Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with C++ code generation of classes
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGBlocks.h"
     15 #include "CGCXXABI.h"
     16 #include "CGDebugInfo.h"
     17 #include "CGRecordLayout.h"
     18 #include "CodeGenFunction.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/DeclTemplate.h"
     21 #include "clang/AST/EvaluatedExprVisitor.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "clang/AST/StmtCXX.h"
     24 #include "clang/Basic/TargetBuiltins.h"
     25 #include "clang/CodeGen/CGFunctionInfo.h"
     26 #include "clang/Frontend/CodeGenOptions.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/Metadata.h"
     29 
     30 using namespace clang;
     31 using namespace CodeGen;
     32 
     33 /// Return the best known alignment for an unknown pointer to a
     34 /// particular class.
     35 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
     36   if (!RD->isCompleteDefinition())
     37     return CharUnits::One(); // Hopefully won't be used anywhere.
     38 
     39   auto &layout = getContext().getASTRecordLayout(RD);
     40 
     41   // If the class is final, then we know that the pointer points to an
     42   // object of that type and can use the full alignment.
     43   if (RD->hasAttr<FinalAttr>()) {
     44     return layout.getAlignment();
     45 
     46   // Otherwise, we have to assume it could be a subclass.
     47   } else {
     48     return layout.getNonVirtualAlignment();
     49   }
     50 }
     51 
     52 /// Return the best known alignment for a pointer to a virtual base,
     53 /// given the alignment of a pointer to the derived class.
     54 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
     55                                            const CXXRecordDecl *derivedClass,
     56                                            const CXXRecordDecl *vbaseClass) {
     57   // The basic idea here is that an underaligned derived pointer might
     58   // indicate an underaligned base pointer.
     59 
     60   assert(vbaseClass->isCompleteDefinition());
     61   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
     62   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
     63 
     64   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
     65                                    expectedVBaseAlign);
     66 }
     67 
     68 CharUnits
     69 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
     70                                          const CXXRecordDecl *baseDecl,
     71                                          CharUnits expectedTargetAlign) {
     72   // If the base is an incomplete type (which is, alas, possible with
     73   // member pointers), be pessimistic.
     74   if (!baseDecl->isCompleteDefinition())
     75     return std::min(actualBaseAlign, expectedTargetAlign);
     76 
     77   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
     78   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
     79 
     80   // If the class is properly aligned, assume the target offset is, too.
     81   //
     82   // This actually isn't necessarily the right thing to do --- if the
     83   // class is a complete object, but it's only properly aligned for a
     84   // base subobject, then the alignments of things relative to it are
     85   // probably off as well.  (Note that this requires the alignment of
     86   // the target to be greater than the NV alignment of the derived
     87   // class.)
     88   //
     89   // However, our approach to this kind of under-alignment can only
     90   // ever be best effort; after all, we're never going to propagate
     91   // alignments through variables or parameters.  Note, in particular,
     92   // that constructing a polymorphic type in an address that's less
     93   // than pointer-aligned will generally trap in the constructor,
     94   // unless we someday add some sort of attribute to change the
     95   // assumed alignment of 'this'.  So our goal here is pretty much
     96   // just to allow the user to explicitly say that a pointer is
     97   // under-aligned and then safely access its fields and v-tables.
     98   if (actualBaseAlign >= expectedBaseAlign) {
     99     return expectedTargetAlign;
    100   }
    101 
    102   // Otherwise, we might be offset by an arbitrary multiple of the
    103   // actual alignment.  The correct adjustment is to take the min of
    104   // the two alignments.
    105   return std::min(actualBaseAlign, expectedTargetAlign);
    106 }
    107 
    108 Address CodeGenFunction::LoadCXXThisAddress() {
    109   assert(CurFuncDecl && "loading 'this' without a func declaration?");
    110   assert(isa<CXXMethodDecl>(CurFuncDecl));
    111 
    112   // Lazily compute CXXThisAlignment.
    113   if (CXXThisAlignment.isZero()) {
    114     // Just use the best known alignment for the parent.
    115     // TODO: if we're currently emitting a complete-object ctor/dtor,
    116     // we can always use the complete-object alignment.
    117     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
    118     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
    119   }
    120 
    121   return Address(LoadCXXThis(), CXXThisAlignment);
    122 }
    123 
    124 /// Emit the address of a field using a member data pointer.
    125 ///
    126 /// \param E Only used for emergency diagnostics
    127 Address
    128 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
    129                                                  llvm::Value *memberPtr,
    130                                       const MemberPointerType *memberPtrType,
    131                                                  AlignmentSource *alignSource) {
    132   // Ask the ABI to compute the actual address.
    133   llvm::Value *ptr =
    134     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
    135                                                  memberPtr, memberPtrType);
    136 
    137   QualType memberType = memberPtrType->getPointeeType();
    138   CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource);
    139   memberAlign =
    140     CGM.getDynamicOffsetAlignment(base.getAlignment(),
    141                             memberPtrType->getClass()->getAsCXXRecordDecl(),
    142                                   memberAlign);
    143   return Address(ptr, memberAlign);
    144 }
    145 
    146 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
    147     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
    148     CastExpr::path_const_iterator End) {
    149   CharUnits Offset = CharUnits::Zero();
    150 
    151   const ASTContext &Context = getContext();
    152   const CXXRecordDecl *RD = DerivedClass;
    153 
    154   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
    155     const CXXBaseSpecifier *Base = *I;
    156     assert(!Base->isVirtual() && "Should not see virtual bases here!");
    157 
    158     // Get the layout.
    159     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    160 
    161     const CXXRecordDecl *BaseDecl =
    162       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
    163 
    164     // Add the offset.
    165     Offset += Layout.getBaseClassOffset(BaseDecl);
    166 
    167     RD = BaseDecl;
    168   }
    169 
    170   return Offset;
    171 }
    172 
    173 llvm::Constant *
    174 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
    175                                    CastExpr::path_const_iterator PathBegin,
    176                                    CastExpr::path_const_iterator PathEnd) {
    177   assert(PathBegin != PathEnd && "Base path should not be empty!");
    178 
    179   CharUnits Offset =
    180       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
    181   if (Offset.isZero())
    182     return nullptr;
    183 
    184   llvm::Type *PtrDiffTy =
    185   Types.ConvertType(getContext().getPointerDiffType());
    186 
    187   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
    188 }
    189 
    190 /// Gets the address of a direct base class within a complete object.
    191 /// This should only be used for (1) non-virtual bases or (2) virtual bases
    192 /// when the type is known to be complete (e.g. in complete destructors).
    193 ///
    194 /// The object pointed to by 'This' is assumed to be non-null.
    195 Address
    196 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
    197                                                    const CXXRecordDecl *Derived,
    198                                                    const CXXRecordDecl *Base,
    199                                                    bool BaseIsVirtual) {
    200   // 'this' must be a pointer (in some address space) to Derived.
    201   assert(This.getElementType() == ConvertType(Derived));
    202 
    203   // Compute the offset of the virtual base.
    204   CharUnits Offset;
    205   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
    206   if (BaseIsVirtual)
    207     Offset = Layout.getVBaseClassOffset(Base);
    208   else
    209     Offset = Layout.getBaseClassOffset(Base);
    210 
    211   // Shift and cast down to the base type.
    212   // TODO: for complete types, this should be possible with a GEP.
    213   Address V = This;
    214   if (!Offset.isZero()) {
    215     V = Builder.CreateElementBitCast(V, Int8Ty);
    216     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
    217   }
    218   V = Builder.CreateElementBitCast(V, ConvertType(Base));
    219 
    220   return V;
    221 }
    222 
    223 static Address
    224 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
    225                                 CharUnits nonVirtualOffset,
    226                                 llvm::Value *virtualOffset,
    227                                 const CXXRecordDecl *derivedClass,
    228                                 const CXXRecordDecl *nearestVBase) {
    229   // Assert that we have something to do.
    230   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
    231 
    232   // Compute the offset from the static and dynamic components.
    233   llvm::Value *baseOffset;
    234   if (!nonVirtualOffset.isZero()) {
    235     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
    236                                         nonVirtualOffset.getQuantity());
    237     if (virtualOffset) {
    238       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
    239     }
    240   } else {
    241     baseOffset = virtualOffset;
    242   }
    243 
    244   // Apply the base offset.
    245   llvm::Value *ptr = addr.getPointer();
    246   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
    247   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
    248 
    249   // If we have a virtual component, the alignment of the result will
    250   // be relative only to the known alignment of that vbase.
    251   CharUnits alignment;
    252   if (virtualOffset) {
    253     assert(nearestVBase && "virtual offset without vbase?");
    254     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
    255                                           derivedClass, nearestVBase);
    256   } else {
    257     alignment = addr.getAlignment();
    258   }
    259   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
    260 
    261   return Address(ptr, alignment);
    262 }
    263 
    264 Address CodeGenFunction::GetAddressOfBaseClass(
    265     Address Value, const CXXRecordDecl *Derived,
    266     CastExpr::path_const_iterator PathBegin,
    267     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
    268     SourceLocation Loc) {
    269   assert(PathBegin != PathEnd && "Base path should not be empty!");
    270 
    271   CastExpr::path_const_iterator Start = PathBegin;
    272   const CXXRecordDecl *VBase = nullptr;
    273 
    274   // Sema has done some convenient canonicalization here: if the
    275   // access path involved any virtual steps, the conversion path will
    276   // *start* with a step down to the correct virtual base subobject,
    277   // and hence will not require any further steps.
    278   if ((*Start)->isVirtual()) {
    279     VBase =
    280       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
    281     ++Start;
    282   }
    283 
    284   // Compute the static offset of the ultimate destination within its
    285   // allocating subobject (the virtual base, if there is one, or else
    286   // the "complete" object that we see).
    287   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
    288       VBase ? VBase : Derived, Start, PathEnd);
    289 
    290   // If there's a virtual step, we can sometimes "devirtualize" it.
    291   // For now, that's limited to when the derived type is final.
    292   // TODO: "devirtualize" this for accesses to known-complete objects.
    293   if (VBase && Derived->hasAttr<FinalAttr>()) {
    294     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
    295     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
    296     NonVirtualOffset += vBaseOffset;
    297     VBase = nullptr; // we no longer have a virtual step
    298   }
    299 
    300   // Get the base pointer type.
    301   llvm::Type *BasePtrTy =
    302     ConvertType((PathEnd[-1])->getType())->getPointerTo();
    303 
    304   QualType DerivedTy = getContext().getRecordType(Derived);
    305   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
    306 
    307   // If the static offset is zero and we don't have a virtual step,
    308   // just do a bitcast; null checks are unnecessary.
    309   if (NonVirtualOffset.isZero() && !VBase) {
    310     if (sanitizePerformTypeCheck()) {
    311       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
    312                     DerivedTy, DerivedAlign, !NullCheckValue);
    313     }
    314     return Builder.CreateBitCast(Value, BasePtrTy);
    315   }
    316 
    317   llvm::BasicBlock *origBB = nullptr;
    318   llvm::BasicBlock *endBB = nullptr;
    319 
    320   // Skip over the offset (and the vtable load) if we're supposed to
    321   // null-check the pointer.
    322   if (NullCheckValue) {
    323     origBB = Builder.GetInsertBlock();
    324     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
    325     endBB = createBasicBlock("cast.end");
    326 
    327     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
    328     Builder.CreateCondBr(isNull, endBB, notNullBB);
    329     EmitBlock(notNullBB);
    330   }
    331 
    332   if (sanitizePerformTypeCheck()) {
    333     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
    334                   Value.getPointer(), DerivedTy, DerivedAlign, true);
    335   }
    336 
    337   // Compute the virtual offset.
    338   llvm::Value *VirtualOffset = nullptr;
    339   if (VBase) {
    340     VirtualOffset =
    341       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
    342   }
    343 
    344   // Apply both offsets.
    345   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
    346                                           VirtualOffset, Derived, VBase);
    347 
    348   // Cast to the destination type.
    349   Value = Builder.CreateBitCast(Value, BasePtrTy);
    350 
    351   // Build a phi if we needed a null check.
    352   if (NullCheckValue) {
    353     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
    354     Builder.CreateBr(endBB);
    355     EmitBlock(endBB);
    356 
    357     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
    358     PHI->addIncoming(Value.getPointer(), notNullBB);
    359     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
    360     Value = Address(PHI, Value.getAlignment());
    361   }
    362 
    363   return Value;
    364 }
    365 
    366 Address
    367 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
    368                                           const CXXRecordDecl *Derived,
    369                                         CastExpr::path_const_iterator PathBegin,
    370                                           CastExpr::path_const_iterator PathEnd,
    371                                           bool NullCheckValue) {
    372   assert(PathBegin != PathEnd && "Base path should not be empty!");
    373 
    374   QualType DerivedTy =
    375     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
    376   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
    377 
    378   llvm::Value *NonVirtualOffset =
    379     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
    380 
    381   if (!NonVirtualOffset) {
    382     // No offset, we can just cast back.
    383     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
    384   }
    385 
    386   llvm::BasicBlock *CastNull = nullptr;
    387   llvm::BasicBlock *CastNotNull = nullptr;
    388   llvm::BasicBlock *CastEnd = nullptr;
    389 
    390   if (NullCheckValue) {
    391     CastNull = createBasicBlock("cast.null");
    392     CastNotNull = createBasicBlock("cast.notnull");
    393     CastEnd = createBasicBlock("cast.end");
    394 
    395     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
    396     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
    397     EmitBlock(CastNotNull);
    398   }
    399 
    400   // Apply the offset.
    401   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
    402   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
    403                             "sub.ptr");
    404 
    405   // Just cast.
    406   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
    407 
    408   // Produce a PHI if we had a null-check.
    409   if (NullCheckValue) {
    410     Builder.CreateBr(CastEnd);
    411     EmitBlock(CastNull);
    412     Builder.CreateBr(CastEnd);
    413     EmitBlock(CastEnd);
    414 
    415     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
    416     PHI->addIncoming(Value, CastNotNull);
    417     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
    418     Value = PHI;
    419   }
    420 
    421   return Address(Value, CGM.getClassPointerAlignment(Derived));
    422 }
    423 
    424 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
    425                                               bool ForVirtualBase,
    426                                               bool Delegating) {
    427   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
    428     // This constructor/destructor does not need a VTT parameter.
    429     return nullptr;
    430   }
    431 
    432   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
    433   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
    434 
    435   llvm::Value *VTT;
    436 
    437   uint64_t SubVTTIndex;
    438 
    439   if (Delegating) {
    440     // If this is a delegating constructor call, just load the VTT.
    441     return LoadCXXVTT();
    442   } else if (RD == Base) {
    443     // If the record matches the base, this is the complete ctor/dtor
    444     // variant calling the base variant in a class with virtual bases.
    445     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
    446            "doing no-op VTT offset in base dtor/ctor?");
    447     assert(!ForVirtualBase && "Can't have same class as virtual base!");
    448     SubVTTIndex = 0;
    449   } else {
    450     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
    451     CharUnits BaseOffset = ForVirtualBase ?
    452       Layout.getVBaseClassOffset(Base) :
    453       Layout.getBaseClassOffset(Base);
    454 
    455     SubVTTIndex =
    456       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
    457     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
    458   }
    459 
    460   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
    461     // A VTT parameter was passed to the constructor, use it.
    462     VTT = LoadCXXVTT();
    463     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
    464   } else {
    465     // We're the complete constructor, so get the VTT by name.
    466     VTT = CGM.getVTables().GetAddrOfVTT(RD);
    467     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
    468   }
    469 
    470   return VTT;
    471 }
    472 
    473 namespace {
    474   /// Call the destructor for a direct base class.
    475   struct CallBaseDtor final : EHScopeStack::Cleanup {
    476     const CXXRecordDecl *BaseClass;
    477     bool BaseIsVirtual;
    478     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
    479       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
    480 
    481     void Emit(CodeGenFunction &CGF, Flags flags) override {
    482       const CXXRecordDecl *DerivedClass =
    483         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
    484 
    485       const CXXDestructorDecl *D = BaseClass->getDestructor();
    486       Address Addr =
    487         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
    488                                                   DerivedClass, BaseClass,
    489                                                   BaseIsVirtual);
    490       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
    491                                 /*Delegating=*/false, Addr);
    492     }
    493   };
    494 
    495   /// A visitor which checks whether an initializer uses 'this' in a
    496   /// way which requires the vtable to be properly set.
    497   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
    498     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
    499 
    500     bool UsesThis;
    501 
    502     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
    503 
    504     // Black-list all explicit and implicit references to 'this'.
    505     //
    506     // Do we need to worry about external references to 'this' derived
    507     // from arbitrary code?  If so, then anything which runs arbitrary
    508     // external code might potentially access the vtable.
    509     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
    510   };
    511 } // end anonymous namespace
    512 
    513 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
    514   DynamicThisUseChecker Checker(C);
    515   Checker.Visit(Init);
    516   return Checker.UsesThis;
    517 }
    518 
    519 static void EmitBaseInitializer(CodeGenFunction &CGF,
    520                                 const CXXRecordDecl *ClassDecl,
    521                                 CXXCtorInitializer *BaseInit,
    522                                 CXXCtorType CtorType) {
    523   assert(BaseInit->isBaseInitializer() &&
    524          "Must have base initializer!");
    525 
    526   Address ThisPtr = CGF.LoadCXXThisAddress();
    527 
    528   const Type *BaseType = BaseInit->getBaseClass();
    529   CXXRecordDecl *BaseClassDecl =
    530     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
    531 
    532   bool isBaseVirtual = BaseInit->isBaseVirtual();
    533 
    534   // The base constructor doesn't construct virtual bases.
    535   if (CtorType == Ctor_Base && isBaseVirtual)
    536     return;
    537 
    538   // If the initializer for the base (other than the constructor
    539   // itself) accesses 'this' in any way, we need to initialize the
    540   // vtables.
    541   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
    542     CGF.InitializeVTablePointers(ClassDecl);
    543 
    544   // We can pretend to be a complete class because it only matters for
    545   // virtual bases, and we only do virtual bases for complete ctors.
    546   Address V =
    547     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
    548                                               BaseClassDecl,
    549                                               isBaseVirtual);
    550   AggValueSlot AggSlot =
    551     AggValueSlot::forAddr(V, Qualifiers(),
    552                           AggValueSlot::IsDestructed,
    553                           AggValueSlot::DoesNotNeedGCBarriers,
    554                           AggValueSlot::IsNotAliased);
    555 
    556   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
    557 
    558   if (CGF.CGM.getLangOpts().Exceptions &&
    559       !BaseClassDecl->hasTrivialDestructor())
    560     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
    561                                           isBaseVirtual);
    562 }
    563 
    564 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
    565                                      LValue LHS,
    566                                      Expr *Init,
    567                                      Address ArrayIndexVar,
    568                                      QualType T,
    569                                      ArrayRef<VarDecl *> ArrayIndexes,
    570                                      unsigned Index) {
    571   if (Index == ArrayIndexes.size()) {
    572     LValue LV = LHS;
    573 
    574     if (ArrayIndexVar.isValid()) {
    575       // If we have an array index variable, load it and use it as an offset.
    576       // Then, increment the value.
    577       llvm::Value *Dest = LHS.getPointer();
    578       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
    579       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
    580       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
    581       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
    582       CGF.Builder.CreateStore(Next, ArrayIndexVar);
    583 
    584       // Update the LValue.
    585       CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T);
    586       CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize);
    587       LV.setAddress(Address(Dest, Align));
    588     }
    589 
    590     switch (CGF.getEvaluationKind(T)) {
    591     case TEK_Scalar:
    592       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
    593       break;
    594     case TEK_Complex:
    595       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
    596       break;
    597     case TEK_Aggregate: {
    598       AggValueSlot Slot =
    599         AggValueSlot::forLValue(LV,
    600                                 AggValueSlot::IsDestructed,
    601                                 AggValueSlot::DoesNotNeedGCBarriers,
    602                                 AggValueSlot::IsNotAliased);
    603 
    604       CGF.EmitAggExpr(Init, Slot);
    605       break;
    606     }
    607     }
    608 
    609     return;
    610   }
    611 
    612   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
    613   assert(Array && "Array initialization without the array type?");
    614   Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
    615 
    616   // Initialize this index variable to zero.
    617   llvm::Value* Zero
    618     = llvm::Constant::getNullValue(IndexVar.getElementType());
    619   CGF.Builder.CreateStore(Zero, IndexVar);
    620 
    621   // Start the loop with a block that tests the condition.
    622   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
    623   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
    624 
    625   CGF.EmitBlock(CondBlock);
    626 
    627   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
    628   // Generate: if (loop-index < number-of-elements) fall to the loop body,
    629   // otherwise, go to the block after the for-loop.
    630   uint64_t NumElements = Array->getSize().getZExtValue();
    631   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
    632   llvm::Value *NumElementsPtr =
    633     llvm::ConstantInt::get(Counter->getType(), NumElements);
    634   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
    635                                                   "isless");
    636 
    637   // If the condition is true, execute the body.
    638   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
    639 
    640   CGF.EmitBlock(ForBody);
    641   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
    642 
    643   // Inside the loop body recurse to emit the inner loop or, eventually, the
    644   // constructor call.
    645   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
    646                            Array->getElementType(), ArrayIndexes, Index + 1);
    647 
    648   CGF.EmitBlock(ContinueBlock);
    649 
    650   // Emit the increment of the loop counter.
    651   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
    652   Counter = CGF.Builder.CreateLoad(IndexVar);
    653   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
    654   CGF.Builder.CreateStore(NextVal, IndexVar);
    655 
    656   // Finally, branch back up to the condition for the next iteration.
    657   CGF.EmitBranch(CondBlock);
    658 
    659   // Emit the fall-through block.
    660   CGF.EmitBlock(AfterFor, true);
    661 }
    662 
    663 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
    664   auto *CD = dyn_cast<CXXConstructorDecl>(D);
    665   if (!(CD && CD->isCopyOrMoveConstructor()) &&
    666       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
    667     return false;
    668 
    669   // We can emit a memcpy for a trivial copy or move constructor/assignment.
    670   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
    671     return true;
    672 
    673   // We *must* emit a memcpy for a defaulted union copy or move op.
    674   if (D->getParent()->isUnion() && D->isDefaulted())
    675     return true;
    676 
    677   return false;
    678 }
    679 
    680 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
    681                                                 CXXCtorInitializer *MemberInit,
    682                                                 LValue &LHS) {
    683   FieldDecl *Field = MemberInit->getAnyMember();
    684   if (MemberInit->isIndirectMemberInitializer()) {
    685     // If we are initializing an anonymous union field, drill down to the field.
    686     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
    687     for (const auto *I : IndirectField->chain())
    688       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
    689   } else {
    690     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
    691   }
    692 }
    693 
    694 static void EmitMemberInitializer(CodeGenFunction &CGF,
    695                                   const CXXRecordDecl *ClassDecl,
    696                                   CXXCtorInitializer *MemberInit,
    697                                   const CXXConstructorDecl *Constructor,
    698                                   FunctionArgList &Args) {
    699   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
    700   assert(MemberInit->isAnyMemberInitializer() &&
    701          "Must have member initializer!");
    702   assert(MemberInit->getInit() && "Must have initializer!");
    703 
    704   // non-static data member initializers.
    705   FieldDecl *Field = MemberInit->getAnyMember();
    706   QualType FieldType = Field->getType();
    707 
    708   llvm::Value *ThisPtr = CGF.LoadCXXThis();
    709   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    710   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    711 
    712   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
    713 
    714   // Special case: if we are in a copy or move constructor, and we are copying
    715   // an array of PODs or classes with trivial copy constructors, ignore the
    716   // AST and perform the copy we know is equivalent.
    717   // FIXME: This is hacky at best... if we had a bit more explicit information
    718   // in the AST, we could generalize it more easily.
    719   const ConstantArrayType *Array
    720     = CGF.getContext().getAsConstantArrayType(FieldType);
    721   if (Array && Constructor->isDefaulted() &&
    722       Constructor->isCopyOrMoveConstructor()) {
    723     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
    724     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
    725     if (BaseElementTy.isPODType(CGF.getContext()) ||
    726         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
    727       unsigned SrcArgIndex =
    728           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
    729       llvm::Value *SrcPtr
    730         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
    731       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
    732       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
    733 
    734       // Copy the aggregate.
    735       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
    736                             LHS.isVolatileQualified());
    737       // Ensure that we destroy the objects if an exception is thrown later in
    738       // the constructor.
    739       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    740       if (CGF.needsEHCleanup(dtorKind))
    741         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    742       return;
    743     }
    744   }
    745 
    746   ArrayRef<VarDecl *> ArrayIndexes;
    747   if (MemberInit->getNumArrayIndices())
    748     ArrayIndexes = MemberInit->getArrayIndexes();
    749   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
    750 }
    751 
    752 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
    753                                 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) {
    754   QualType FieldType = Field->getType();
    755   switch (getEvaluationKind(FieldType)) {
    756   case TEK_Scalar:
    757     if (LHS.isSimple()) {
    758       EmitExprAsInit(Init, Field, LHS, false);
    759     } else {
    760       RValue RHS = RValue::get(EmitScalarExpr(Init));
    761       EmitStoreThroughLValue(RHS, LHS);
    762     }
    763     break;
    764   case TEK_Complex:
    765     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
    766     break;
    767   case TEK_Aggregate: {
    768     Address ArrayIndexVar = Address::invalid();
    769     if (ArrayIndexes.size()) {
    770       // The LHS is a pointer to the first object we'll be constructing, as
    771       // a flat array.
    772       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
    773       llvm::Type *BasePtr = ConvertType(BaseElementTy);
    774       BasePtr = llvm::PointerType::getUnqual(BasePtr);
    775       Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr);
    776       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
    777 
    778       // Create an array index that will be used to walk over all of the
    779       // objects we're constructing.
    780       ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index");
    781       llvm::Value *Zero =
    782         llvm::Constant::getNullValue(ArrayIndexVar.getElementType());
    783       Builder.CreateStore(Zero, ArrayIndexVar);
    784 
    785       // Emit the block variables for the array indices, if any.
    786       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
    787         EmitAutoVarDecl(*ArrayIndexes[I]);
    788     }
    789 
    790     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
    791                              ArrayIndexes, 0);
    792   }
    793   }
    794 
    795   // Ensure that we destroy this object if an exception is thrown
    796   // later in the constructor.
    797   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    798   if (needsEHCleanup(dtorKind))
    799     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    800 }
    801 
    802 /// Checks whether the given constructor is a valid subject for the
    803 /// complete-to-base constructor delegation optimization, i.e.
    804 /// emitting the complete constructor as a simple call to the base
    805 /// constructor.
    806 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
    807 
    808   // Currently we disable the optimization for classes with virtual
    809   // bases because (1) the addresses of parameter variables need to be
    810   // consistent across all initializers but (2) the delegate function
    811   // call necessarily creates a second copy of the parameter variable.
    812   //
    813   // The limiting example (purely theoretical AFAIK):
    814   //   struct A { A(int &c) { c++; } };
    815   //   struct B : virtual A {
    816   //     B(int count) : A(count) { printf("%d\n", count); }
    817   //   };
    818   // ...although even this example could in principle be emitted as a
    819   // delegation since the address of the parameter doesn't escape.
    820   if (Ctor->getParent()->getNumVBases()) {
    821     // TODO: white-list trivial vbase initializers.  This case wouldn't
    822     // be subject to the restrictions below.
    823 
    824     // TODO: white-list cases where:
    825     //  - there are no non-reference parameters to the constructor
    826     //  - the initializers don't access any non-reference parameters
    827     //  - the initializers don't take the address of non-reference
    828     //    parameters
    829     //  - etc.
    830     // If we ever add any of the above cases, remember that:
    831     //  - function-try-blocks will always blacklist this optimization
    832     //  - we need to perform the constructor prologue and cleanup in
    833     //    EmitConstructorBody.
    834 
    835     return false;
    836   }
    837 
    838   // We also disable the optimization for variadic functions because
    839   // it's impossible to "re-pass" varargs.
    840   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
    841     return false;
    842 
    843   // FIXME: Decide if we can do a delegation of a delegating constructor.
    844   if (Ctor->isDelegatingConstructor())
    845     return false;
    846 
    847   return true;
    848 }
    849 
    850 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
    851 // to poison the extra field paddings inserted under
    852 // -fsanitize-address-field-padding=1|2.
    853 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
    854   ASTContext &Context = getContext();
    855   const CXXRecordDecl *ClassDecl =
    856       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
    857                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
    858   if (!ClassDecl->mayInsertExtraPadding()) return;
    859 
    860   struct SizeAndOffset {
    861     uint64_t Size;
    862     uint64_t Offset;
    863   };
    864 
    865   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
    866   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
    867 
    868   // Populate sizes and offsets of fields.
    869   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
    870   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
    871     SSV[i].Offset =
    872         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
    873 
    874   size_t NumFields = 0;
    875   for (const auto *Field : ClassDecl->fields()) {
    876     const FieldDecl *D = Field;
    877     std::pair<CharUnits, CharUnits> FieldInfo =
    878         Context.getTypeInfoInChars(D->getType());
    879     CharUnits FieldSize = FieldInfo.first;
    880     assert(NumFields < SSV.size());
    881     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
    882     NumFields++;
    883   }
    884   assert(NumFields == SSV.size());
    885   if (SSV.size() <= 1) return;
    886 
    887   // We will insert calls to __asan_* run-time functions.
    888   // LLVM AddressSanitizer pass may decide to inline them later.
    889   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
    890   llvm::FunctionType *FTy =
    891       llvm::FunctionType::get(CGM.VoidTy, Args, false);
    892   llvm::Constant *F = CGM.CreateRuntimeFunction(
    893       FTy, Prologue ? "__asan_poison_intra_object_redzone"
    894                     : "__asan_unpoison_intra_object_redzone");
    895 
    896   llvm::Value *ThisPtr = LoadCXXThis();
    897   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
    898   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
    899   // For each field check if it has sufficient padding,
    900   // if so (un)poison it with a call.
    901   for (size_t i = 0; i < SSV.size(); i++) {
    902     uint64_t AsanAlignment = 8;
    903     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
    904     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
    905     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
    906     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
    907         (NextField % AsanAlignment) != 0)
    908       continue;
    909     Builder.CreateCall(
    910         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
    911             Builder.getIntN(PtrSize, PoisonSize)});
    912   }
    913 }
    914 
    915 /// EmitConstructorBody - Emits the body of the current constructor.
    916 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
    917   EmitAsanPrologueOrEpilogue(true);
    918   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
    919   CXXCtorType CtorType = CurGD.getCtorType();
    920 
    921   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
    922           CtorType == Ctor_Complete) &&
    923          "can only generate complete ctor for this ABI");
    924 
    925   // Before we go any further, try the complete->base constructor
    926   // delegation optimization.
    927   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
    928       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
    929     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
    930     return;
    931   }
    932 
    933   const FunctionDecl *Definition = nullptr;
    934   Stmt *Body = Ctor->getBody(Definition);
    935   assert(Definition == Ctor && "emitting wrong constructor body");
    936 
    937   // Enter the function-try-block before the constructor prologue if
    938   // applicable.
    939   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
    940   if (IsTryBody)
    941     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    942 
    943   incrementProfileCounter(Body);
    944 
    945   RunCleanupsScope RunCleanups(*this);
    946 
    947   // TODO: in restricted cases, we can emit the vbase initializers of
    948   // a complete ctor and then delegate to the base ctor.
    949 
    950   // Emit the constructor prologue, i.e. the base and member
    951   // initializers.
    952   EmitCtorPrologue(Ctor, CtorType, Args);
    953 
    954   // Emit the body of the statement.
    955   if (IsTryBody)
    956     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
    957   else if (Body)
    958     EmitStmt(Body);
    959 
    960   // Emit any cleanup blocks associated with the member or base
    961   // initializers, which includes (along the exceptional path) the
    962   // destructors for those members and bases that were fully
    963   // constructed.
    964   RunCleanups.ForceCleanup();
    965 
    966   if (IsTryBody)
    967     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    968 }
    969 
    970 namespace {
    971   /// RAII object to indicate that codegen is copying the value representation
    972   /// instead of the object representation. Useful when copying a struct or
    973   /// class which has uninitialized members and we're only performing
    974   /// lvalue-to-rvalue conversion on the object but not its members.
    975   class CopyingValueRepresentation {
    976   public:
    977     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
    978         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
    979       CGF.SanOpts.set(SanitizerKind::Bool, false);
    980       CGF.SanOpts.set(SanitizerKind::Enum, false);
    981     }
    982     ~CopyingValueRepresentation() {
    983       CGF.SanOpts = OldSanOpts;
    984     }
    985   private:
    986     CodeGenFunction &CGF;
    987     SanitizerSet OldSanOpts;
    988   };
    989 }
    990 
    991 namespace {
    992   class FieldMemcpyizer {
    993   public:
    994     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
    995                     const VarDecl *SrcRec)
    996       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
    997         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
    998         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
    999         LastFieldOffset(0), LastAddedFieldIndex(0) {}
   1000 
   1001     bool isMemcpyableField(FieldDecl *F) const {
   1002       // Never memcpy fields when we are adding poisoned paddings.
   1003       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
   1004         return false;
   1005       Qualifiers Qual = F->getType().getQualifiers();
   1006       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
   1007         return false;
   1008       return true;
   1009     }
   1010 
   1011     void addMemcpyableField(FieldDecl *F) {
   1012       if (!FirstField)
   1013         addInitialField(F);
   1014       else
   1015         addNextField(F);
   1016     }
   1017 
   1018     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
   1019       unsigned LastFieldSize =
   1020         LastField->isBitField() ?
   1021           LastField->getBitWidthValue(CGF.getContext()) :
   1022           CGF.getContext().getTypeSize(LastField->getType());
   1023       uint64_t MemcpySizeBits =
   1024         LastFieldOffset + LastFieldSize - FirstByteOffset +
   1025         CGF.getContext().getCharWidth() - 1;
   1026       CharUnits MemcpySize =
   1027         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
   1028       return MemcpySize;
   1029     }
   1030 
   1031     void emitMemcpy() {
   1032       // Give the subclass a chance to bail out if it feels the memcpy isn't
   1033       // worth it (e.g. Hasn't aggregated enough data).
   1034       if (!FirstField) {
   1035         return;
   1036       }
   1037 
   1038       uint64_t FirstByteOffset;
   1039       if (FirstField->isBitField()) {
   1040         const CGRecordLayout &RL =
   1041           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
   1042         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
   1043         // FirstFieldOffset is not appropriate for bitfields,
   1044         // we need to use the storage offset instead.
   1045         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
   1046       } else {
   1047         FirstByteOffset = FirstFieldOffset;
   1048       }
   1049 
   1050       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
   1051       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
   1052       Address ThisPtr = CGF.LoadCXXThisAddress();
   1053       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
   1054       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
   1055       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
   1056       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
   1057       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
   1058 
   1059       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
   1060                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
   1061                    MemcpySize);
   1062       reset();
   1063     }
   1064 
   1065     void reset() {
   1066       FirstField = nullptr;
   1067     }
   1068 
   1069   protected:
   1070     CodeGenFunction &CGF;
   1071     const CXXRecordDecl *ClassDecl;
   1072 
   1073   private:
   1074 
   1075     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
   1076       llvm::PointerType *DPT = DestPtr.getType();
   1077       llvm::Type *DBP =
   1078         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
   1079       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
   1080 
   1081       llvm::PointerType *SPT = SrcPtr.getType();
   1082       llvm::Type *SBP =
   1083         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
   1084       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
   1085 
   1086       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
   1087     }
   1088 
   1089     void addInitialField(FieldDecl *F) {
   1090         FirstField = F;
   1091         LastField = F;
   1092         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
   1093         LastFieldOffset = FirstFieldOffset;
   1094         LastAddedFieldIndex = F->getFieldIndex();
   1095         return;
   1096       }
   1097 
   1098     void addNextField(FieldDecl *F) {
   1099       // For the most part, the following invariant will hold:
   1100       //   F->getFieldIndex() == LastAddedFieldIndex + 1
   1101       // The one exception is that Sema won't add a copy-initializer for an
   1102       // unnamed bitfield, which will show up here as a gap in the sequence.
   1103       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
   1104              "Cannot aggregate fields out of order.");
   1105       LastAddedFieldIndex = F->getFieldIndex();
   1106 
   1107       // The 'first' and 'last' fields are chosen by offset, rather than field
   1108       // index. This allows the code to support bitfields, as well as regular
   1109       // fields.
   1110       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
   1111       if (FOffset < FirstFieldOffset) {
   1112         FirstField = F;
   1113         FirstFieldOffset = FOffset;
   1114       } else if (FOffset > LastFieldOffset) {
   1115         LastField = F;
   1116         LastFieldOffset = FOffset;
   1117       }
   1118     }
   1119 
   1120     const VarDecl *SrcRec;
   1121     const ASTRecordLayout &RecLayout;
   1122     FieldDecl *FirstField;
   1123     FieldDecl *LastField;
   1124     uint64_t FirstFieldOffset, LastFieldOffset;
   1125     unsigned LastAddedFieldIndex;
   1126   };
   1127 
   1128   class ConstructorMemcpyizer : public FieldMemcpyizer {
   1129   private:
   1130 
   1131     /// Get source argument for copy constructor. Returns null if not a copy
   1132     /// constructor.
   1133     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
   1134                                                const CXXConstructorDecl *CD,
   1135                                                FunctionArgList &Args) {
   1136       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
   1137         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
   1138       return nullptr;
   1139     }
   1140 
   1141     // Returns true if a CXXCtorInitializer represents a member initialization
   1142     // that can be rolled into a memcpy.
   1143     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
   1144       if (!MemcpyableCtor)
   1145         return false;
   1146       FieldDecl *Field = MemberInit->getMember();
   1147       assert(Field && "No field for member init.");
   1148       QualType FieldType = Field->getType();
   1149       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
   1150 
   1151       // Bail out on non-memcpyable, not-trivially-copyable members.
   1152       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
   1153           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
   1154             FieldType->isReferenceType()))
   1155         return false;
   1156 
   1157       // Bail out on volatile fields.
   1158       if (!isMemcpyableField(Field))
   1159         return false;
   1160 
   1161       // Otherwise we're good.
   1162       return true;
   1163     }
   1164 
   1165   public:
   1166     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
   1167                           FunctionArgList &Args)
   1168       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
   1169         ConstructorDecl(CD),
   1170         MemcpyableCtor(CD->isDefaulted() &&
   1171                        CD->isCopyOrMoveConstructor() &&
   1172                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
   1173         Args(Args) { }
   1174 
   1175     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
   1176       if (isMemberInitMemcpyable(MemberInit)) {
   1177         AggregatedInits.push_back(MemberInit);
   1178         addMemcpyableField(MemberInit->getMember());
   1179       } else {
   1180         emitAggregatedInits();
   1181         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
   1182                               ConstructorDecl, Args);
   1183       }
   1184     }
   1185 
   1186     void emitAggregatedInits() {
   1187       if (AggregatedInits.size() <= 1) {
   1188         // This memcpy is too small to be worthwhile. Fall back on default
   1189         // codegen.
   1190         if (!AggregatedInits.empty()) {
   1191           CopyingValueRepresentation CVR(CGF);
   1192           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
   1193                                 AggregatedInits[0], ConstructorDecl, Args);
   1194           AggregatedInits.clear();
   1195         }
   1196         reset();
   1197         return;
   1198       }
   1199 
   1200       pushEHDestructors();
   1201       emitMemcpy();
   1202       AggregatedInits.clear();
   1203     }
   1204 
   1205     void pushEHDestructors() {
   1206       Address ThisPtr = CGF.LoadCXXThisAddress();
   1207       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
   1208       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
   1209 
   1210       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
   1211         CXXCtorInitializer *MemberInit = AggregatedInits[i];
   1212         QualType FieldType = MemberInit->getAnyMember()->getType();
   1213         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
   1214         if (!CGF.needsEHCleanup(dtorKind))
   1215           continue;
   1216         LValue FieldLHS = LHS;
   1217         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
   1218         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
   1219       }
   1220     }
   1221 
   1222     void finish() {
   1223       emitAggregatedInits();
   1224     }
   1225 
   1226   private:
   1227     const CXXConstructorDecl *ConstructorDecl;
   1228     bool MemcpyableCtor;
   1229     FunctionArgList &Args;
   1230     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
   1231   };
   1232 
   1233   class AssignmentMemcpyizer : public FieldMemcpyizer {
   1234   private:
   1235 
   1236     // Returns the memcpyable field copied by the given statement, if one
   1237     // exists. Otherwise returns null.
   1238     FieldDecl *getMemcpyableField(Stmt *S) {
   1239       if (!AssignmentsMemcpyable)
   1240         return nullptr;
   1241       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
   1242         // Recognise trivial assignments.
   1243         if (BO->getOpcode() != BO_Assign)
   1244           return nullptr;
   1245         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
   1246         if (!ME)
   1247           return nullptr;
   1248         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1249         if (!Field || !isMemcpyableField(Field))
   1250           return nullptr;
   1251         Stmt *RHS = BO->getRHS();
   1252         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
   1253           RHS = EC->getSubExpr();
   1254         if (!RHS)
   1255           return nullptr;
   1256         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
   1257         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
   1258           return nullptr;
   1259         return Field;
   1260       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
   1261         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
   1262         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
   1263           return nullptr;
   1264         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
   1265         if (!IOA)
   1266           return nullptr;
   1267         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
   1268         if (!Field || !isMemcpyableField(Field))
   1269           return nullptr;
   1270         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
   1271         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
   1272           return nullptr;
   1273         return Field;
   1274       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
   1275         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
   1276         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
   1277           return nullptr;
   1278         Expr *DstPtr = CE->getArg(0);
   1279         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
   1280           DstPtr = DC->getSubExpr();
   1281         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
   1282         if (!DUO || DUO->getOpcode() != UO_AddrOf)
   1283           return nullptr;
   1284         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
   1285         if (!ME)
   1286           return nullptr;
   1287         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1288         if (!Field || !isMemcpyableField(Field))
   1289           return nullptr;
   1290         Expr *SrcPtr = CE->getArg(1);
   1291         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
   1292           SrcPtr = SC->getSubExpr();
   1293         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
   1294         if (!SUO || SUO->getOpcode() != UO_AddrOf)
   1295           return nullptr;
   1296         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
   1297         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
   1298           return nullptr;
   1299         return Field;
   1300       }
   1301 
   1302       return nullptr;
   1303     }
   1304 
   1305     bool AssignmentsMemcpyable;
   1306     SmallVector<Stmt*, 16> AggregatedStmts;
   1307 
   1308   public:
   1309 
   1310     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
   1311                          FunctionArgList &Args)
   1312       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
   1313         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
   1314       assert(Args.size() == 2);
   1315     }
   1316 
   1317     void emitAssignment(Stmt *S) {
   1318       FieldDecl *F = getMemcpyableField(S);
   1319       if (F) {
   1320         addMemcpyableField(F);
   1321         AggregatedStmts.push_back(S);
   1322       } else {
   1323         emitAggregatedStmts();
   1324         CGF.EmitStmt(S);
   1325       }
   1326     }
   1327 
   1328     void emitAggregatedStmts() {
   1329       if (AggregatedStmts.size() <= 1) {
   1330         if (!AggregatedStmts.empty()) {
   1331           CopyingValueRepresentation CVR(CGF);
   1332           CGF.EmitStmt(AggregatedStmts[0]);
   1333         }
   1334         reset();
   1335       }
   1336 
   1337       emitMemcpy();
   1338       AggregatedStmts.clear();
   1339     }
   1340 
   1341     void finish() {
   1342       emitAggregatedStmts();
   1343     }
   1344   };
   1345 } // end anonymous namespace
   1346 
   1347 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
   1348   const Type *BaseType = BaseInit->getBaseClass();
   1349   const auto *BaseClassDecl =
   1350           cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
   1351   return BaseClassDecl->isDynamicClass();
   1352 }
   1353 
   1354 /// EmitCtorPrologue - This routine generates necessary code to initialize
   1355 /// base classes and non-static data members belonging to this constructor.
   1356 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
   1357                                        CXXCtorType CtorType,
   1358                                        FunctionArgList &Args) {
   1359   if (CD->isDelegatingConstructor())
   1360     return EmitDelegatingCXXConstructorCall(CD, Args);
   1361 
   1362   const CXXRecordDecl *ClassDecl = CD->getParent();
   1363 
   1364   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
   1365                                           E = CD->init_end();
   1366 
   1367   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
   1368   if (ClassDecl->getNumVBases() &&
   1369       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
   1370     // The ABIs that don't have constructor variants need to put a branch
   1371     // before the virtual base initialization code.
   1372     BaseCtorContinueBB =
   1373       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
   1374     assert(BaseCtorContinueBB);
   1375   }
   1376 
   1377   llvm::Value *const OldThis = CXXThisValue;
   1378   // Virtual base initializers first.
   1379   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
   1380     if (CGM.getCodeGenOpts().StrictVTablePointers &&
   1381         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   1382         isInitializerOfDynamicClass(*B))
   1383       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
   1384     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1385   }
   1386 
   1387   if (BaseCtorContinueBB) {
   1388     // Complete object handler should continue to the remaining initializers.
   1389     Builder.CreateBr(BaseCtorContinueBB);
   1390     EmitBlock(BaseCtorContinueBB);
   1391   }
   1392 
   1393   // Then, non-virtual base initializers.
   1394   for (; B != E && (*B)->isBaseInitializer(); B++) {
   1395     assert(!(*B)->isBaseVirtual());
   1396 
   1397     if (CGM.getCodeGenOpts().StrictVTablePointers &&
   1398         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   1399         isInitializerOfDynamicClass(*B))
   1400       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
   1401     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1402   }
   1403 
   1404   CXXThisValue = OldThis;
   1405 
   1406   InitializeVTablePointers(ClassDecl);
   1407 
   1408   // And finally, initialize class members.
   1409   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
   1410   ConstructorMemcpyizer CM(*this, CD, Args);
   1411   for (; B != E; B++) {
   1412     CXXCtorInitializer *Member = (*B);
   1413     assert(!Member->isBaseInitializer());
   1414     assert(Member->isAnyMemberInitializer() &&
   1415            "Delegating initializer on non-delegating constructor");
   1416     CM.addMemberInitializer(Member);
   1417   }
   1418   CM.finish();
   1419 }
   1420 
   1421 static bool
   1422 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
   1423 
   1424 static bool
   1425 HasTrivialDestructorBody(ASTContext &Context,
   1426                          const CXXRecordDecl *BaseClassDecl,
   1427                          const CXXRecordDecl *MostDerivedClassDecl)
   1428 {
   1429   // If the destructor is trivial we don't have to check anything else.
   1430   if (BaseClassDecl->hasTrivialDestructor())
   1431     return true;
   1432 
   1433   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
   1434     return false;
   1435 
   1436   // Check fields.
   1437   for (const auto *Field : BaseClassDecl->fields())
   1438     if (!FieldHasTrivialDestructorBody(Context, Field))
   1439       return false;
   1440 
   1441   // Check non-virtual bases.
   1442   for (const auto &I : BaseClassDecl->bases()) {
   1443     if (I.isVirtual())
   1444       continue;
   1445 
   1446     const CXXRecordDecl *NonVirtualBase =
   1447       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
   1448     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
   1449                                   MostDerivedClassDecl))
   1450       return false;
   1451   }
   1452 
   1453   if (BaseClassDecl == MostDerivedClassDecl) {
   1454     // Check virtual bases.
   1455     for (const auto &I : BaseClassDecl->vbases()) {
   1456       const CXXRecordDecl *VirtualBase =
   1457         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
   1458       if (!HasTrivialDestructorBody(Context, VirtualBase,
   1459                                     MostDerivedClassDecl))
   1460         return false;
   1461     }
   1462   }
   1463 
   1464   return true;
   1465 }
   1466 
   1467 static bool
   1468 FieldHasTrivialDestructorBody(ASTContext &Context,
   1469                                           const FieldDecl *Field)
   1470 {
   1471   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
   1472 
   1473   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
   1474   if (!RT)
   1475     return true;
   1476 
   1477   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   1478 
   1479   // The destructor for an implicit anonymous union member is never invoked.
   1480   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
   1481     return false;
   1482 
   1483   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
   1484 }
   1485 
   1486 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
   1487 /// any vtable pointers before calling this destructor.
   1488 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
   1489                                                const CXXDestructorDecl *Dtor) {
   1490   const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1491   if (!ClassDecl->isDynamicClass())
   1492     return true;
   1493 
   1494   if (!Dtor->hasTrivialBody())
   1495     return false;
   1496 
   1497   // Check the fields.
   1498   for (const auto *Field : ClassDecl->fields())
   1499     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
   1500       return false;
   1501 
   1502   return true;
   1503 }
   1504 
   1505 /// EmitDestructorBody - Emits the body of the current destructor.
   1506 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
   1507   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
   1508   CXXDtorType DtorType = CurGD.getDtorType();
   1509 
   1510   Stmt *Body = Dtor->getBody();
   1511   if (Body)
   1512     incrementProfileCounter(Body);
   1513 
   1514   // The call to operator delete in a deleting destructor happens
   1515   // outside of the function-try-block, which means it's always
   1516   // possible to delegate the destructor body to the complete
   1517   // destructor.  Do so.
   1518   if (DtorType == Dtor_Deleting) {
   1519     EnterDtorCleanups(Dtor, Dtor_Deleting);
   1520     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
   1521                           /*Delegating=*/false, LoadCXXThisAddress());
   1522     PopCleanupBlock();
   1523     return;
   1524   }
   1525 
   1526   // If the body is a function-try-block, enter the try before
   1527   // anything else.
   1528   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
   1529   if (isTryBody)
   1530     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1531   EmitAsanPrologueOrEpilogue(false);
   1532 
   1533   // Enter the epilogue cleanups.
   1534   RunCleanupsScope DtorEpilogue(*this);
   1535 
   1536   // If this is the complete variant, just invoke the base variant;
   1537   // the epilogue will destruct the virtual bases.  But we can't do
   1538   // this optimization if the body is a function-try-block, because
   1539   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
   1540   // always delegate because we might not have a definition in this TU.
   1541   switch (DtorType) {
   1542   case Dtor_Comdat:
   1543     llvm_unreachable("not expecting a COMDAT");
   1544 
   1545   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
   1546 
   1547   case Dtor_Complete:
   1548     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
   1549            "can't emit a dtor without a body for non-Microsoft ABIs");
   1550 
   1551     // Enter the cleanup scopes for virtual bases.
   1552     EnterDtorCleanups(Dtor, Dtor_Complete);
   1553 
   1554     if (!isTryBody) {
   1555       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
   1556                             /*Delegating=*/false, LoadCXXThisAddress());
   1557       break;
   1558     }
   1559     // Fallthrough: act like we're in the base variant.
   1560 
   1561   case Dtor_Base:
   1562     assert(Body);
   1563 
   1564     // Enter the cleanup scopes for fields and non-virtual bases.
   1565     EnterDtorCleanups(Dtor, Dtor_Base);
   1566 
   1567     // Initialize the vtable pointers before entering the body.
   1568     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
   1569       // Insert the llvm.invariant.group.barrier intrinsic before initializing
   1570       // the vptrs to cancel any previous assumptions we might have made.
   1571       if (CGM.getCodeGenOpts().StrictVTablePointers &&
   1572           CGM.getCodeGenOpts().OptimizationLevel > 0)
   1573         CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
   1574       InitializeVTablePointers(Dtor->getParent());
   1575     }
   1576 
   1577     if (isTryBody)
   1578       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
   1579     else if (Body)
   1580       EmitStmt(Body);
   1581     else {
   1582       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
   1583       // nothing to do besides what's in the epilogue
   1584     }
   1585     // -fapple-kext must inline any call to this dtor into
   1586     // the caller's body.
   1587     if (getLangOpts().AppleKext)
   1588       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
   1589 
   1590     break;
   1591   }
   1592 
   1593   // Jump out through the epilogue cleanups.
   1594   DtorEpilogue.ForceCleanup();
   1595 
   1596   // Exit the try if applicable.
   1597   if (isTryBody)
   1598     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1599 }
   1600 
   1601 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
   1602   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
   1603   const Stmt *RootS = AssignOp->getBody();
   1604   assert(isa<CompoundStmt>(RootS) &&
   1605          "Body of an implicit assignment operator should be compound stmt.");
   1606   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
   1607 
   1608   LexicalScope Scope(*this, RootCS->getSourceRange());
   1609 
   1610   AssignmentMemcpyizer AM(*this, AssignOp, Args);
   1611   for (auto *I : RootCS->body())
   1612     AM.emitAssignment(I);
   1613   AM.finish();
   1614 }
   1615 
   1616 namespace {
   1617   /// Call the operator delete associated with the current destructor.
   1618   struct CallDtorDelete final : EHScopeStack::Cleanup {
   1619     CallDtorDelete() {}
   1620 
   1621     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1622       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1623       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1624       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1625                          CGF.getContext().getTagDeclType(ClassDecl));
   1626     }
   1627   };
   1628 
   1629   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
   1630     llvm::Value *ShouldDeleteCondition;
   1631   public:
   1632     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
   1633         : ShouldDeleteCondition(ShouldDeleteCondition) {
   1634       assert(ShouldDeleteCondition != nullptr);
   1635     }
   1636 
   1637     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1638       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
   1639       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
   1640       llvm::Value *ShouldCallDelete
   1641         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
   1642       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
   1643 
   1644       CGF.EmitBlock(callDeleteBB);
   1645       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1646       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1647       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1648                          CGF.getContext().getTagDeclType(ClassDecl));
   1649       CGF.Builder.CreateBr(continueBB);
   1650 
   1651       CGF.EmitBlock(continueBB);
   1652     }
   1653   };
   1654 
   1655   class DestroyField  final : public EHScopeStack::Cleanup {
   1656     const FieldDecl *field;
   1657     CodeGenFunction::Destroyer *destroyer;
   1658     bool useEHCleanupForArray;
   1659 
   1660   public:
   1661     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
   1662                  bool useEHCleanupForArray)
   1663         : field(field), destroyer(destroyer),
   1664           useEHCleanupForArray(useEHCleanupForArray) {}
   1665 
   1666     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1667       // Find the address of the field.
   1668       Address thisValue = CGF.LoadCXXThisAddress();
   1669       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
   1670       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
   1671       LValue LV = CGF.EmitLValueForField(ThisLV, field);
   1672       assert(LV.isSimple());
   1673 
   1674       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
   1675                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1676     }
   1677   };
   1678 
   1679  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
   1680              CharUnits::QuantityType PoisonSize) {
   1681    // Pass in void pointer and size of region as arguments to runtime
   1682    // function
   1683    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
   1684                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
   1685 
   1686    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
   1687 
   1688    llvm::FunctionType *FnType =
   1689        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
   1690    llvm::Value *Fn =
   1691        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
   1692    CGF.EmitNounwindRuntimeCall(Fn, Args);
   1693  }
   1694 
   1695   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
   1696     const CXXDestructorDecl *Dtor;
   1697 
   1698   public:
   1699     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
   1700 
   1701     // Generate function call for handling object poisoning.
   1702     // Disables tail call elimination, to prevent the current stack frame
   1703     // from disappearing from the stack trace.
   1704     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1705       const ASTRecordLayout &Layout =
   1706           CGF.getContext().getASTRecordLayout(Dtor->getParent());
   1707 
   1708       // Nothing to poison.
   1709       if (Layout.getFieldCount() == 0)
   1710         return;
   1711 
   1712       // Prevent the current stack frame from disappearing from the stack trace.
   1713       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
   1714 
   1715       // Construct pointer to region to begin poisoning, and calculate poison
   1716       // size, so that only members declared in this class are poisoned.
   1717       ASTContext &Context = CGF.getContext();
   1718       unsigned fieldIndex = 0;
   1719       int startIndex = -1;
   1720       // RecordDecl::field_iterator Field;
   1721       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
   1722         // Poison field if it is trivial
   1723         if (FieldHasTrivialDestructorBody(Context, Field)) {
   1724           // Start sanitizing at this field
   1725           if (startIndex < 0)
   1726             startIndex = fieldIndex;
   1727 
   1728           // Currently on the last field, and it must be poisoned with the
   1729           // current block.
   1730           if (fieldIndex == Layout.getFieldCount() - 1) {
   1731             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
   1732           }
   1733         } else if (startIndex >= 0) {
   1734           // No longer within a block of memory to poison, so poison the block
   1735           PoisonMembers(CGF, startIndex, fieldIndex);
   1736           // Re-set the start index
   1737           startIndex = -1;
   1738         }
   1739         fieldIndex += 1;
   1740       }
   1741     }
   1742 
   1743   private:
   1744     /// \param layoutStartOffset index of the ASTRecordLayout field to
   1745     ///     start poisoning (inclusive)
   1746     /// \param layoutEndOffset index of the ASTRecordLayout field to
   1747     ///     end poisoning (exclusive)
   1748     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
   1749                      unsigned layoutEndOffset) {
   1750       ASTContext &Context = CGF.getContext();
   1751       const ASTRecordLayout &Layout =
   1752           Context.getASTRecordLayout(Dtor->getParent());
   1753 
   1754       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
   1755           CGF.SizeTy,
   1756           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
   1757               .getQuantity());
   1758 
   1759       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
   1760           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
   1761           OffsetSizePtr);
   1762 
   1763       CharUnits::QuantityType PoisonSize;
   1764       if (layoutEndOffset >= Layout.getFieldCount()) {
   1765         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
   1766                      Context.toCharUnitsFromBits(
   1767                                 Layout.getFieldOffset(layoutStartOffset))
   1768                          .getQuantity();
   1769       } else {
   1770         PoisonSize = Context.toCharUnitsFromBits(
   1771                                 Layout.getFieldOffset(layoutEndOffset) -
   1772                                 Layout.getFieldOffset(layoutStartOffset))
   1773                          .getQuantity();
   1774       }
   1775 
   1776       if (PoisonSize == 0)
   1777         return;
   1778 
   1779       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
   1780     }
   1781   };
   1782 
   1783  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
   1784     const CXXDestructorDecl *Dtor;
   1785 
   1786   public:
   1787     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
   1788 
   1789     // Generate function call for handling vtable pointer poisoning.
   1790     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1791       assert(Dtor->getParent()->isDynamicClass());
   1792       (void)Dtor;
   1793       ASTContext &Context = CGF.getContext();
   1794       // Poison vtable and vtable ptr if they exist for this class.
   1795       llvm::Value *VTablePtr = CGF.LoadCXXThis();
   1796 
   1797       CharUnits::QuantityType PoisonSize =
   1798           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
   1799       // Pass in void pointer and size of region as arguments to runtime
   1800       // function
   1801       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
   1802     }
   1803  };
   1804 } // end anonymous namespace
   1805 
   1806 /// \brief Emit all code that comes at the end of class's
   1807 /// destructor. This is to call destructors on members and base classes
   1808 /// in reverse order of their construction.
   1809 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
   1810                                         CXXDtorType DtorType) {
   1811   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
   1812          "Should not emit dtor epilogue for non-exported trivial dtor!");
   1813 
   1814   // The deleting-destructor phase just needs to call the appropriate
   1815   // operator delete that Sema picked up.
   1816   if (DtorType == Dtor_Deleting) {
   1817     assert(DD->getOperatorDelete() &&
   1818            "operator delete missing - EnterDtorCleanups");
   1819     if (CXXStructorImplicitParamValue) {
   1820       // If there is an implicit param to the deleting dtor, it's a boolean
   1821       // telling whether we should call delete at the end of the dtor.
   1822       EHStack.pushCleanup<CallDtorDeleteConditional>(
   1823           NormalAndEHCleanup, CXXStructorImplicitParamValue);
   1824     } else {
   1825       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
   1826     }
   1827     return;
   1828   }
   1829 
   1830   const CXXRecordDecl *ClassDecl = DD->getParent();
   1831 
   1832   // Unions have no bases and do not call field destructors.
   1833   if (ClassDecl->isUnion())
   1834     return;
   1835 
   1836   // The complete-destructor phase just destructs all the virtual bases.
   1837   if (DtorType == Dtor_Complete) {
   1838     // Poison the vtable pointer such that access after the base
   1839     // and member destructors are invoked is invalid.
   1840     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
   1841         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
   1842         ClassDecl->isPolymorphic())
   1843       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
   1844 
   1845     // We push them in the forward order so that they'll be popped in
   1846     // the reverse order.
   1847     for (const auto &Base : ClassDecl->vbases()) {
   1848       CXXRecordDecl *BaseClassDecl
   1849         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   1850 
   1851       // Ignore trivial destructors.
   1852       if (BaseClassDecl->hasTrivialDestructor())
   1853         continue;
   1854 
   1855       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1856                                         BaseClassDecl,
   1857                                         /*BaseIsVirtual*/ true);
   1858     }
   1859 
   1860     return;
   1861   }
   1862 
   1863   assert(DtorType == Dtor_Base);
   1864   // Poison the vtable pointer if it has no virtual bases, but inherits
   1865   // virtual functions.
   1866   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
   1867       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
   1868       ClassDecl->isPolymorphic())
   1869     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
   1870 
   1871   // Destroy non-virtual bases.
   1872   for (const auto &Base : ClassDecl->bases()) {
   1873     // Ignore virtual bases.
   1874     if (Base.isVirtual())
   1875       continue;
   1876 
   1877     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
   1878 
   1879     // Ignore trivial destructors.
   1880     if (BaseClassDecl->hasTrivialDestructor())
   1881       continue;
   1882 
   1883     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1884                                       BaseClassDecl,
   1885                                       /*BaseIsVirtual*/ false);
   1886   }
   1887 
   1888   // Poison fields such that access after their destructors are
   1889   // invoked, and before the base class destructor runs, is invalid.
   1890   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
   1891       SanOpts.has(SanitizerKind::Memory))
   1892     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
   1893 
   1894   // Destroy direct fields.
   1895   for (const auto *Field : ClassDecl->fields()) {
   1896     QualType type = Field->getType();
   1897     QualType::DestructionKind dtorKind = type.isDestructedType();
   1898     if (!dtorKind) continue;
   1899 
   1900     // Anonymous union members do not have their destructors called.
   1901     const RecordType *RT = type->getAsUnionType();
   1902     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
   1903 
   1904     CleanupKind cleanupKind = getCleanupKind(dtorKind);
   1905     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
   1906                                       getDestroyer(dtorKind),
   1907                                       cleanupKind & EHCleanup);
   1908   }
   1909 }
   1910 
   1911 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1912 /// constructor for each of several members of an array.
   1913 ///
   1914 /// \param ctor the constructor to call for each element
   1915 /// \param arrayType the type of the array to initialize
   1916 /// \param arrayBegin an arrayType*
   1917 /// \param zeroInitialize true if each element should be
   1918 ///   zero-initialized before it is constructed
   1919 void CodeGenFunction::EmitCXXAggrConstructorCall(
   1920     const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
   1921     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
   1922   QualType elementType;
   1923   llvm::Value *numElements =
   1924     emitArrayLength(arrayType, elementType, arrayBegin);
   1925 
   1926   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
   1927 }
   1928 
   1929 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1930 /// constructor for each of several members of an array.
   1931 ///
   1932 /// \param ctor the constructor to call for each element
   1933 /// \param numElements the number of elements in the array;
   1934 ///   may be zero
   1935 /// \param arrayBase a T*, where T is the type constructed by ctor
   1936 /// \param zeroInitialize true if each element should be
   1937 ///   zero-initialized before it is constructed
   1938 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
   1939                                                  llvm::Value *numElements,
   1940                                                  Address arrayBase,
   1941                                                  const CXXConstructExpr *E,
   1942                                                  bool zeroInitialize) {
   1943   // It's legal for numElements to be zero.  This can happen both
   1944   // dynamically, because x can be zero in 'new A[x]', and statically,
   1945   // because of GCC extensions that permit zero-length arrays.  There
   1946   // are probably legitimate places where we could assume that this
   1947   // doesn't happen, but it's not clear that it's worth it.
   1948   llvm::BranchInst *zeroCheckBranch = nullptr;
   1949 
   1950   // Optimize for a constant count.
   1951   llvm::ConstantInt *constantCount
   1952     = dyn_cast<llvm::ConstantInt>(numElements);
   1953   if (constantCount) {
   1954     // Just skip out if the constant count is zero.
   1955     if (constantCount->isZero()) return;
   1956 
   1957   // Otherwise, emit the check.
   1958   } else {
   1959     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
   1960     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
   1961     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
   1962     EmitBlock(loopBB);
   1963   }
   1964 
   1965   // Find the end of the array.
   1966   llvm::Value *arrayBegin = arrayBase.getPointer();
   1967   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
   1968                                                     "arrayctor.end");
   1969 
   1970   // Enter the loop, setting up a phi for the current location to initialize.
   1971   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
   1972   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
   1973   EmitBlock(loopBB);
   1974   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
   1975                                          "arrayctor.cur");
   1976   cur->addIncoming(arrayBegin, entryBB);
   1977 
   1978   // Inside the loop body, emit the constructor call on the array element.
   1979 
   1980   // The alignment of the base, adjusted by the size of a single element,
   1981   // provides a conservative estimate of the alignment of every element.
   1982   // (This assumes we never start tracking offsetted alignments.)
   1983   //
   1984   // Note that these are complete objects and so we don't need to
   1985   // use the non-virtual size or alignment.
   1986   QualType type = getContext().getTypeDeclType(ctor->getParent());
   1987   CharUnits eltAlignment =
   1988     arrayBase.getAlignment()
   1989              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
   1990   Address curAddr = Address(cur, eltAlignment);
   1991 
   1992   // Zero initialize the storage, if requested.
   1993   if (zeroInitialize)
   1994     EmitNullInitialization(curAddr, type);
   1995 
   1996   // C++ [class.temporary]p4:
   1997   // There are two contexts in which temporaries are destroyed at a different
   1998   // point than the end of the full-expression. The first context is when a
   1999   // default constructor is called to initialize an element of an array.
   2000   // If the constructor has one or more default arguments, the destruction of
   2001   // every temporary created in a default argument expression is sequenced
   2002   // before the construction of the next array element, if any.
   2003 
   2004   {
   2005     RunCleanupsScope Scope(*this);
   2006 
   2007     // Evaluate the constructor and its arguments in a regular
   2008     // partial-destroy cleanup.
   2009     if (getLangOpts().Exceptions &&
   2010         !ctor->getParent()->hasTrivialDestructor()) {
   2011       Destroyer *destroyer = destroyCXXObject;
   2012       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
   2013                                      *destroyer);
   2014     }
   2015 
   2016     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
   2017                            /*Delegating=*/false, curAddr, E);
   2018   }
   2019 
   2020   // Go to the next element.
   2021   llvm::Value *next =
   2022     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
   2023                               "arrayctor.next");
   2024   cur->addIncoming(next, Builder.GetInsertBlock());
   2025 
   2026   // Check whether that's the end of the loop.
   2027   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
   2028   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
   2029   Builder.CreateCondBr(done, contBB, loopBB);
   2030 
   2031   // Patch the earlier check to skip over the loop.
   2032   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
   2033 
   2034   EmitBlock(contBB);
   2035 }
   2036 
   2037 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
   2038                                        Address addr,
   2039                                        QualType type) {
   2040   const RecordType *rtype = type->castAs<RecordType>();
   2041   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
   2042   const CXXDestructorDecl *dtor = record->getDestructor();
   2043   assert(!dtor->isTrivial());
   2044   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
   2045                             /*Delegating=*/false, addr);
   2046 }
   2047 
   2048 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
   2049                                              CXXCtorType Type,
   2050                                              bool ForVirtualBase,
   2051                                              bool Delegating, Address This,
   2052                                              const CXXConstructExpr *E) {
   2053   const CXXRecordDecl *ClassDecl = D->getParent();
   2054 
   2055   // C++11 [class.mfct.non-static]p2:
   2056   //   If a non-static member function of a class X is called for an object that
   2057   //   is not of type X, or of a type derived from X, the behavior is undefined.
   2058   // FIXME: Provide a source location here.
   2059   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
   2060                 This.getPointer(), getContext().getRecordType(ClassDecl));
   2061 
   2062   if (D->isTrivial() && D->isDefaultConstructor()) {
   2063     assert(E->getNumArgs() == 0 && "trivial default ctor with args");
   2064     return;
   2065   }
   2066 
   2067   // If this is a trivial constructor, just emit what's needed. If this is a
   2068   // union copy constructor, we must emit a memcpy, because the AST does not
   2069   // model that copy.
   2070   if (isMemcpyEquivalentSpecialMember(D)) {
   2071     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
   2072 
   2073     const Expr *Arg = E->getArg(0);
   2074     QualType SrcTy = Arg->getType();
   2075     Address Src = EmitLValue(Arg).getAddress();
   2076     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
   2077     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
   2078     return;
   2079   }
   2080 
   2081   CallArgList Args;
   2082 
   2083   // Push the this ptr.
   2084   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
   2085 
   2086   // Add the rest of the user-supplied arguments.
   2087   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
   2088   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor());
   2089 
   2090   // Insert any ABI-specific implicit constructor arguments.
   2091   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
   2092       *this, D, Type, ForVirtualBase, Delegating, Args);
   2093 
   2094   // Emit the call.
   2095   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
   2096   const CGFunctionInfo &Info =
   2097       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
   2098   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
   2099 
   2100   // Generate vtable assumptions if we're constructing a complete object
   2101   // with a vtable.  We don't do this for base subobjects for two reasons:
   2102   // first, it's incorrect for classes with virtual bases, and second, we're
   2103   // about to overwrite the vptrs anyway.
   2104   // We also have to make sure if we can refer to vtable:
   2105   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
   2106   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
   2107   // sure that definition of vtable is not hidden,
   2108   // then we are always safe to refer to it.
   2109   // FIXME: It looks like InstCombine is very inefficient on dealing with
   2110   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
   2111   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   2112       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
   2113       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
   2114       CGM.getCodeGenOpts().StrictVTablePointers)
   2115     EmitVTableAssumptionLoads(ClassDecl, This);
   2116 }
   2117 
   2118 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
   2119   llvm::Value *VTableGlobal =
   2120       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
   2121   if (!VTableGlobal)
   2122     return;
   2123 
   2124   // We can just use the base offset in the complete class.
   2125   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
   2126 
   2127   if (!NonVirtualOffset.isZero())
   2128     This =
   2129         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
   2130                                         Vptr.VTableClass, Vptr.NearestVBase);
   2131 
   2132   llvm::Value *VPtrValue =
   2133       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
   2134   llvm::Value *Cmp =
   2135       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
   2136   Builder.CreateAssumption(Cmp);
   2137 }
   2138 
   2139 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
   2140                                                 Address This) {
   2141   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
   2142     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
   2143       EmitVTableAssumptionLoad(Vptr, This);
   2144 }
   2145 
   2146 void
   2147 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   2148                                                 Address This, Address Src,
   2149                                                 const CXXConstructExpr *E) {
   2150   if (isMemcpyEquivalentSpecialMember(D)) {
   2151     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
   2152     assert(D->isCopyOrMoveConstructor() &&
   2153            "trivial 1-arg ctor not a copy/move ctor");
   2154     EmitAggregateCopyCtor(This, Src,
   2155                           getContext().getTypeDeclType(D->getParent()),
   2156                           (*E->arg_begin())->getType());
   2157     return;
   2158   }
   2159   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
   2160   assert(D->isInstance() &&
   2161          "Trying to emit a member call expr on a static method!");
   2162 
   2163   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
   2164 
   2165   CallArgList Args;
   2166 
   2167   // Push the this ptr.
   2168   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
   2169 
   2170   // Push the src ptr.
   2171   QualType QT = *(FPT->param_type_begin());
   2172   llvm::Type *t = CGM.getTypes().ConvertType(QT);
   2173   Src = Builder.CreateBitCast(Src, t);
   2174   Args.add(RValue::get(Src.getPointer()), QT);
   2175 
   2176   // Skip over first argument (Src).
   2177   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
   2178                /*ParamsToSkip*/ 1);
   2179 
   2180   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
   2181            Callee, ReturnValueSlot(), Args, D);
   2182 }
   2183 
   2184 void
   2185 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   2186                                                 CXXCtorType CtorType,
   2187                                                 const FunctionArgList &Args,
   2188                                                 SourceLocation Loc) {
   2189   CallArgList DelegateArgs;
   2190 
   2191   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
   2192   assert(I != E && "no parameters to constructor");
   2193 
   2194   // this
   2195   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
   2196   ++I;
   2197 
   2198   // vtt
   2199   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
   2200                                          /*ForVirtualBase=*/false,
   2201                                          /*Delegating=*/true)) {
   2202     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
   2203     DelegateArgs.add(RValue::get(VTT), VoidPP);
   2204 
   2205     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
   2206       assert(I != E && "cannot skip vtt parameter, already done with args");
   2207       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
   2208       ++I;
   2209     }
   2210   }
   2211 
   2212   // Explicit arguments.
   2213   for (; I != E; ++I) {
   2214     const VarDecl *param = *I;
   2215     // FIXME: per-argument source location
   2216     EmitDelegateCallArg(DelegateArgs, param, Loc);
   2217   }
   2218 
   2219   llvm::Value *Callee =
   2220       CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
   2221   EmitCall(CGM.getTypes()
   2222                .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
   2223            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
   2224 }
   2225 
   2226 namespace {
   2227   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
   2228     const CXXDestructorDecl *Dtor;
   2229     Address Addr;
   2230     CXXDtorType Type;
   2231 
   2232     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
   2233                            CXXDtorType Type)
   2234       : Dtor(D), Addr(Addr), Type(Type) {}
   2235 
   2236     void Emit(CodeGenFunction &CGF, Flags flags) override {
   2237       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
   2238                                 /*Delegating=*/true, Addr);
   2239     }
   2240   };
   2241 } // end anonymous namespace
   2242 
   2243 void
   2244 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   2245                                                   const FunctionArgList &Args) {
   2246   assert(Ctor->isDelegatingConstructor());
   2247 
   2248   Address ThisPtr = LoadCXXThisAddress();
   2249 
   2250   AggValueSlot AggSlot =
   2251     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
   2252                           AggValueSlot::IsDestructed,
   2253                           AggValueSlot::DoesNotNeedGCBarriers,
   2254                           AggValueSlot::IsNotAliased);
   2255 
   2256   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
   2257 
   2258   const CXXRecordDecl *ClassDecl = Ctor->getParent();
   2259   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
   2260     CXXDtorType Type =
   2261       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
   2262 
   2263     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
   2264                                                 ClassDecl->getDestructor(),
   2265                                                 ThisPtr, Type);
   2266   }
   2267 }
   2268 
   2269 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
   2270                                             CXXDtorType Type,
   2271                                             bool ForVirtualBase,
   2272                                             bool Delegating,
   2273                                             Address This) {
   2274   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
   2275                                      Delegating, This);
   2276 }
   2277 
   2278 namespace {
   2279   struct CallLocalDtor final : EHScopeStack::Cleanup {
   2280     const CXXDestructorDecl *Dtor;
   2281     Address Addr;
   2282 
   2283     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
   2284       : Dtor(D), Addr(Addr) {}
   2285 
   2286     void Emit(CodeGenFunction &CGF, Flags flags) override {
   2287       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   2288                                 /*ForVirtualBase=*/false,
   2289                                 /*Delegating=*/false, Addr);
   2290     }
   2291   };
   2292 }
   2293 
   2294 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
   2295                                             Address Addr) {
   2296   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
   2297 }
   2298 
   2299 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
   2300   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
   2301   if (!ClassDecl) return;
   2302   if (ClassDecl->hasTrivialDestructor()) return;
   2303 
   2304   const CXXDestructorDecl *D = ClassDecl->getDestructor();
   2305   assert(D && D->isUsed() && "destructor not marked as used!");
   2306   PushDestructorCleanup(D, Addr);
   2307 }
   2308 
   2309 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
   2310   // Compute the address point.
   2311   llvm::Value *VTableAddressPoint =
   2312       CGM.getCXXABI().getVTableAddressPointInStructor(
   2313           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
   2314 
   2315   if (!VTableAddressPoint)
   2316     return;
   2317 
   2318   // Compute where to store the address point.
   2319   llvm::Value *VirtualOffset = nullptr;
   2320   CharUnits NonVirtualOffset = CharUnits::Zero();
   2321 
   2322   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
   2323     // We need to use the virtual base offset offset because the virtual base
   2324     // might have a different offset in the most derived class.
   2325 
   2326     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
   2327         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
   2328     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
   2329   } else {
   2330     // We can just use the base offset in the complete class.
   2331     NonVirtualOffset = Vptr.Base.getBaseOffset();
   2332   }
   2333 
   2334   // Apply the offsets.
   2335   Address VTableField = LoadCXXThisAddress();
   2336 
   2337   if (!NonVirtualOffset.isZero() || VirtualOffset)
   2338     VTableField = ApplyNonVirtualAndVirtualOffset(
   2339         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
   2340         Vptr.NearestVBase);
   2341 
   2342   // Finally, store the address point. Use the same LLVM types as the field to
   2343   // support optimization.
   2344   llvm::Type *VTablePtrTy =
   2345       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
   2346           ->getPointerTo()
   2347           ->getPointerTo();
   2348   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
   2349   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
   2350 
   2351   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
   2352   CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr());
   2353   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   2354       CGM.getCodeGenOpts().StrictVTablePointers)
   2355     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
   2356 }
   2357 
   2358 CodeGenFunction::VPtrsVector
   2359 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
   2360   CodeGenFunction::VPtrsVector VPtrsResult;
   2361   VisitedVirtualBasesSetTy VBases;
   2362   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
   2363                     /*NearestVBase=*/nullptr,
   2364                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
   2365                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
   2366                     VPtrsResult);
   2367   return VPtrsResult;
   2368 }
   2369 
   2370 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
   2371                                         const CXXRecordDecl *NearestVBase,
   2372                                         CharUnits OffsetFromNearestVBase,
   2373                                         bool BaseIsNonVirtualPrimaryBase,
   2374                                         const CXXRecordDecl *VTableClass,
   2375                                         VisitedVirtualBasesSetTy &VBases,
   2376                                         VPtrsVector &Vptrs) {
   2377   // If this base is a non-virtual primary base the address point has already
   2378   // been set.
   2379   if (!BaseIsNonVirtualPrimaryBase) {
   2380     // Initialize the vtable pointer for this base.
   2381     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
   2382     Vptrs.push_back(Vptr);
   2383   }
   2384 
   2385   const CXXRecordDecl *RD = Base.getBase();
   2386 
   2387   // Traverse bases.
   2388   for (const auto &I : RD->bases()) {
   2389     CXXRecordDecl *BaseDecl
   2390       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
   2391 
   2392     // Ignore classes without a vtable.
   2393     if (!BaseDecl->isDynamicClass())
   2394       continue;
   2395 
   2396     CharUnits BaseOffset;
   2397     CharUnits BaseOffsetFromNearestVBase;
   2398     bool BaseDeclIsNonVirtualPrimaryBase;
   2399 
   2400     if (I.isVirtual()) {
   2401       // Check if we've visited this virtual base before.
   2402       if (!VBases.insert(BaseDecl).second)
   2403         continue;
   2404 
   2405       const ASTRecordLayout &Layout =
   2406         getContext().getASTRecordLayout(VTableClass);
   2407 
   2408       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
   2409       BaseOffsetFromNearestVBase = CharUnits::Zero();
   2410       BaseDeclIsNonVirtualPrimaryBase = false;
   2411     } else {
   2412       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   2413 
   2414       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
   2415       BaseOffsetFromNearestVBase =
   2416         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
   2417       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
   2418     }
   2419 
   2420     getVTablePointers(
   2421         BaseSubobject(BaseDecl, BaseOffset),
   2422         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
   2423         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
   2424   }
   2425 }
   2426 
   2427 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
   2428   // Ignore classes without a vtable.
   2429   if (!RD->isDynamicClass())
   2430     return;
   2431 
   2432   // Initialize the vtable pointers for this class and all of its bases.
   2433   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
   2434     for (const VPtr &Vptr : getVTablePointers(RD))
   2435       InitializeVTablePointer(Vptr);
   2436 
   2437   if (RD->getNumVBases())
   2438     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
   2439 }
   2440 
   2441 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
   2442                                            llvm::Type *VTableTy,
   2443                                            const CXXRecordDecl *RD) {
   2444   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
   2445   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
   2446   CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr());
   2447 
   2448   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   2449       CGM.getCodeGenOpts().StrictVTablePointers)
   2450     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
   2451 
   2452   return VTable;
   2453 }
   2454 
   2455 // If a class has a single non-virtual base and does not introduce or override
   2456 // virtual member functions or fields, it will have the same layout as its base.
   2457 // This function returns the least derived such class.
   2458 //
   2459 // Casting an instance of a base class to such a derived class is technically
   2460 // undefined behavior, but it is a relatively common hack for introducing member
   2461 // functions on class instances with specific properties (e.g. llvm::Operator)
   2462 // that works under most compilers and should not have security implications, so
   2463 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
   2464 static const CXXRecordDecl *
   2465 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
   2466   if (!RD->field_empty())
   2467     return RD;
   2468 
   2469   if (RD->getNumVBases() != 0)
   2470     return RD;
   2471 
   2472   if (RD->getNumBases() != 1)
   2473     return RD;
   2474 
   2475   for (const CXXMethodDecl *MD : RD->methods()) {
   2476     if (MD->isVirtual()) {
   2477       // Virtual member functions are only ok if they are implicit destructors
   2478       // because the implicit destructor will have the same semantics as the
   2479       // base class's destructor if no fields are added.
   2480       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
   2481         continue;
   2482       return RD;
   2483     }
   2484   }
   2485 
   2486   return LeastDerivedClassWithSameLayout(
   2487       RD->bases_begin()->getType()->getAsCXXRecordDecl());
   2488 }
   2489 
   2490 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD,
   2491                                                 llvm::Value *VTable,
   2492                                                 CFITypeCheckKind TCK,
   2493                                                 SourceLocation Loc) {
   2494   const CXXRecordDecl *ClassDecl = MD->getParent();
   2495   if (!SanOpts.has(SanitizerKind::CFICastStrict))
   2496     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
   2497 
   2498   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
   2499 }
   2500 
   2501 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
   2502                                                 llvm::Value *Derived,
   2503                                                 bool MayBeNull,
   2504                                                 CFITypeCheckKind TCK,
   2505                                                 SourceLocation Loc) {
   2506   if (!getLangOpts().CPlusPlus)
   2507     return;
   2508 
   2509   auto *ClassTy = T->getAs<RecordType>();
   2510   if (!ClassTy)
   2511     return;
   2512 
   2513   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
   2514 
   2515   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
   2516     return;
   2517 
   2518   if (!SanOpts.has(SanitizerKind::CFICastStrict))
   2519     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
   2520 
   2521   llvm::BasicBlock *ContBlock = nullptr;
   2522 
   2523   if (MayBeNull) {
   2524     llvm::Value *DerivedNotNull =
   2525         Builder.CreateIsNotNull(Derived, "cast.nonnull");
   2526 
   2527     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
   2528     ContBlock = createBasicBlock("cast.cont");
   2529 
   2530     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
   2531 
   2532     EmitBlock(CheckBlock);
   2533   }
   2534 
   2535   llvm::Value *VTable =
   2536     GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl);
   2537 
   2538   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
   2539 
   2540   if (MayBeNull) {
   2541     Builder.CreateBr(ContBlock);
   2542     EmitBlock(ContBlock);
   2543   }
   2544 }
   2545 
   2546 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
   2547                                          llvm::Value *VTable,
   2548                                          CFITypeCheckKind TCK,
   2549                                          SourceLocation Loc) {
   2550   if (CGM.IsCFIBlacklistedRecord(RD))
   2551     return;
   2552 
   2553   SanitizerScope SanScope(this);
   2554 
   2555   llvm::Metadata *MD =
   2556       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
   2557   llvm::Value *BitSetName = llvm::MetadataAsValue::get(getLLVMContext(), MD);
   2558 
   2559   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
   2560   llvm::Value *BitSetTest =
   2561       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
   2562                          {CastedVTable, BitSetName});
   2563 
   2564   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso) {
   2565     if (auto TypeId = CGM.CreateCfiIdForTypeMetadata(MD)) {
   2566       EmitCfiSlowPathCheck(BitSetTest, TypeId, CastedVTable);
   2567       return;
   2568     }
   2569   }
   2570 
   2571   SanitizerMask M;
   2572   switch (TCK) {
   2573   case CFITCK_VCall:
   2574     M = SanitizerKind::CFIVCall;
   2575     break;
   2576   case CFITCK_NVCall:
   2577     M = SanitizerKind::CFINVCall;
   2578     break;
   2579   case CFITCK_DerivedCast:
   2580     M = SanitizerKind::CFIDerivedCast;
   2581     break;
   2582   case CFITCK_UnrelatedCast:
   2583     M = SanitizerKind::CFIUnrelatedCast;
   2584     break;
   2585   }
   2586 
   2587   llvm::Constant *StaticData[] = {
   2588       EmitCheckSourceLocation(Loc),
   2589       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
   2590       llvm::ConstantInt::get(Int8Ty, TCK),
   2591   };
   2592   EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData,
   2593             CastedVTable);
   2594 }
   2595 
   2596 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
   2597 // quite what we want.
   2598 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
   2599   while (true) {
   2600     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   2601       E = PE->getSubExpr();
   2602       continue;
   2603     }
   2604 
   2605     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2606       if (CE->getCastKind() == CK_NoOp) {
   2607         E = CE->getSubExpr();
   2608         continue;
   2609       }
   2610     }
   2611     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   2612       if (UO->getOpcode() == UO_Extension) {
   2613         E = UO->getSubExpr();
   2614         continue;
   2615       }
   2616     }
   2617     return E;
   2618   }
   2619 }
   2620 
   2621 bool
   2622 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
   2623                                                    const CXXMethodDecl *MD) {
   2624   // When building with -fapple-kext, all calls must go through the vtable since
   2625   // the kernel linker can do runtime patching of vtables.
   2626   if (getLangOpts().AppleKext)
   2627     return false;
   2628 
   2629   // If the most derived class is marked final, we know that no subclass can
   2630   // override this member function and so we can devirtualize it. For example:
   2631   //
   2632   // struct A { virtual void f(); }
   2633   // struct B final : A { };
   2634   //
   2635   // void f(B *b) {
   2636   //   b->f();
   2637   // }
   2638   //
   2639   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
   2640   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
   2641     return true;
   2642 
   2643   // If the member function is marked 'final', we know that it can't be
   2644   // overridden and can therefore devirtualize it.
   2645   if (MD->hasAttr<FinalAttr>())
   2646     return true;
   2647 
   2648   // Similarly, if the class itself is marked 'final' it can't be overridden
   2649   // and we can therefore devirtualize the member function call.
   2650   if (MD->getParent()->hasAttr<FinalAttr>())
   2651     return true;
   2652 
   2653   Base = skipNoOpCastsAndParens(Base);
   2654   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
   2655     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
   2656       // This is a record decl. We know the type and can devirtualize it.
   2657       return VD->getType()->isRecordType();
   2658     }
   2659 
   2660     return false;
   2661   }
   2662 
   2663   // We can devirtualize calls on an object accessed by a class member access
   2664   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
   2665   // a derived class object constructed in the same location.
   2666   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
   2667     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
   2668       return VD->getType()->isRecordType();
   2669 
   2670   // We can always devirtualize calls on temporary object expressions.
   2671   if (isa<CXXConstructExpr>(Base))
   2672     return true;
   2673 
   2674   // And calls on bound temporaries.
   2675   if (isa<CXXBindTemporaryExpr>(Base))
   2676     return true;
   2677 
   2678   // Check if this is a call expr that returns a record type.
   2679   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
   2680     return CE->getCallReturnType(getContext())->isRecordType();
   2681 
   2682   // We can't devirtualize the call.
   2683   return false;
   2684 }
   2685 
   2686 void CodeGenFunction::EmitForwardingCallToLambda(
   2687                                       const CXXMethodDecl *callOperator,
   2688                                       CallArgList &callArgs) {
   2689   // Get the address of the call operator.
   2690   const CGFunctionInfo &calleeFnInfo =
   2691     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
   2692   llvm::Value *callee =
   2693     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
   2694                           CGM.getTypes().GetFunctionType(calleeFnInfo));
   2695 
   2696   // Prepare the return slot.
   2697   const FunctionProtoType *FPT =
   2698     callOperator->getType()->castAs<FunctionProtoType>();
   2699   QualType resultType = FPT->getReturnType();
   2700   ReturnValueSlot returnSlot;
   2701   if (!resultType->isVoidType() &&
   2702       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
   2703       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
   2704     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
   2705 
   2706   // We don't need to separately arrange the call arguments because
   2707   // the call can't be variadic anyway --- it's impossible to forward
   2708   // variadic arguments.
   2709 
   2710   // Now emit our call.
   2711   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
   2712                        callArgs, callOperator);
   2713 
   2714   // If necessary, copy the returned value into the slot.
   2715   if (!resultType->isVoidType() && returnSlot.isNull())
   2716     EmitReturnOfRValue(RV, resultType);
   2717   else
   2718     EmitBranchThroughCleanup(ReturnBlock);
   2719 }
   2720 
   2721 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
   2722   const BlockDecl *BD = BlockInfo->getBlockDecl();
   2723   const VarDecl *variable = BD->capture_begin()->getVariable();
   2724   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
   2725 
   2726   // Start building arguments for forwarding call
   2727   CallArgList CallArgs;
   2728 
   2729   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2730   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
   2731   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
   2732 
   2733   // Add the rest of the parameters.
   2734   for (auto param : BD->params())
   2735     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
   2736 
   2737   assert(!Lambda->isGenericLambda() &&
   2738             "generic lambda interconversion to block not implemented");
   2739   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
   2740 }
   2741 
   2742 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
   2743   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
   2744     // FIXME: Making this work correctly is nasty because it requires either
   2745     // cloning the body of the call operator or making the call operator forward.
   2746     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
   2747     return;
   2748   }
   2749 
   2750   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
   2751 }
   2752 
   2753 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
   2754   const CXXRecordDecl *Lambda = MD->getParent();
   2755 
   2756   // Start building arguments for forwarding call
   2757   CallArgList CallArgs;
   2758 
   2759   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2760   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
   2761   CallArgs.add(RValue::get(ThisPtr), ThisType);
   2762 
   2763   // Add the rest of the parameters.
   2764   for (auto Param : MD->params())
   2765     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
   2766 
   2767   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
   2768   // For a generic lambda, find the corresponding call operator specialization
   2769   // to which the call to the static-invoker shall be forwarded.
   2770   if (Lambda->isGenericLambda()) {
   2771     assert(MD->isFunctionTemplateSpecialization());
   2772     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
   2773     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
   2774     void *InsertPos = nullptr;
   2775     FunctionDecl *CorrespondingCallOpSpecialization =
   2776         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
   2777     assert(CorrespondingCallOpSpecialization);
   2778     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
   2779   }
   2780   EmitForwardingCallToLambda(CallOp, CallArgs);
   2781 }
   2782 
   2783 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
   2784   if (MD->isVariadic()) {
   2785     // FIXME: Making this work correctly is nasty because it requires either
   2786     // cloning the body of the call operator or making the call operator forward.
   2787     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
   2788     return;
   2789   }
   2790 
   2791   EmitLambdaDelegatingInvokeBody(MD);
   2792 }
   2793