
   6424   if (initial_offset >= bm->length()) return;
   6425   int offset = initial_offset;
   6426   int max_char = bm->max_char();
   6427   for (int i = 0; i < elements()->length(); i++) {
   6428     if (offset >= bm->length()) {
   6429       if (initial_offset == 0) set_bm_info(not_at_start, bm);
   6430       return;
   6431     }
   6432     TextElement text = elements()->at(i);
   6433     if (text.text_type() == TextElement::ATOM) {
   6434       RegExpAtom* atom = text.atom();
   6435       for (int j = 0; j < atom->length(); j++, offset++) {
   6436         if (offset >= bm->length()) {
   6437           if (initial_offset == 0) set_bm_info(not_at_start, bm);
   6438           return;
   6439         }
   6440         uc16 character = atom->data()[j];
   6441         if (bm->compiler()->ignore_case()) {
   6442           unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   6443           int length = GetCaseIndependentLetters(
   6444               isolate, character, bm->max_char() == String::kMaxOneByteCharCode,
   6445               chars);
   6446           for (int j = 0; j < length; j++) {
   6447             bm->Set(offset, chars[j]);
   6448           }
   6449         } else {
   6450           if (character <= max_char) bm->Set(offset, character);
   6451         }
   6452       }
   6453     } else {
   6454       DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
   6455       RegExpCharacterClass* char_class = text.char_class();
   6456       ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
   6457       if (char_class->is_negated()) {
   6458         bm->SetAll(offset);
   6459       } else {
   6460         for (int k = 0; k < ranges->length(); k++) {
   6461           CharacterRange& range = ranges->at(k);
   6462           if (range.from() > max_char) continue;
   6463           int to = Min(max_char, static_cast<int>(range.to()));
   6464           bm->SetInterval(offset, Interval(range.from(), to));
   6465         }
   6466       }
   6467       offset++;
   6468     }
   6469   }
   6470   if (offset >= bm->length()) {
   6471     if (initial_offset == 0) set_bm_info(not_at_start, bm);
   6472     return;
   6473   }
   6474   on_success()->FillInBMInfo(isolate, offset, budget - 1, bm,
   6475                              true);  // Not at start after a text node.
   6476   if (initial_offset == 0) set_bm_info(not_at_start, bm);
   6477 }
   6478 
   6479 
   6480 // -------------------------------------------------------------------
   6481 // Dispatch table construction
   6482 
   6483 
   6484 void DispatchTableConstructor::VisitEnd(EndNode* that) {
   6485   AddRange(CharacterRange::Everything());
   6486 }
   6487 
   6488 
   6489 void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
   6490   node->set_being_calculated(true);
   6491   ZoneList<GuardedAlternative>* alternatives = node->alternatives();
   6492   for (int i = 0; i < alternatives->length(); i++) {
   6493     set_choice_index(i);
   6494     alternatives->at(i).node()->Accept(this);
   6495   }
   6496   node->set_being_calculated(false);
   6497 }
   6498 
   6499 
   6500 class AddDispatchRange {
   6501  public:
   6502   explicit AddDispatchRange(DispatchTableConstructor* constructor)
   6503     : constructor_(constructor) { }
   6504   void Call(uc32 from, DispatchTable::Entry entry);
   6505  private:
   6506   DispatchTableConstructor* constructor_;
   6507 };
   6508 
   6509 
   6510 void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
   6511   constructor_->AddRange(CharacterRange::Range(from, entry.to()));
   6512 }
   6513 
   6514 
   6515 void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
   6516   if (node->being_calculated())
   6517     return;
   6518   DispatchTable* table = node->GetTable(ignore_case_);
   6519   AddDispatchRange adder(this);
   6520   table->ForEach(&adder);
   6521 }
   6522 
   6523 
   6524 void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
   6525   // TODO(160): Find the node that we refer back to and propagate its start
   6526   // set back to here.  For now we just accept anything.
   6527   AddRange(CharacterRange::Everything());
   6528 }
   6529 
   6530 
   6531 void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
   6532   RegExpNode* target = that->on_success();
   6533   target->Accept(this);
   6534 }
   6535 
   6536 
   6537 static int CompareRangeByFrom(const CharacterRange* a,
   6538                               const CharacterRange* b) {
   6539   return Compare<uc16>(a->from(), b->from());
   6540 }
   6541 
   6542 
   6543 void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
   6544   ranges->Sort(CompareRangeByFrom);
   6545   uc16 last = 0;
   6546   for (int i = 0; i < ranges->length(); i++) {
   6547     CharacterRange range = ranges->at(i);
   6548     if (last < range.from())
   6549       AddRange(CharacterRange::Range(last, range.from() - 1));
   6550     if (range.to() >= last) {
   6551       if (range.to() == String::kMaxCodePoint) {
   6552         return;
   6553       } else {
   6554         last = range.to() + 1;
   6555       }
   6556     }
   6557   }
   6558   AddRange(CharacterRange::Range(last, String::kMaxCodePoint));
   6559 }
   6560 
   6561 
   6562 void DispatchTableConstructor::VisitText(TextNode* that) {
   6563   TextElement elm = that->elements()->at(0);
   6564   switch (elm.text_type()) {
   6565     case TextElement::ATOM: {
   6566       uc16 c = elm.atom()->data()[0];
   6567       AddRange(CharacterRange::Range(c, c));
   6568       break;
   6569     }
   6570     case TextElement::CHAR_CLASS: {
   6571       RegExpCharacterClass* tree = elm.char_class();
   6572       ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
   6573       if (tree->is_negated()) {
   6574         AddInverse(ranges);
   6575       } else {
   6576         for (int i = 0; i < ranges->length(); i++)
   6577           AddRange(ranges->at(i));
   6578       }
   6579       break;
   6580     }
   6581     default: {
   6582       UNIMPLEMENTED();
   6583     }
   6584   }
   6585 }
   6586 
   6587 
   6588 void DispatchTableConstructor::VisitAction(ActionNode* that) {
   6589   RegExpNode* target = that->on_success();
   6590   target->Accept(this);
   6591 }
   6592 
   6593 
   6594 RegExpNode* OptionallyStepBackToLeadSurrogate(RegExpCompiler* compiler,
   6595                                               RegExpNode* on_success) {
   6596   // If the regexp matching starts within a surrogate pair, step back
   6597   // to the lead surrogate and start matching from there.
   6598   DCHECK(!compiler->read_backward());
   6599   Zone* zone = compiler->zone();
   6600   ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List(
   6601       zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd));
   6602   ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List(
   6603       zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd));
   6604 
   6605   ChoiceNode* optional_step_back = new (zone) ChoiceNode(2, zone);
   6606 
   6607   int stack_register = compiler->UnicodeLookaroundStackRegister();
   6608   int position_register = compiler->UnicodeLookaroundPositionRegister();
   6609   RegExpNode* step_back = TextNode::CreateForCharacterRanges(
   6610       zone, lead_surrogates, true, on_success);
   6611   RegExpLookaround::Builder builder(true, step_back, stack_register,
   6612                                     position_register);
   6613   RegExpNode* match_trail = TextNode::CreateForCharacterRanges(
   6614       zone, trail_surrogates, false, builder.on_match_success());
   6615 
   6616   optional_step_back->AddAlternative(
   6617       GuardedAlternative(builder.ForMatch(match_trail)));
   6618   optional_step_back->AddAlternative(GuardedAlternative(on_success));
   6619 
   6620   return optional_step_back;
   6621 }
   6622 
   6623 
   6624 RegExpEngine::CompilationResult RegExpEngine::Compile(
   6625     Isolate* isolate, Zone* zone, RegExpCompileData* data,
   6626     JSRegExp::Flags flags, Handle<String> pattern,
   6627     Handle<String> sample_subject, bool is_one_byte) {
   6628   if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
   6629     return IrregexpRegExpTooBig(isolate);
   6630   }
   6631   bool ignore_case = flags & JSRegExp::kIgnoreCase;
   6632   bool is_sticky = flags & JSRegExp::kSticky;
   6633   bool is_global = flags & JSRegExp::kGlobal;
   6634   bool is_unicode = flags & JSRegExp::kUnicode;
   6635   RegExpCompiler compiler(isolate, zone, data->capture_count, flags,
   6636                           is_one_byte);
   6637 
   6638   if (compiler.optimize()) compiler.set_optimize(!TooMuchRegExpCode(pattern));
   6639 
   6640   // Sample some characters from the middle of the string.
   6641   static const int kSampleSize = 128;
   6642 
   6643   sample_subject = String::Flatten(sample_subject);
   6644   int chars_sampled = 0;
   6645   int half_way = (sample_subject->length() - kSampleSize) / 2;
   6646   for (int i = Max(0, half_way);
   6647        i < sample_subject->length() && chars_sampled < kSampleSize;
   6648        i++, chars_sampled++) {
   6649     compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
   6650   }
   6651 
   6652   // Wrap the body of the regexp in capture #0.
   6653   RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
   6654                                                     0,
   6655                                                     &compiler,
   6656                                                     compiler.accept());
   6657   RegExpNode* node = captured_body;
   6658   bool is_end_anchored = data->tree->IsAnchoredAtEnd();
   6659   bool is_start_anchored = data->tree->IsAnchoredAtStart();
   6660   int max_length = data->tree->max_match();
   6661   if (!is_start_anchored && !is_sticky) {
   6662     // Add a .*? at the beginning, outside the body capture, unless
   6663     // this expression is anchored at the beginning or sticky.
   6664     RegExpNode* loop_node = RegExpQuantifier::ToNode(
   6665         0, RegExpTree::kInfinity, false, new (zone) RegExpCharacterClass('*'),
   6666         &compiler, captured_body, data->contains_anchor);
   6667 
   6668     if (data->contains_anchor) {
   6669       // Unroll loop once, to take care of the case that might start
   6670       // at the start of input.
   6671       ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
   6672       first_step_node->AddAlternative(GuardedAlternative(captured_body));
   6673       first_step_node->AddAlternative(GuardedAlternative(new (zone) TextNode(
   6674           new (zone) RegExpCharacterClass('*'), false, loop_node)));
   6675       node = first_step_node;
   6676     } else {
   6677       node = loop_node;
   6678     }
   6679   }
   6680   if (is_one_byte) {
   6681     node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
   6682     // Do it again to propagate the new nodes to places where they were not
   6683     // put because they had not been calculated yet.
   6684     if (node != NULL) {
   6685       node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
   6686     }
   6687   } else if (compiler.unicode() && (is_global || is_sticky)) {
   6688     node = OptionallyStepBackToLeadSurrogate(&compiler, node);
   6689   }
   6690 
   6691   if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
   6692   data->node = node;
   6693   Analysis analysis(isolate, flags, is_one_byte);
   6694   analysis.EnsureAnalyzed(node);
   6695   if (analysis.has_failed()) {
   6696     const char* error_message = analysis.error_message();
   6697     return CompilationResult(isolate, error_message);
   6698   }
   6699 
   6700   // Create the correct assembler for the architecture.
   6701 #ifndef V8_INTERPRETED_REGEXP
   6702   // Native regexp implementation.
   6703 
   6704   NativeRegExpMacroAssembler::Mode mode =
   6705       is_one_byte ? NativeRegExpMacroAssembler::LATIN1
   6706                   : NativeRegExpMacroAssembler::UC16;
   6707 
   6708 #if V8_TARGET_ARCH_IA32
   6709   RegExpMacroAssemblerIA32 macro_assembler(isolate, zone, mode,
   6710                                            (data->capture_count + 1) * 2);
   6711 #elif V8_TARGET_ARCH_X64
   6712   RegExpMacroAssemblerX64 macro_assembler(isolate, zone, mode,
   6713                                           (data->capture_count + 1) * 2);
   6714 #elif V8_TARGET_ARCH_ARM
   6715   RegExpMacroAssemblerARM macro_assembler(isolate, zone, mode,
   6716                                           (data->capture_count + 1) * 2);
   6717 #elif V8_TARGET_ARCH_ARM64
   6718   RegExpMacroAssemblerARM64 macro_assembler(isolate, zone, mode,
   6719                                             (data->capture_count + 1) * 2);
   6720 #elif V8_TARGET_ARCH_S390
   6721   RegExpMacroAssemblerS390 macro_assembler(isolate, zone, mode,
   6722                                            (data->capture_count + 1) * 2);
   6723 #elif V8_TARGET_ARCH_PPC
   6724   RegExpMacroAssemblerPPC macro_assembler(isolate, zone, mode,
   6725                                           (data->capture_count + 1) * 2);
   6726 #elif V8_TARGET_ARCH_MIPS
   6727   RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
   6728                                            (data->capture_count + 1) * 2);
   6729 #elif V8_TARGET_ARCH_MIPS64
   6730   RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
   6731                                            (data->capture_count + 1) * 2);
   6732 #elif V8_TARGET_ARCH_X87
   6733   RegExpMacroAssemblerX87 macro_assembler(isolate, zone, mode,
   6734                                           (data->capture_count + 1) * 2);
   6735 #else
   6736 #error "Unsupported architecture"
   6737 #endif
   6738 
   6739 #else  // V8_INTERPRETED_REGEXP
   6740   // Interpreted regexp implementation.
   6741   EmbeddedVector<byte, 1024> codes;
   6742   RegExpMacroAssemblerIrregexp macro_assembler(isolate, codes, zone);
   6743 #endif  // V8_INTERPRETED_REGEXP
   6744 
   6745   macro_assembler.set_slow_safe(TooMuchRegExpCode(pattern));
   6746 
   6747   // Inserted here, instead of in Assembler, because it depends on information
   6748   // in the AST that isn't replicated in the Node structure.
   6749   static const int kMaxBacksearchLimit = 1024;
   6750   if (is_end_anchored &&
   6751       !is_start_anchored &&
   6752       max_length < kMaxBacksearchLimit) {
   6753     macro_assembler.SetCurrentPositionFromEnd(max_length);
   6754   }
   6755 
   6756   if (is_global) {
   6757     RegExpMacroAssembler::GlobalMode mode = RegExpMacroAssembler::GLOBAL;
   6758     if (data->tree->min_match() > 0) {
   6759       mode = RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK;
   6760     } else if (is_unicode) {
   6761       mode = RegExpMacroAssembler::GLOBAL_UNICODE;
   6762     }
   6763     macro_assembler.set_global_mode(mode);
   6764   }
   6765 
   6766   return compiler.Assemble(&macro_assembler,
   6767                            node,
   6768                            data->capture_count,
   6769                            pattern);
   6770 }
   6771 
   6772 
   6773 bool RegExpEngine::TooMuchRegExpCode(Handle<String> pattern) {
   6774   Heap* heap = pattern->GetHeap();
   6775   bool too_much = pattern->length() > RegExpImpl::kRegExpTooLargeToOptimize;
   6776   if (heap->total_regexp_code_generated() > RegExpImpl::kRegExpCompiledLimit &&
   6777       heap->memory_allocator()->SizeExecutable() >
   6778           RegExpImpl::kRegExpExecutableMemoryLimit) {
   6779     too_much = true;
   6780   }
   6781   return too_much;
   6782 }
   6783 
   6784 
   6785 Object* RegExpResultsCache::Lookup(Heap* heap, String* key_string,
   6786                                    Object* key_pattern,
   6787                                    FixedArray** last_match_cache,
   6788                                    ResultsCacheType type) {
   6789   FixedArray* cache;
   6790   if (!key_string->IsInternalizedString()) return Smi::FromInt(0);
   6791   if (type == STRING_SPLIT_SUBSTRINGS) {
   6792     DCHECK(key_pattern->IsString());
   6793     if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0);
   6794     cache = heap->string_split_cache();
   6795   } else {
   6796     DCHECK(type == REGEXP_MULTIPLE_INDICES);
   6797     DCHECK(key_pattern->IsFixedArray());
   6798     cache = heap->regexp_multiple_cache();
   6799   }
   6800 
   6801   uint32_t hash = key_string->Hash();
   6802   uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
   6803                     ~(kArrayEntriesPerCacheEntry - 1));
   6804   if (cache->get(index + kStringOffset) != key_string ||
   6805       cache->get(index + kPatternOffset) != key_pattern) {
   6806     index =
   6807         ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
   6808     if (cache->get(index + kStringOffset) != key_string ||
   6809         cache->get(index + kPatternOffset) != key_pattern) {
   6810       return Smi::FromInt(0);
   6811     }
   6812   }
   6813 
   6814   *last_match_cache = FixedArray::cast(cache->get(index + kLastMatchOffset));
   6815   return cache->get(index + kArrayOffset);
   6816 }
   6817 
   6818 
   6819 void RegExpResultsCache::Enter(Isolate* isolate, Handle<String> key_string,
   6820                                Handle<Object> key_pattern,
   6821                                Handle<FixedArray> value_array,
   6822                                Handle<FixedArray> last_match_cache,
   6823                                ResultsCacheType type) {
   6824   Factory* factory = isolate->factory();
   6825   Handle<FixedArray> cache;
   6826   if (!key_string->IsInternalizedString()) return;
   6827   if (type == STRING_SPLIT_SUBSTRINGS) {
   6828     DCHECK(key_pattern->IsString());
   6829     if (!key_pattern->IsInternalizedString()) return;
   6830     cache = factory->string_split_cache();
   6831   } else {
   6832     DCHECK(type == REGEXP_MULTIPLE_INDICES);
   6833     DCHECK(key_pattern->IsFixedArray());
   6834     cache = factory->regexp_multiple_cache();
   6835   }
   6836 
   6837   uint32_t hash = key_string->Hash();
   6838   uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
   6839                     ~(kArrayEntriesPerCacheEntry - 1));
   6840   if (cache->get(index + kStringOffset) == Smi::FromInt(0)) {
   6841     cache->set(index + kStringOffset, *key_string);
   6842     cache->set(index + kPatternOffset, *key_pattern);
   6843     cache->set(index + kArrayOffset, *value_array);
   6844     cache->set(index + kLastMatchOffset, *last_match_cache);
   6845   } else {
   6846     uint32_t index2 =
   6847         ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
   6848     if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) {
   6849       cache->set(index2 + kStringOffset, *key_string);
   6850       cache->set(index2 + kPatternOffset, *key_pattern);
   6851       cache->set(index2 + kArrayOffset, *value_array);
   6852       cache->set(index2 + kLastMatchOffset, *last_match_cache);
   6853     } else {
   6854       cache->set(index2 + kStringOffset, Smi::FromInt(0));
   6855       cache->set(index2 + kPatternOffset, Smi::FromInt(0));
   6856       cache->set(index2 + kArrayOffset, Smi::FromInt(0));
   6857       cache->set(index2 + kLastMatchOffset, Smi::FromInt(0));
   6858       cache->set(index + kStringOffset, *key_string);
   6859       cache->set(index + kPatternOffset, *key_pattern);
   6860       cache->set(index + kArrayOffset, *value_array);
   6861       cache->set(index + kLastMatchOffset, *last_match_cache);
   6862     }
   6863   }
   6864   // If the array is a reasonably short list of substrings, convert it into a
   6865   // list of internalized strings.
   6866   if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) {
   6867     for (int i = 0; i < value_array->length(); i++) {
   6868       Handle<String> str(String::cast(value_array->get(i)), isolate);
   6869       Handle<String> internalized_str = factory->InternalizeString(str);
   6870       value_array->set(i, *internalized_str);
   6871     }
   6872   }
   6873   // Convert backing store to a copy-on-write array.
   6874   value_array->set_map_no_write_barrier(*factory->fixed_cow_array_map());
   6875 }
   6876 
   6877 
   6878 void RegExpResultsCache::Clear(FixedArray* cache) {
   6879   for (int i = 0; i < kRegExpResultsCacheSize; i++) {
   6880     cache->set(i, Smi::FromInt(0));
   6881   }
   6882 }
   6883 
   6884 }  // namespace internal
   6885 }  // namespace v8
   6886