Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_GLOBALS_H_
      6 #define V8_GLOBALS_H_
      7 
      8 #include <stddef.h>
      9 #include <stdint.h>
     10 
     11 #include <ostream>
     12 
     13 #include "src/base/build_config.h"
     14 #include "src/base/logging.h"
     15 #include "src/base/macros.h"
     16 
     17 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
     18 // warning flag and certain versions of GCC due to a bug:
     19 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
     20 // For now, we use the more involved template-based version from <limits>, but
     21 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
     22 #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0)
     23 # include <limits>  // NOLINT
     24 # define V8_INFINITY std::numeric_limits<double>::infinity()
     25 #elif V8_LIBC_MSVCRT
     26 # define V8_INFINITY HUGE_VAL
     27 #elif V8_OS_AIX
     28 #define V8_INFINITY (__builtin_inff())
     29 #else
     30 # define V8_INFINITY INFINITY
     31 #endif
     32 
     33 namespace v8 {
     34 
     35 namespace base {
     36 class Mutex;
     37 class RecursiveMutex;
     38 class VirtualMemory;
     39 }
     40 
     41 namespace internal {
     42 
     43 // Determine whether we are running in a simulated environment.
     44 // Setting USE_SIMULATOR explicitly from the build script will force
     45 // the use of a simulated environment.
     46 #if !defined(USE_SIMULATOR)
     47 #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
     48 #define USE_SIMULATOR 1
     49 #endif
     50 #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
     51 #define USE_SIMULATOR 1
     52 #endif
     53 #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
     54 #define USE_SIMULATOR 1
     55 #endif
     56 #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
     57 #define USE_SIMULATOR 1
     58 #endif
     59 #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
     60 #define USE_SIMULATOR 1
     61 #endif
     62 #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
     63 #define USE_SIMULATOR 1
     64 #endif
     65 #endif
     66 
     67 // Determine whether the architecture uses an embedded constant pool
     68 // (contiguous constant pool embedded in code object).
     69 #if V8_TARGET_ARCH_PPC
     70 #define V8_EMBEDDED_CONSTANT_POOL 1
     71 #else
     72 #define V8_EMBEDDED_CONSTANT_POOL 0
     73 #endif
     74 
     75 #ifdef V8_TARGET_ARCH_ARM
     76 // Set stack limit lower for ARM than for other architectures because
     77 // stack allocating MacroAssembler takes 120K bytes.
     78 // See issue crbug.com/405338
     79 #define V8_DEFAULT_STACK_SIZE_KB 864
     80 #else
     81 // Slightly less than 1MB, since Windows' default stack size for
     82 // the main execution thread is 1MB for both 32 and 64-bit.
     83 #define V8_DEFAULT_STACK_SIZE_KB 984
     84 #endif
     85 
     86 
     87 // Determine whether double field unboxing feature is enabled.
     88 #if V8_TARGET_ARCH_64_BIT
     89 #define V8_DOUBLE_FIELDS_UNBOXING 1
     90 #else
     91 #define V8_DOUBLE_FIELDS_UNBOXING 0
     92 #endif
     93 
     94 
     95 typedef uint8_t byte;
     96 typedef byte* Address;
     97 
     98 // -----------------------------------------------------------------------------
     99 // Constants
    100 
    101 const int KB = 1024;
    102 const int MB = KB * KB;
    103 const int GB = KB * KB * KB;
    104 const int kMaxInt = 0x7FFFFFFF;
    105 const int kMinInt = -kMaxInt - 1;
    106 const int kMaxInt8 = (1 << 7) - 1;
    107 const int kMinInt8 = -(1 << 7);
    108 const int kMaxUInt8 = (1 << 8) - 1;
    109 const int kMinUInt8 = 0;
    110 const int kMaxInt16 = (1 << 15) - 1;
    111 const int kMinInt16 = -(1 << 15);
    112 const int kMaxUInt16 = (1 << 16) - 1;
    113 const int kMinUInt16 = 0;
    114 
    115 const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
    116 const int kMinUInt32 = 0;
    117 
    118 const int kCharSize      = sizeof(char);      // NOLINT
    119 const int kShortSize     = sizeof(short);     // NOLINT
    120 const int kIntSize       = sizeof(int);       // NOLINT
    121 const int kInt32Size     = sizeof(int32_t);   // NOLINT
    122 const int kInt64Size     = sizeof(int64_t);   // NOLINT
    123 const int kFloatSize     = sizeof(float);     // NOLINT
    124 const int kDoubleSize    = sizeof(double);    // NOLINT
    125 const int kIntptrSize    = sizeof(intptr_t);  // NOLINT
    126 const int kPointerSize   = sizeof(void*);     // NOLINT
    127 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
    128 const int kRegisterSize  = kPointerSize + kPointerSize;
    129 #else
    130 const int kRegisterSize  = kPointerSize;
    131 #endif
    132 const int kPCOnStackSize = kRegisterSize;
    133 const int kFPOnStackSize = kRegisterSize;
    134 
    135 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    136 const int kElidedFrameSlots = kPCOnStackSize / kPointerSize;
    137 #else
    138 const int kElidedFrameSlots = 0;
    139 #endif
    140 
    141 const int kDoubleSizeLog2 = 3;
    142 
    143 #if V8_HOST_ARCH_64_BIT
    144 const int kPointerSizeLog2 = 3;
    145 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
    146 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
    147 const bool kRequiresCodeRange = true;
    148 #if V8_TARGET_ARCH_MIPS64
    149 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit
    150 // encoded immediate, the addresses have to be in range of 256MB aligned
    151 // region. Used only for large object space.
    152 const size_t kMaximalCodeRangeSize = 256 * MB;
    153 const size_t kCodeRangeAreaAlignment = 256 * MB;
    154 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
    155 const size_t kMaximalCodeRangeSize = 512 * MB;
    156 const size_t kCodeRangeAreaAlignment = 64 * KB;  // OS page on PPC Linux
    157 #else
    158 const size_t kMaximalCodeRangeSize = 512 * MB;
    159 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
    160 #endif
    161 #if V8_OS_WIN
    162 const size_t kMinimumCodeRangeSize = 4 * MB;
    163 const size_t kReservedCodeRangePages = 1;
    164 // On PPC Linux PageSize is 4MB
    165 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
    166 const size_t kMinimumCodeRangeSize = 12 * MB;
    167 const size_t kReservedCodeRangePages = 0;
    168 #else
    169 const size_t kMinimumCodeRangeSize = 3 * MB;
    170 const size_t kReservedCodeRangePages = 0;
    171 #endif
    172 #else
    173 const int kPointerSizeLog2 = 2;
    174 const intptr_t kIntptrSignBit = 0x80000000;
    175 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
    176 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
    177 // x32 port also requires code range.
    178 const bool kRequiresCodeRange = true;
    179 const size_t kMaximalCodeRangeSize = 256 * MB;
    180 const size_t kMinimumCodeRangeSize = 3 * MB;
    181 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
    182 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
    183 const bool kRequiresCodeRange = false;
    184 const size_t kMaximalCodeRangeSize = 0 * MB;
    185 const size_t kMinimumCodeRangeSize = 0 * MB;
    186 const size_t kCodeRangeAreaAlignment = 64 * KB;  // OS page on PPC Linux
    187 #else
    188 const bool kRequiresCodeRange = false;
    189 const size_t kMaximalCodeRangeSize = 0 * MB;
    190 const size_t kMinimumCodeRangeSize = 0 * MB;
    191 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
    192 #endif
    193 const size_t kReservedCodeRangePages = 0;
    194 #endif
    195 
    196 // The external allocation limit should be below 256 MB on all architectures
    197 // to avoid that resource-constrained embedders run low on memory.
    198 const int kExternalAllocationLimit = 192 * 1024 * 1024;
    199 
    200 STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
    201 
    202 const int kBitsPerByte = 8;
    203 const int kBitsPerByteLog2 = 3;
    204 const int kBitsPerPointer = kPointerSize * kBitsPerByte;
    205 const int kBitsPerInt = kIntSize * kBitsPerByte;
    206 
    207 // IEEE 754 single precision floating point number bit layout.
    208 const uint32_t kBinary32SignMask = 0x80000000u;
    209 const uint32_t kBinary32ExponentMask = 0x7f800000u;
    210 const uint32_t kBinary32MantissaMask = 0x007fffffu;
    211 const int kBinary32ExponentBias = 127;
    212 const int kBinary32MaxExponent  = 0xFE;
    213 const int kBinary32MinExponent  = 0x01;
    214 const int kBinary32MantissaBits = 23;
    215 const int kBinary32ExponentShift = 23;
    216 
    217 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
    218 // other bits set.
    219 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
    220 
    221 // Latin1/UTF-16 constants
    222 // Code-point values in Unicode 4.0 are 21 bits wide.
    223 // Code units in UTF-16 are 16 bits wide.
    224 typedef uint16_t uc16;
    225 typedef int32_t uc32;
    226 const int kOneByteSize    = kCharSize;
    227 const int kUC16Size     = sizeof(uc16);      // NOLINT
    228 
    229 // 128 bit SIMD value size.
    230 const int kSimd128Size = 16;
    231 
    232 // Round up n to be a multiple of sz, where sz is a power of 2.
    233 #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))
    234 
    235 
    236 // FUNCTION_ADDR(f) gets the address of a C function f.
    237 #define FUNCTION_ADDR(f)                                        \
    238   (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))
    239 
    240 
    241 // FUNCTION_CAST<F>(addr) casts an address into a function
    242 // of type F. Used to invoke generated code from within C.
    243 template <typename F>
    244 F FUNCTION_CAST(Address addr) {
    245   return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
    246 }
    247 
    248 
    249 // Determine whether the architecture uses function descriptors
    250 // which provide a level of indirection between the function pointer
    251 // and the function entrypoint.
    252 #if V8_HOST_ARCH_PPC && \
    253     (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
    254 #define USES_FUNCTION_DESCRIPTORS 1
    255 #define FUNCTION_ENTRYPOINT_ADDRESS(f)       \
    256   (reinterpret_cast<v8::internal::Address*>( \
    257       &(reinterpret_cast<intptr_t*>(f)[0])))
    258 #else
    259 #define USES_FUNCTION_DESCRIPTORS 0
    260 #endif
    261 
    262 
    263 // -----------------------------------------------------------------------------
    264 // Forward declarations for frequently used classes
    265 // (sorted alphabetically)
    266 
    267 class FreeStoreAllocationPolicy;
    268 template <typename T, class P = FreeStoreAllocationPolicy> class List;
    269 
    270 // -----------------------------------------------------------------------------
    271 // Declarations for use in both the preparser and the rest of V8.
    272 
    273 // The Strict Mode (ECMA-262 5th edition, 4.2.2).
    274 
    275 enum LanguageMode { SLOPPY, STRICT, LANGUAGE_END = 3 };
    276 
    277 
    278 inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
    279   switch (mode) {
    280     case SLOPPY: return os << "sloppy";
    281     case STRICT: return os << "strict";
    282     default: UNREACHABLE();
    283   }
    284   return os;
    285 }
    286 
    287 
    288 inline bool is_sloppy(LanguageMode language_mode) {
    289   return language_mode == SLOPPY;
    290 }
    291 
    292 
    293 inline bool is_strict(LanguageMode language_mode) {
    294   return language_mode != SLOPPY;
    295 }
    296 
    297 
    298 inline bool is_valid_language_mode(int language_mode) {
    299   return language_mode == SLOPPY || language_mode == STRICT;
    300 }
    301 
    302 
    303 inline LanguageMode construct_language_mode(bool strict_bit) {
    304   return static_cast<LanguageMode>(strict_bit);
    305 }
    306 
    307 
    308 // Mask for the sign bit in a smi.
    309 const intptr_t kSmiSignMask = kIntptrSignBit;
    310 
    311 const int kObjectAlignmentBits = kPointerSizeLog2;
    312 const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
    313 const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
    314 
    315 // Desired alignment for pointers.
    316 const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
    317 const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
    318 
    319 // Desired alignment for double values.
    320 const intptr_t kDoubleAlignment = 8;
    321 const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
    322 
    323 // Desired alignment for 128 bit SIMD values.
    324 const intptr_t kSimd128Alignment = 16;
    325 const intptr_t kSimd128AlignmentMask = kSimd128Alignment - 1;
    326 
    327 // Desired alignment for generated code is 32 bytes (to improve cache line
    328 // utilization).
    329 const int kCodeAlignmentBits = 5;
    330 const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
    331 const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
    332 
    333 // The owner field of a page is tagged with the page header tag. We need that
    334 // to find out if a slot is part of a large object. If we mask out the lower
    335 // 0xfffff bits (1M pages), go to the owner offset, and see that this field
    336 // is tagged with the page header tag, we can just look up the owner.
    337 // Otherwise, we know that we are somewhere (not within the first 1M) in a
    338 // large object.
    339 const int kPageHeaderTag = 3;
    340 const int kPageHeaderTagSize = 2;
    341 const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1;
    342 
    343 
    344 // Zap-value: The value used for zapping dead objects.
    345 // Should be a recognizable hex value tagged as a failure.
    346 #ifdef V8_HOST_ARCH_64_BIT
    347 const Address kZapValue =
    348     reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
    349 const Address kHandleZapValue =
    350     reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
    351 const Address kGlobalHandleZapValue =
    352     reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
    353 const Address kFromSpaceZapValue =
    354     reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
    355 const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
    356 const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
    357 const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
    358 #else
    359 const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
    360 const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
    361 const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
    362 const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
    363 const uint32_t kSlotsZapValue = 0xbeefdeef;
    364 const uint32_t kDebugZapValue = 0xbadbaddb;
    365 const uint32_t kFreeListZapValue = 0xfeed1eaf;
    366 #endif
    367 
    368 const int kCodeZapValue = 0xbadc0de;
    369 const uint32_t kPhantomReferenceZap = 0xca11bac;
    370 
    371 // On Intel architecture, cache line size is 64 bytes.
    372 // On ARM it may be less (32 bytes), but as far this constant is
    373 // used for aligning data, it doesn't hurt to align on a greater value.
    374 #define PROCESSOR_CACHE_LINE_SIZE 64
    375 
    376 // Constants relevant to double precision floating point numbers.
    377 // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
    378 const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
    379 
    380 
    381 // -----------------------------------------------------------------------------
    382 // Forward declarations for frequently used classes
    383 
    384 class AccessorInfo;
    385 class Allocation;
    386 class Arguments;
    387 class Assembler;
    388 class Code;
    389 class CodeGenerator;
    390 class CodeStub;
    391 class Context;
    392 class Debug;
    393 class DebugInfo;
    394 class Descriptor;
    395 class DescriptorArray;
    396 class TransitionArray;
    397 class ExternalReference;
    398 class FixedArray;
    399 class FunctionTemplateInfo;
    400 class MemoryChunk;
    401 class SeededNumberDictionary;
    402 class UnseededNumberDictionary;
    403 class NameDictionary;
    404 class GlobalDictionary;
    405 template <typename T> class MaybeHandle;
    406 template <typename T> class Handle;
    407 class Heap;
    408 class HeapObject;
    409 class IC;
    410 class InterceptorInfo;
    411 class Isolate;
    412 class JSReceiver;
    413 class JSArray;
    414 class JSFunction;
    415 class JSObject;
    416 class LargeObjectSpace;
    417 class MacroAssembler;
    418 class Map;
    419 class MapSpace;
    420 class MarkCompactCollector;
    421 class NewSpace;
    422 class Object;
    423 class OldSpace;
    424 class ParameterCount;
    425 class Foreign;
    426 class Scope;
    427 class ScopeInfo;
    428 class Script;
    429 class Smi;
    430 template <typename Config, class Allocator = FreeStoreAllocationPolicy>
    431 class SplayTree;
    432 class String;
    433 class Symbol;
    434 class Name;
    435 class Struct;
    436 class TypeFeedbackVector;
    437 class Variable;
    438 class RelocInfo;
    439 class Deserializer;
    440 class MessageLocation;
    441 
    442 typedef bool (*WeakSlotCallback)(Object** pointer);
    443 
    444 typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
    445 
    446 // -----------------------------------------------------------------------------
    447 // Miscellaneous
    448 
    449 // NOTE: SpaceIterator depends on AllocationSpace enumeration values being
    450 // consecutive.
    451 // Keep this enum in sync with the ObjectSpace enum in v8.h
    452 enum AllocationSpace {
    453   NEW_SPACE,   // Semispaces collected with copying collector.
    454   OLD_SPACE,   // May contain pointers to new space.
    455   CODE_SPACE,  // No pointers to new space, marked executable.
    456   MAP_SPACE,   // Only and all map objects.
    457   LO_SPACE,    // Promoted large objects.
    458 
    459   FIRST_SPACE = NEW_SPACE,
    460   LAST_SPACE = LO_SPACE,
    461   FIRST_PAGED_SPACE = OLD_SPACE,
    462   LAST_PAGED_SPACE = MAP_SPACE
    463 };
    464 const int kSpaceTagSize = 3;
    465 const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
    466 
    467 enum AllocationAlignment {
    468   kWordAligned,
    469   kDoubleAligned,
    470   kDoubleUnaligned,
    471   kSimd128Unaligned
    472 };
    473 
    474 // Possible outcomes for decisions.
    475 enum class Decision : uint8_t { kUnknown, kTrue, kFalse };
    476 
    477 inline size_t hash_value(Decision decision) {
    478   return static_cast<uint8_t>(decision);
    479 }
    480 
    481 inline std::ostream& operator<<(std::ostream& os, Decision decision) {
    482   switch (decision) {
    483     case Decision::kUnknown:
    484       return os << "Unknown";
    485     case Decision::kTrue:
    486       return os << "True";
    487     case Decision::kFalse:
    488       return os << "False";
    489   }
    490   UNREACHABLE();
    491   return os;
    492 }
    493 
    494 // Supported write barrier modes.
    495 enum WriteBarrierKind : uint8_t {
    496   kNoWriteBarrier,
    497   kMapWriteBarrier,
    498   kPointerWriteBarrier,
    499   kFullWriteBarrier
    500 };
    501 
    502 inline size_t hash_value(WriteBarrierKind kind) {
    503   return static_cast<uint8_t>(kind);
    504 }
    505 
    506 inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) {
    507   switch (kind) {
    508     case kNoWriteBarrier:
    509       return os << "NoWriteBarrier";
    510     case kMapWriteBarrier:
    511       return os << "MapWriteBarrier";
    512     case kPointerWriteBarrier:
    513       return os << "PointerWriteBarrier";
    514     case kFullWriteBarrier:
    515       return os << "FullWriteBarrier";
    516   }
    517   UNREACHABLE();
    518   return os;
    519 }
    520 
    521 // A flag that indicates whether objects should be pretenured when
    522 // allocated (allocated directly into the old generation) or not
    523 // (allocated in the young generation if the object size and type
    524 // allows).
    525 enum PretenureFlag { NOT_TENURED, TENURED };
    526 
    527 inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
    528   switch (flag) {
    529     case NOT_TENURED:
    530       return os << "NotTenured";
    531     case TENURED:
    532       return os << "Tenured";
    533   }
    534   UNREACHABLE();
    535   return os;
    536 }
    537 
    538 enum MinimumCapacity {
    539   USE_DEFAULT_MINIMUM_CAPACITY,
    540   USE_CUSTOM_MINIMUM_CAPACITY
    541 };
    542 
    543 enum GarbageCollector { SCAVENGER, MARK_COMPACTOR };
    544 
    545 enum Executability { NOT_EXECUTABLE, EXECUTABLE };
    546 
    547 enum VisitMode {
    548   VISIT_ALL,
    549   VISIT_ALL_IN_SCAVENGE,
    550   VISIT_ALL_IN_SWEEP_NEWSPACE,
    551   VISIT_ONLY_STRONG,
    552   VISIT_ONLY_STRONG_FOR_SERIALIZATION,
    553   VISIT_ONLY_STRONG_ROOT_LIST,
    554 };
    555 
    556 // Flag indicating whether code is built into the VM (one of the natives files).
    557 enum NativesFlag { NOT_NATIVES_CODE, EXTENSION_CODE, NATIVES_CODE };
    558 
    559 // JavaScript defines two kinds of 'nil'.
    560 enum NilValue { kNullValue, kUndefinedValue };
    561 
    562 // ParseRestriction is used to restrict the set of valid statements in a
    563 // unit of compilation.  Restriction violations cause a syntax error.
    564 enum ParseRestriction {
    565   NO_PARSE_RESTRICTION,         // All expressions are allowed.
    566   ONLY_SINGLE_FUNCTION_LITERAL  // Only a single FunctionLiteral expression.
    567 };
    568 
    569 // A CodeDesc describes a buffer holding instructions and relocation
    570 // information. The instructions start at the beginning of the buffer
    571 // and grow forward, the relocation information starts at the end of
    572 // the buffer and grows backward.  A constant pool may exist at the
    573 // end of the instructions.
    574 //
    575 //  |<--------------- buffer_size ----------------------------------->|
    576 //  |<------------- instr_size ---------->|        |<-- reloc_size -->|
    577 //  |               |<- const_pool_size ->|                           |
    578 //  +=====================================+========+==================+
    579 //  |  instructions |        data         |  free  |    reloc info    |
    580 //  +=====================================+========+==================+
    581 //  ^
    582 //  |
    583 //  buffer
    584 
    585 struct CodeDesc {
    586   byte* buffer;
    587   int buffer_size;
    588   int instr_size;
    589   int reloc_size;
    590   int constant_pool_size;
    591   byte* unwinding_info;
    592   int unwinding_info_size;
    593   Assembler* origin;
    594 };
    595 
    596 
    597 // Callback function used for checking constraints when copying/relocating
    598 // objects. Returns true if an object can be copied/relocated from its
    599 // old_addr to a new_addr.
    600 typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
    601 
    602 
    603 // Callback function on inline caches, used for iterating over inline caches
    604 // in compiled code.
    605 typedef void (*InlineCacheCallback)(Code* code, Address ic);
    606 
    607 
    608 // State for inline cache call sites. Aliased as IC::State.
    609 enum InlineCacheState {
    610   // Has never been executed.
    611   UNINITIALIZED,
    612   // Has been executed but monomorhic state has been delayed.
    613   PREMONOMORPHIC,
    614   // Has been executed and only one receiver type has been seen.
    615   MONOMORPHIC,
    616   // Check failed due to prototype (or map deprecation).
    617   RECOMPUTE_HANDLER,
    618   // Multiple receiver types have been seen.
    619   POLYMORPHIC,
    620   // Many receiver types have been seen.
    621   MEGAMORPHIC,
    622   // A generic handler is installed and no extra typefeedback is recorded.
    623   GENERIC,
    624 };
    625 
    626 enum CacheHolderFlag {
    627   kCacheOnPrototype,
    628   kCacheOnPrototypeReceiverIsDictionary,
    629   kCacheOnPrototypeReceiverIsPrimitive,
    630   kCacheOnReceiver
    631 };
    632 
    633 enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
    634 
    635 // The Store Buffer (GC).
    636 typedef enum {
    637   kStoreBufferFullEvent,
    638   kStoreBufferStartScanningPagesEvent,
    639   kStoreBufferScanningPageEvent
    640 } StoreBufferEvent;
    641 
    642 
    643 typedef void (*StoreBufferCallback)(Heap* heap,
    644                                     MemoryChunk* page,
    645                                     StoreBufferEvent event);
    646 
    647 
    648 // Union used for fast testing of specific double values.
    649 union DoubleRepresentation {
    650   double  value;
    651   int64_t bits;
    652   DoubleRepresentation(double x) { value = x; }
    653   bool operator==(const DoubleRepresentation& other) const {
    654     return bits == other.bits;
    655   }
    656 };
    657 
    658 
    659 // Union used for customized checking of the IEEE double types
    660 // inlined within v8 runtime, rather than going to the underlying
    661 // platform headers and libraries
    662 union IeeeDoubleLittleEndianArchType {
    663   double d;
    664   struct {
    665     unsigned int man_low  :32;
    666     unsigned int man_high :20;
    667     unsigned int exp      :11;
    668     unsigned int sign     :1;
    669   } bits;
    670 };
    671 
    672 
    673 union IeeeDoubleBigEndianArchType {
    674   double d;
    675   struct {
    676     unsigned int sign     :1;
    677     unsigned int exp      :11;
    678     unsigned int man_high :20;
    679     unsigned int man_low  :32;
    680   } bits;
    681 };
    682 
    683 #if V8_TARGET_LITTLE_ENDIAN
    684 typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType;
    685 const int kIeeeDoubleMantissaWordOffset = 0;
    686 const int kIeeeDoubleExponentWordOffset = 4;
    687 #else
    688 typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType;
    689 const int kIeeeDoubleMantissaWordOffset = 4;
    690 const int kIeeeDoubleExponentWordOffset = 0;
    691 #endif
    692 
    693 // AccessorCallback
    694 struct AccessorDescriptor {
    695   Object* (*getter)(Isolate* isolate, Object* object, void* data);
    696   Object* (*setter)(
    697       Isolate* isolate, JSObject* object, Object* value, void* data);
    698   void* data;
    699 };
    700 
    701 
    702 // -----------------------------------------------------------------------------
    703 // Macros
    704 
    705 // Testers for test.
    706 
    707 #define HAS_SMI_TAG(value) \
    708   ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)
    709 
    710 // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
    711 #define OBJECT_POINTER_ALIGN(value)                             \
    712   (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
    713 
    714 // POINTER_SIZE_ALIGN returns the value aligned as a pointer.
    715 #define POINTER_SIZE_ALIGN(value)                               \
    716   (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
    717 
    718 // CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
    719 #define CODE_POINTER_ALIGN(value)                               \
    720   (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
    721 
    722 // DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
    723 #define DOUBLE_POINTER_ALIGN(value) \
    724   (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)
    725 
    726 
    727 // CPU feature flags.
    728 enum CpuFeature {
    729   // x86
    730   SSE4_1,
    731   SSE3,
    732   SAHF,
    733   AVX,
    734   FMA3,
    735   BMI1,
    736   BMI2,
    737   LZCNT,
    738   POPCNT,
    739   ATOM,
    740   // ARM
    741   VFP3,
    742   ARMv7,
    743   ARMv8,
    744   SUDIV,
    745   UNALIGNED_ACCESSES,
    746   MOVW_MOVT_IMMEDIATE_LOADS,
    747   VFP32DREGS,
    748   NEON,
    749   // MIPS, MIPS64
    750   FPU,
    751   FP64FPU,
    752   MIPSr1,
    753   MIPSr2,
    754   MIPSr6,
    755   // ARM64
    756   ALWAYS_ALIGN_CSP,
    757   // PPC
    758   FPR_GPR_MOV,
    759   LWSYNC,
    760   ISELECT,
    761   // S390
    762   DISTINCT_OPS,
    763   GENERAL_INSTR_EXT,
    764   FLOATING_POINT_EXT,
    765   NUMBER_OF_CPU_FEATURES
    766 };
    767 
    768 // Defines hints about receiver values based on structural knowledge.
    769 enum class ConvertReceiverMode : unsigned {
    770   kNullOrUndefined,     // Guaranteed to be null or undefined.
    771   kNotNullOrUndefined,  // Guaranteed to never be null or undefined.
    772   kAny                  // No specific knowledge about receiver.
    773 };
    774 
    775 inline size_t hash_value(ConvertReceiverMode mode) {
    776   return bit_cast<unsigned>(mode);
    777 }
    778 
    779 inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
    780   switch (mode) {
    781     case ConvertReceiverMode::kNullOrUndefined:
    782       return os << "NULL_OR_UNDEFINED";
    783     case ConvertReceiverMode::kNotNullOrUndefined:
    784       return os << "NOT_NULL_OR_UNDEFINED";
    785     case ConvertReceiverMode::kAny:
    786       return os << "ANY";
    787   }
    788   UNREACHABLE();
    789   return os;
    790 }
    791 
    792 // Defines whether tail call optimization is allowed.
    793 enum class TailCallMode : unsigned { kAllow, kDisallow };
    794 
    795 inline size_t hash_value(TailCallMode mode) { return bit_cast<unsigned>(mode); }
    796 
    797 inline std::ostream& operator<<(std::ostream& os, TailCallMode mode) {
    798   switch (mode) {
    799     case TailCallMode::kAllow:
    800       return os << "ALLOW_TAIL_CALLS";
    801     case TailCallMode::kDisallow:
    802       return os << "DISALLOW_TAIL_CALLS";
    803   }
    804   UNREACHABLE();
    805   return os;
    806 }
    807 
    808 // Defines specifics about arguments object or rest parameter creation.
    809 enum class CreateArgumentsType : uint8_t {
    810   kMappedArguments,
    811   kUnmappedArguments,
    812   kRestParameter
    813 };
    814 
    815 inline size_t hash_value(CreateArgumentsType type) {
    816   return bit_cast<uint8_t>(type);
    817 }
    818 
    819 inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
    820   switch (type) {
    821     case CreateArgumentsType::kMappedArguments:
    822       return os << "MAPPED_ARGUMENTS";
    823     case CreateArgumentsType::kUnmappedArguments:
    824       return os << "UNMAPPED_ARGUMENTS";
    825     case CreateArgumentsType::kRestParameter:
    826       return os << "REST_PARAMETER";
    827   }
    828   UNREACHABLE();
    829   return os;
    830 }
    831 
    832 // Used to specify if a macro instruction must perform a smi check on tagged
    833 // values.
    834 enum SmiCheckType {
    835   DONT_DO_SMI_CHECK,
    836   DO_SMI_CHECK
    837 };
    838 
    839 
    840 enum ScopeType {
    841   EVAL_SCOPE,      // The top-level scope for an eval source.
    842   FUNCTION_SCOPE,  // The top-level scope for a function.
    843   MODULE_SCOPE,    // The scope introduced by a module literal
    844   SCRIPT_SCOPE,    // The top-level scope for a script or a top-level eval.
    845   CATCH_SCOPE,     // The scope introduced by catch.
    846   BLOCK_SCOPE,     // The scope introduced by a new block.
    847   WITH_SCOPE       // The scope introduced by with.
    848 };
    849 
    850 // The mips architecture prior to revision 5 has inverted encoding for sNaN.
    851 // The x87 FPU convert the sNaN to qNaN automatically when loading sNaN from
    852 // memmory.
    853 // Use mips sNaN which is a not used qNaN in x87 port as sNaN to workaround this
    854 // issue
    855 // for some test cases.
    856 #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6)) ||   \
    857     (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6)) || \
    858     (V8_TARGET_ARCH_X87)
    859 const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
    860 const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
    861 #else
    862 const uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
    863 const uint32_t kHoleNanLower32 = 0xFFF7FFFF;
    864 #endif
    865 
    866 const uint64_t kHoleNanInt64 =
    867     (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
    868 
    869 
    870 // ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
    871 const double kMaxSafeInteger = 9007199254740991.0;  // 2^53-1
    872 
    873 
    874 // The order of this enum has to be kept in sync with the predicates below.
    875 enum VariableMode {
    876   // User declared variables:
    877   VAR,  // declared via 'var', and 'function' declarations
    878 
    879   CONST_LEGACY,  // declared via legacy 'const' declarations
    880 
    881   LET,  // declared via 'let' declarations (first lexical)
    882 
    883   CONST,  // declared via 'const' declarations (last lexical)
    884 
    885   // Variables introduced by the compiler:
    886   TEMPORARY,  // temporary variables (not user-visible), stack-allocated
    887               // unless the scope as a whole has forced context allocation
    888 
    889   DYNAMIC,  // always require dynamic lookup (we don't know
    890             // the declaration)
    891 
    892   DYNAMIC_GLOBAL,  // requires dynamic lookup, but we know that the
    893                    // variable is global unless it has been shadowed
    894                    // by an eval-introduced variable
    895 
    896   DYNAMIC_LOCAL  // requires dynamic lookup, but we know that the
    897                  // variable is local and where it is unless it
    898                  // has been shadowed by an eval-introduced
    899                  // variable
    900 };
    901 
    902 inline bool IsDynamicVariableMode(VariableMode mode) {
    903   return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
    904 }
    905 
    906 
    907 inline bool IsDeclaredVariableMode(VariableMode mode) {
    908   return mode >= VAR && mode <= CONST;
    909 }
    910 
    911 
    912 inline bool IsLexicalVariableMode(VariableMode mode) {
    913   return mode >= LET && mode <= CONST;
    914 }
    915 
    916 
    917 inline bool IsImmutableVariableMode(VariableMode mode) {
    918   return mode == CONST || mode == CONST_LEGACY;
    919 }
    920 
    921 
    922 enum class VariableLocation {
    923   // Before and during variable allocation, a variable whose location is
    924   // not yet determined.  After allocation, a variable looked up as a
    925   // property on the global object (and possibly absent).  name() is the
    926   // variable name, index() is invalid.
    927   UNALLOCATED,
    928 
    929   // A slot in the parameter section on the stack.  index() is the
    930   // parameter index, counting left-to-right.  The receiver is index -1;
    931   // the first parameter is index 0.
    932   PARAMETER,
    933 
    934   // A slot in the local section on the stack.  index() is the variable
    935   // index in the stack frame, starting at 0.
    936   LOCAL,
    937 
    938   // An indexed slot in a heap context.  index() is the variable index in
    939   // the context object on the heap, starting at 0.  scope() is the
    940   // corresponding scope.
    941   CONTEXT,
    942 
    943   // An indexed slot in a script context that contains a respective global
    944   // property cell.  name() is the variable name, index() is the variable
    945   // index in the context object on the heap, starting at 0.  scope() is the
    946   // corresponding script scope.
    947   GLOBAL,
    948 
    949   // A named slot in a heap context.  name() is the variable name in the
    950   // context object on the heap, with lookup starting at the current
    951   // context.  index() is invalid.
    952   LOOKUP
    953 };
    954 
    955 
    956 // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
    957 // and immutable bindings that can be in two states: initialized and
    958 // uninitialized. In ES5 only immutable bindings have these two states. When
    959 // accessing a binding, it needs to be checked for initialization. However in
    960 // the following cases the binding is initialized immediately after creation
    961 // so the initialization check can always be skipped:
    962 // 1. Var declared local variables.
    963 //      var foo;
    964 // 2. A local variable introduced by a function declaration.
    965 //      function foo() {}
    966 // 3. Parameters
    967 //      function x(foo) {}
    968 // 4. Catch bound variables.
    969 //      try {} catch (foo) {}
    970 // 6. Function variables of named function expressions.
    971 //      var x = function foo() {}
    972 // 7. Implicit binding of 'this'.
    973 // 8. Implicit binding of 'arguments' in functions.
    974 //
    975 // ES5 specified object environment records which are introduced by ES elements
    976 // such as Program and WithStatement that associate identifier bindings with the
    977 // properties of some object. In the specification only mutable bindings exist
    978 // (which may be non-writable) and have no distinct initialization step. However
    979 // V8 allows const declarations in global code with distinct creation and
    980 // initialization steps which are represented by non-writable properties in the
    981 // global object. As a result also these bindings need to be checked for
    982 // initialization.
    983 //
    984 // The following enum specifies a flag that indicates if the binding needs a
    985 // distinct initialization step (kNeedsInitialization) or if the binding is
    986 // immediately initialized upon creation (kCreatedInitialized).
    987 enum InitializationFlag {
    988   kNeedsInitialization,
    989   kCreatedInitialized
    990 };
    991 
    992 
    993 enum MaybeAssignedFlag { kNotAssigned, kMaybeAssigned };
    994 
    995 
    996 // Serialized in PreparseData, so numeric values should not be changed.
    997 enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
    998 
    999 
   1000 enum MinusZeroMode {
   1001   TREAT_MINUS_ZERO_AS_ZERO,
   1002   FAIL_ON_MINUS_ZERO
   1003 };
   1004 
   1005 
   1006 enum Signedness { kSigned, kUnsigned };
   1007 
   1008 enum FunctionKind {
   1009   kNormalFunction = 0,
   1010   kArrowFunction = 1 << 0,
   1011   kGeneratorFunction = 1 << 1,
   1012   kConciseMethod = 1 << 2,
   1013   kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod,
   1014   kDefaultConstructor = 1 << 3,
   1015   kSubclassConstructor = 1 << 4,
   1016   kBaseConstructor = 1 << 5,
   1017   kGetterFunction = 1 << 6,
   1018   kSetterFunction = 1 << 7,
   1019   kAsyncFunction = 1 << 8,
   1020   kAccessorFunction = kGetterFunction | kSetterFunction,
   1021   kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor,
   1022   kDefaultSubclassConstructor = kDefaultConstructor | kSubclassConstructor,
   1023   kClassConstructor =
   1024       kBaseConstructor | kSubclassConstructor | kDefaultConstructor,
   1025   kAsyncArrowFunction = kArrowFunction | kAsyncFunction,
   1026   kAsyncConciseMethod = kAsyncFunction | kConciseMethod
   1027 };
   1028 
   1029 inline bool IsValidFunctionKind(FunctionKind kind) {
   1030   return kind == FunctionKind::kNormalFunction ||
   1031          kind == FunctionKind::kArrowFunction ||
   1032          kind == FunctionKind::kGeneratorFunction ||
   1033          kind == FunctionKind::kConciseMethod ||
   1034          kind == FunctionKind::kConciseGeneratorMethod ||
   1035          kind == FunctionKind::kGetterFunction ||
   1036          kind == FunctionKind::kSetterFunction ||
   1037          kind == FunctionKind::kAccessorFunction ||
   1038          kind == FunctionKind::kDefaultBaseConstructor ||
   1039          kind == FunctionKind::kDefaultSubclassConstructor ||
   1040          kind == FunctionKind::kBaseConstructor ||
   1041          kind == FunctionKind::kSubclassConstructor ||
   1042          kind == FunctionKind::kAsyncFunction ||
   1043          kind == FunctionKind::kAsyncArrowFunction ||
   1044          kind == FunctionKind::kAsyncConciseMethod;
   1045 }
   1046 
   1047 
   1048 inline bool IsArrowFunction(FunctionKind kind) {
   1049   DCHECK(IsValidFunctionKind(kind));
   1050   return kind & FunctionKind::kArrowFunction;
   1051 }
   1052 
   1053 
   1054 inline bool IsGeneratorFunction(FunctionKind kind) {
   1055   DCHECK(IsValidFunctionKind(kind));
   1056   return kind & FunctionKind::kGeneratorFunction;
   1057 }
   1058 
   1059 inline bool IsAsyncFunction(FunctionKind kind) {
   1060   DCHECK(IsValidFunctionKind(kind));
   1061   return kind & FunctionKind::kAsyncFunction;
   1062 }
   1063 
   1064 inline bool IsResumableFunction(FunctionKind kind) {
   1065   return IsGeneratorFunction(kind) || IsAsyncFunction(kind);
   1066 }
   1067 
   1068 inline bool IsConciseMethod(FunctionKind kind) {
   1069   DCHECK(IsValidFunctionKind(kind));
   1070   return kind & FunctionKind::kConciseMethod;
   1071 }
   1072 
   1073 inline bool IsGetterFunction(FunctionKind kind) {
   1074   DCHECK(IsValidFunctionKind(kind));
   1075   return kind & FunctionKind::kGetterFunction;
   1076 }
   1077 
   1078 inline bool IsSetterFunction(FunctionKind kind) {
   1079   DCHECK(IsValidFunctionKind(kind));
   1080   return kind & FunctionKind::kSetterFunction;
   1081 }
   1082 
   1083 inline bool IsAccessorFunction(FunctionKind kind) {
   1084   DCHECK(IsValidFunctionKind(kind));
   1085   return kind & FunctionKind::kAccessorFunction;
   1086 }
   1087 
   1088 
   1089 inline bool IsDefaultConstructor(FunctionKind kind) {
   1090   DCHECK(IsValidFunctionKind(kind));
   1091   return kind & FunctionKind::kDefaultConstructor;
   1092 }
   1093 
   1094 
   1095 inline bool IsBaseConstructor(FunctionKind kind) {
   1096   DCHECK(IsValidFunctionKind(kind));
   1097   return kind & FunctionKind::kBaseConstructor;
   1098 }
   1099 
   1100 
   1101 inline bool IsSubclassConstructor(FunctionKind kind) {
   1102   DCHECK(IsValidFunctionKind(kind));
   1103   return kind & FunctionKind::kSubclassConstructor;
   1104 }
   1105 
   1106 
   1107 inline bool IsClassConstructor(FunctionKind kind) {
   1108   DCHECK(IsValidFunctionKind(kind));
   1109   return kind & FunctionKind::kClassConstructor;
   1110 }
   1111 
   1112 
   1113 inline bool IsConstructable(FunctionKind kind, LanguageMode mode) {
   1114   if (IsAccessorFunction(kind)) return false;
   1115   if (IsConciseMethod(kind)) return false;
   1116   if (IsArrowFunction(kind)) return false;
   1117   if (IsGeneratorFunction(kind)) return false;
   1118   if (IsAsyncFunction(kind)) return false;
   1119   return true;
   1120 }
   1121 
   1122 
   1123 inline uint32_t ObjectHash(Address address) {
   1124   // All objects are at least pointer aligned, so we can remove the trailing
   1125   // zeros.
   1126   return static_cast<uint32_t>(bit_cast<uintptr_t>(address) >>
   1127                                kPointerSizeLog2);
   1128 }
   1129 
   1130 }  // namespace internal
   1131 }  // namespace v8
   1132 
   1133 namespace i = v8::internal;
   1134 
   1135 #endif  // V8_GLOBALS_H_
   1136