Home | History | Annotate | Download | only in Sema
      1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines analysis_warnings::[Policy,Executor].
     11 // Together they are used by Sema to issue warnings based on inexpensive
     12 // static analysis algorithms in libAnalysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "clang/Sema/AnalysisBasedWarnings.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/EvaluatedExprVisitor.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/ExprObjC.h"
     22 #include "clang/AST/ParentMap.h"
     23 #include "clang/AST/RecursiveASTVisitor.h"
     24 #include "clang/AST/StmtCXX.h"
     25 #include "clang/AST/StmtObjC.h"
     26 #include "clang/AST/StmtVisitor.h"
     27 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
     28 #include "clang/Analysis/Analyses/Consumed.h"
     29 #include "clang/Analysis/Analyses/ReachableCode.h"
     30 #include "clang/Analysis/Analyses/ThreadSafety.h"
     31 #include "clang/Analysis/Analyses/UninitializedValues.h"
     32 #include "clang/Analysis/AnalysisContext.h"
     33 #include "clang/Analysis/CFG.h"
     34 #include "clang/Analysis/CFGStmtMap.h"
     35 #include "clang/Basic/SourceLocation.h"
     36 #include "clang/Basic/SourceManager.h"
     37 #include "clang/Lex/Preprocessor.h"
     38 #include "clang/Sema/ScopeInfo.h"
     39 #include "clang/Sema/SemaInternal.h"
     40 #include "llvm/ADT/ArrayRef.h"
     41 #include "llvm/ADT/BitVector.h"
     42 #include "llvm/ADT/FoldingSet.h"
     43 #include "llvm/ADT/ImmutableMap.h"
     44 #include "llvm/ADT/MapVector.h"
     45 #include "llvm/ADT/PostOrderIterator.h"
     46 #include "llvm/ADT/SmallString.h"
     47 #include "llvm/ADT/SmallVector.h"
     48 #include "llvm/ADT/StringRef.h"
     49 #include "llvm/Support/Casting.h"
     50 #include <algorithm>
     51 #include <deque>
     52 #include <iterator>
     53 #include <vector>
     54 
     55 using namespace clang;
     56 
     57 //===----------------------------------------------------------------------===//
     58 // Unreachable code analysis.
     59 //===----------------------------------------------------------------------===//
     60 
     61 namespace {
     62   class UnreachableCodeHandler : public reachable_code::Callback {
     63     Sema &S;
     64   public:
     65     UnreachableCodeHandler(Sema &s) : S(s) {}
     66 
     67     void HandleUnreachable(reachable_code::UnreachableKind UK,
     68                            SourceLocation L,
     69                            SourceRange SilenceableCondVal,
     70                            SourceRange R1,
     71                            SourceRange R2) override {
     72       unsigned diag = diag::warn_unreachable;
     73       switch (UK) {
     74         case reachable_code::UK_Break:
     75           diag = diag::warn_unreachable_break;
     76           break;
     77         case reachable_code::UK_Return:
     78           diag = diag::warn_unreachable_return;
     79           break;
     80         case reachable_code::UK_Loop_Increment:
     81           diag = diag::warn_unreachable_loop_increment;
     82           break;
     83         case reachable_code::UK_Other:
     84           break;
     85       }
     86 
     87       S.Diag(L, diag) << R1 << R2;
     88 
     89       SourceLocation Open = SilenceableCondVal.getBegin();
     90       if (Open.isValid()) {
     91         SourceLocation Close = SilenceableCondVal.getEnd();
     92         Close = S.getLocForEndOfToken(Close);
     93         if (Close.isValid()) {
     94           S.Diag(Open, diag::note_unreachable_silence)
     95             << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
     96             << FixItHint::CreateInsertion(Close, ")");
     97         }
     98       }
     99     }
    100   };
    101 } // anonymous namespace
    102 
    103 /// CheckUnreachable - Check for unreachable code.
    104 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
    105   // As a heuristic prune all diagnostics not in the main file.  Currently
    106   // the majority of warnings in headers are false positives.  These
    107   // are largely caused by configuration state, e.g. preprocessor
    108   // defined code, etc.
    109   //
    110   // Note that this is also a performance optimization.  Analyzing
    111   // headers many times can be expensive.
    112   if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
    113     return;
    114 
    115   UnreachableCodeHandler UC(S);
    116   reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
    117 }
    118 
    119 namespace {
    120 /// \brief Warn on logical operator errors in CFGBuilder
    121 class LogicalErrorHandler : public CFGCallback {
    122   Sema &S;
    123 
    124 public:
    125   LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
    126 
    127   static bool HasMacroID(const Expr *E) {
    128     if (E->getExprLoc().isMacroID())
    129       return true;
    130 
    131     // Recurse to children.
    132     for (const Stmt *SubStmt : E->children())
    133       if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
    134         if (HasMacroID(SubExpr))
    135           return true;
    136 
    137     return false;
    138   }
    139 
    140   void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
    141     if (HasMacroID(B))
    142       return;
    143 
    144     SourceRange DiagRange = B->getSourceRange();
    145     S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
    146         << DiagRange << isAlwaysTrue;
    147   }
    148 
    149   void compareBitwiseEquality(const BinaryOperator *B,
    150                               bool isAlwaysTrue) override {
    151     if (HasMacroID(B))
    152       return;
    153 
    154     SourceRange DiagRange = B->getSourceRange();
    155     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
    156         << DiagRange << isAlwaysTrue;
    157   }
    158 };
    159 } // anonymous namespace
    160 
    161 //===----------------------------------------------------------------------===//
    162 // Check for infinite self-recursion in functions
    163 //===----------------------------------------------------------------------===//
    164 
    165 // Returns true if the function is called anywhere within the CFGBlock.
    166 // For member functions, the additional condition of being call from the
    167 // this pointer is required.
    168 static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
    169   // Process all the Stmt's in this block to find any calls to FD.
    170   for (const auto &B : Block) {
    171     if (B.getKind() != CFGElement::Statement)
    172       continue;
    173 
    174     const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
    175     if (!CE || !CE->getCalleeDecl() ||
    176         CE->getCalleeDecl()->getCanonicalDecl() != FD)
    177       continue;
    178 
    179     // Skip function calls which are qualified with a templated class.
    180     if (const DeclRefExpr *DRE =
    181             dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
    182       if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
    183         if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
    184             isa<TemplateSpecializationType>(NNS->getAsType())) {
    185           continue;
    186         }
    187       }
    188     }
    189 
    190     const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
    191     if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
    192         !MCE->getMethodDecl()->isVirtual())
    193       return true;
    194   }
    195   return false;
    196 }
    197 
    198 // All blocks are in one of three states.  States are ordered so that blocks
    199 // can only move to higher states.
    200 enum RecursiveState {
    201   FoundNoPath,
    202   FoundPath,
    203   FoundPathWithNoRecursiveCall
    204 };
    205 
    206 // Returns true if there exists a path to the exit block and every path
    207 // to the exit block passes through a call to FD.
    208 static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
    209 
    210   const unsigned ExitID = cfg->getExit().getBlockID();
    211 
    212   // Mark all nodes as FoundNoPath, then set the status of the entry block.
    213   SmallVector<RecursiveState, 16> States(cfg->getNumBlockIDs(), FoundNoPath);
    214   States[cfg->getEntry().getBlockID()] = FoundPathWithNoRecursiveCall;
    215 
    216   // Make the processing stack and seed it with the entry block.
    217   SmallVector<CFGBlock *, 16> Stack;
    218   Stack.push_back(&cfg->getEntry());
    219 
    220   while (!Stack.empty()) {
    221     CFGBlock *CurBlock = Stack.back();
    222     Stack.pop_back();
    223 
    224     unsigned ID = CurBlock->getBlockID();
    225     RecursiveState CurState = States[ID];
    226 
    227     if (CurState == FoundPathWithNoRecursiveCall) {
    228       // Found a path to the exit node without a recursive call.
    229       if (ExitID == ID)
    230         return false;
    231 
    232       // Only change state if the block has a recursive call.
    233       if (hasRecursiveCallInPath(FD, *CurBlock))
    234         CurState = FoundPath;
    235     }
    236 
    237     // Loop over successor blocks and add them to the Stack if their state
    238     // changes.
    239     for (auto I = CurBlock->succ_begin(), E = CurBlock->succ_end(); I != E; ++I)
    240       if (*I) {
    241         unsigned next_ID = (*I)->getBlockID();
    242         if (States[next_ID] < CurState) {
    243           States[next_ID] = CurState;
    244           Stack.push_back(*I);
    245         }
    246       }
    247   }
    248 
    249   // Return true if the exit node is reachable, and only reachable through
    250   // a recursive call.
    251   return States[ExitID] == FoundPath;
    252 }
    253 
    254 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
    255                                    const Stmt *Body, AnalysisDeclContext &AC) {
    256   FD = FD->getCanonicalDecl();
    257 
    258   // Only run on non-templated functions and non-templated members of
    259   // templated classes.
    260   if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
    261       FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
    262     return;
    263 
    264   CFG *cfg = AC.getCFG();
    265   if (!cfg) return;
    266 
    267   // If the exit block is unreachable, skip processing the function.
    268   if (cfg->getExit().pred_empty())
    269     return;
    270 
    271   // Emit diagnostic if a recursive function call is detected for all paths.
    272   if (checkForRecursiveFunctionCall(FD, cfg))
    273     S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
    274 }
    275 
    276 //===----------------------------------------------------------------------===//
    277 // Check for missing return value.
    278 //===----------------------------------------------------------------------===//
    279 
    280 enum ControlFlowKind {
    281   UnknownFallThrough,
    282   NeverFallThrough,
    283   MaybeFallThrough,
    284   AlwaysFallThrough,
    285   NeverFallThroughOrReturn
    286 };
    287 
    288 /// CheckFallThrough - Check that we don't fall off the end of a
    289 /// Statement that should return a value.
    290 ///
    291 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
    292 /// MaybeFallThrough iff we might or might not fall off the end,
    293 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
    294 /// return.  We assume NeverFallThrough iff we never fall off the end of the
    295 /// statement but we may return.  We assume that functions not marked noreturn
    296 /// will return.
    297 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
    298   CFG *cfg = AC.getCFG();
    299   if (!cfg) return UnknownFallThrough;
    300 
    301   // The CFG leaves in dead things, and we don't want the dead code paths to
    302   // confuse us, so we mark all live things first.
    303   llvm::BitVector live(cfg->getNumBlockIDs());
    304   unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
    305                                                           live);
    306 
    307   bool AddEHEdges = AC.getAddEHEdges();
    308   if (!AddEHEdges && count != cfg->getNumBlockIDs())
    309     // When there are things remaining dead, and we didn't add EH edges
    310     // from CallExprs to the catch clauses, we have to go back and
    311     // mark them as live.
    312     for (const auto *B : *cfg) {
    313       if (!live[B->getBlockID()]) {
    314         if (B->pred_begin() == B->pred_end()) {
    315           if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
    316             // When not adding EH edges from calls, catch clauses
    317             // can otherwise seem dead.  Avoid noting them as dead.
    318             count += reachable_code::ScanReachableFromBlock(B, live);
    319           continue;
    320         }
    321       }
    322     }
    323 
    324   // Now we know what is live, we check the live precessors of the exit block
    325   // and look for fall through paths, being careful to ignore normal returns,
    326   // and exceptional paths.
    327   bool HasLiveReturn = false;
    328   bool HasFakeEdge = false;
    329   bool HasPlainEdge = false;
    330   bool HasAbnormalEdge = false;
    331 
    332   // Ignore default cases that aren't likely to be reachable because all
    333   // enums in a switch(X) have explicit case statements.
    334   CFGBlock::FilterOptions FO;
    335   FO.IgnoreDefaultsWithCoveredEnums = 1;
    336 
    337   for (CFGBlock::filtered_pred_iterator
    338 	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
    339     const CFGBlock& B = **I;
    340     if (!live[B.getBlockID()])
    341       continue;
    342 
    343     // Skip blocks which contain an element marked as no-return. They don't
    344     // represent actually viable edges into the exit block, so mark them as
    345     // abnormal.
    346     if (B.hasNoReturnElement()) {
    347       HasAbnormalEdge = true;
    348       continue;
    349     }
    350 
    351     // Destructors can appear after the 'return' in the CFG.  This is
    352     // normal.  We need to look pass the destructors for the return
    353     // statement (if it exists).
    354     CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
    355 
    356     for ( ; ri != re ; ++ri)
    357       if (ri->getAs<CFGStmt>())
    358         break;
    359 
    360     // No more CFGElements in the block?
    361     if (ri == re) {
    362       if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
    363         HasAbnormalEdge = true;
    364         continue;
    365       }
    366       // A labeled empty statement, or the entry block...
    367       HasPlainEdge = true;
    368       continue;
    369     }
    370 
    371     CFGStmt CS = ri->castAs<CFGStmt>();
    372     const Stmt *S = CS.getStmt();
    373     if (isa<ReturnStmt>(S)) {
    374       HasLiveReturn = true;
    375       continue;
    376     }
    377     if (isa<ObjCAtThrowStmt>(S)) {
    378       HasFakeEdge = true;
    379       continue;
    380     }
    381     if (isa<CXXThrowExpr>(S)) {
    382       HasFakeEdge = true;
    383       continue;
    384     }
    385     if (isa<MSAsmStmt>(S)) {
    386       // TODO: Verify this is correct.
    387       HasFakeEdge = true;
    388       HasLiveReturn = true;
    389       continue;
    390     }
    391     if (isa<CXXTryStmt>(S)) {
    392       HasAbnormalEdge = true;
    393       continue;
    394     }
    395     if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
    396         == B.succ_end()) {
    397       HasAbnormalEdge = true;
    398       continue;
    399     }
    400 
    401     HasPlainEdge = true;
    402   }
    403   if (!HasPlainEdge) {
    404     if (HasLiveReturn)
    405       return NeverFallThrough;
    406     return NeverFallThroughOrReturn;
    407   }
    408   if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
    409     return MaybeFallThrough;
    410   // This says AlwaysFallThrough for calls to functions that are not marked
    411   // noreturn, that don't return.  If people would like this warning to be more
    412   // accurate, such functions should be marked as noreturn.
    413   return AlwaysFallThrough;
    414 }
    415 
    416 namespace {
    417 
    418 struct CheckFallThroughDiagnostics {
    419   unsigned diag_MaybeFallThrough_HasNoReturn;
    420   unsigned diag_MaybeFallThrough_ReturnsNonVoid;
    421   unsigned diag_AlwaysFallThrough_HasNoReturn;
    422   unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
    423   unsigned diag_NeverFallThroughOrReturn;
    424   enum { Function, Block, Lambda } funMode;
    425   SourceLocation FuncLoc;
    426 
    427   static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
    428     CheckFallThroughDiagnostics D;
    429     D.FuncLoc = Func->getLocation();
    430     D.diag_MaybeFallThrough_HasNoReturn =
    431       diag::warn_falloff_noreturn_function;
    432     D.diag_MaybeFallThrough_ReturnsNonVoid =
    433       diag::warn_maybe_falloff_nonvoid_function;
    434     D.diag_AlwaysFallThrough_HasNoReturn =
    435       diag::warn_falloff_noreturn_function;
    436     D.diag_AlwaysFallThrough_ReturnsNonVoid =
    437       diag::warn_falloff_nonvoid_function;
    438 
    439     // Don't suggest that virtual functions be marked "noreturn", since they
    440     // might be overridden by non-noreturn functions.
    441     bool isVirtualMethod = false;
    442     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
    443       isVirtualMethod = Method->isVirtual();
    444 
    445     // Don't suggest that template instantiations be marked "noreturn"
    446     bool isTemplateInstantiation = false;
    447     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
    448       isTemplateInstantiation = Function->isTemplateInstantiation();
    449 
    450     if (!isVirtualMethod && !isTemplateInstantiation)
    451       D.diag_NeverFallThroughOrReturn =
    452         diag::warn_suggest_noreturn_function;
    453     else
    454       D.diag_NeverFallThroughOrReturn = 0;
    455 
    456     D.funMode = Function;
    457     return D;
    458   }
    459 
    460   static CheckFallThroughDiagnostics MakeForBlock() {
    461     CheckFallThroughDiagnostics D;
    462     D.diag_MaybeFallThrough_HasNoReturn =
    463       diag::err_noreturn_block_has_return_expr;
    464     D.diag_MaybeFallThrough_ReturnsNonVoid =
    465       diag::err_maybe_falloff_nonvoid_block;
    466     D.diag_AlwaysFallThrough_HasNoReturn =
    467       diag::err_noreturn_block_has_return_expr;
    468     D.diag_AlwaysFallThrough_ReturnsNonVoid =
    469       diag::err_falloff_nonvoid_block;
    470     D.diag_NeverFallThroughOrReturn = 0;
    471     D.funMode = Block;
    472     return D;
    473   }
    474 
    475   static CheckFallThroughDiagnostics MakeForLambda() {
    476     CheckFallThroughDiagnostics D;
    477     D.diag_MaybeFallThrough_HasNoReturn =
    478       diag::err_noreturn_lambda_has_return_expr;
    479     D.diag_MaybeFallThrough_ReturnsNonVoid =
    480       diag::warn_maybe_falloff_nonvoid_lambda;
    481     D.diag_AlwaysFallThrough_HasNoReturn =
    482       diag::err_noreturn_lambda_has_return_expr;
    483     D.diag_AlwaysFallThrough_ReturnsNonVoid =
    484       diag::warn_falloff_nonvoid_lambda;
    485     D.diag_NeverFallThroughOrReturn = 0;
    486     D.funMode = Lambda;
    487     return D;
    488   }
    489 
    490   bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
    491                         bool HasNoReturn) const {
    492     if (funMode == Function) {
    493       return (ReturnsVoid ||
    494               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
    495                           FuncLoc)) &&
    496              (!HasNoReturn ||
    497               D.isIgnored(diag::warn_noreturn_function_has_return_expr,
    498                           FuncLoc)) &&
    499              (!ReturnsVoid ||
    500               D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
    501     }
    502 
    503     // For blocks / lambdas.
    504     return ReturnsVoid && !HasNoReturn;
    505   }
    506 };
    507 
    508 } // anonymous namespace
    509 
    510 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
    511 /// function that should return a value.  Check that we don't fall off the end
    512 /// of a noreturn function.  We assume that functions and blocks not marked
    513 /// noreturn will return.
    514 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
    515                                     const BlockExpr *blkExpr,
    516                                     const CheckFallThroughDiagnostics& CD,
    517                                     AnalysisDeclContext &AC) {
    518 
    519   bool ReturnsVoid = false;
    520   bool HasNoReturn = false;
    521 
    522   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    523     ReturnsVoid = FD->getReturnType()->isVoidType();
    524     HasNoReturn = FD->isNoReturn();
    525   }
    526   else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    527     ReturnsVoid = MD->getReturnType()->isVoidType();
    528     HasNoReturn = MD->hasAttr<NoReturnAttr>();
    529   }
    530   else if (isa<BlockDecl>(D)) {
    531     QualType BlockTy = blkExpr->getType();
    532     if (const FunctionType *FT =
    533           BlockTy->getPointeeType()->getAs<FunctionType>()) {
    534       if (FT->getReturnType()->isVoidType())
    535         ReturnsVoid = true;
    536       if (FT->getNoReturnAttr())
    537         HasNoReturn = true;
    538     }
    539   }
    540 
    541   DiagnosticsEngine &Diags = S.getDiagnostics();
    542 
    543   // Short circuit for compilation speed.
    544   if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
    545       return;
    546 
    547   SourceLocation LBrace = Body->getLocStart(), RBrace = Body->getLocEnd();
    548   // Either in a function body compound statement, or a function-try-block.
    549   switch (CheckFallThrough(AC)) {
    550     case UnknownFallThrough:
    551       break;
    552 
    553     case MaybeFallThrough:
    554       if (HasNoReturn)
    555         S.Diag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
    556       else if (!ReturnsVoid)
    557         S.Diag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
    558       break;
    559     case AlwaysFallThrough:
    560       if (HasNoReturn)
    561         S.Diag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
    562       else if (!ReturnsVoid)
    563         S.Diag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
    564       break;
    565     case NeverFallThroughOrReturn:
    566       if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
    567         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    568           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
    569         } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    570           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
    571         } else {
    572           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
    573         }
    574       }
    575       break;
    576     case NeverFallThrough:
    577       break;
    578   }
    579 }
    580 
    581 //===----------------------------------------------------------------------===//
    582 // -Wuninitialized
    583 //===----------------------------------------------------------------------===//
    584 
    585 namespace {
    586 /// ContainsReference - A visitor class to search for references to
    587 /// a particular declaration (the needle) within any evaluated component of an
    588 /// expression (recursively).
    589 class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
    590   bool FoundReference;
    591   const DeclRefExpr *Needle;
    592 
    593 public:
    594   typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
    595 
    596   ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
    597     : Inherited(Context), FoundReference(false), Needle(Needle) {}
    598 
    599   void VisitExpr(const Expr *E) {
    600     // Stop evaluating if we already have a reference.
    601     if (FoundReference)
    602       return;
    603 
    604     Inherited::VisitExpr(E);
    605   }
    606 
    607   void VisitDeclRefExpr(const DeclRefExpr *E) {
    608     if (E == Needle)
    609       FoundReference = true;
    610     else
    611       Inherited::VisitDeclRefExpr(E);
    612   }
    613 
    614   bool doesContainReference() const { return FoundReference; }
    615 };
    616 } // anonymous namespace
    617 
    618 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
    619   QualType VariableTy = VD->getType().getCanonicalType();
    620   if (VariableTy->isBlockPointerType() &&
    621       !VD->hasAttr<BlocksAttr>()) {
    622     S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
    623         << VD->getDeclName()
    624         << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
    625     return true;
    626   }
    627 
    628   // Don't issue a fixit if there is already an initializer.
    629   if (VD->getInit())
    630     return false;
    631 
    632   // Don't suggest a fixit inside macros.
    633   if (VD->getLocEnd().isMacroID())
    634     return false;
    635 
    636   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
    637 
    638   // Suggest possible initialization (if any).
    639   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
    640   if (Init.empty())
    641     return false;
    642 
    643   S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
    644     << FixItHint::CreateInsertion(Loc, Init);
    645   return true;
    646 }
    647 
    648 /// Create a fixit to remove an if-like statement, on the assumption that its
    649 /// condition is CondVal.
    650 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
    651                           const Stmt *Else, bool CondVal,
    652                           FixItHint &Fixit1, FixItHint &Fixit2) {
    653   if (CondVal) {
    654     // If condition is always true, remove all but the 'then'.
    655     Fixit1 = FixItHint::CreateRemoval(
    656         CharSourceRange::getCharRange(If->getLocStart(),
    657                                       Then->getLocStart()));
    658     if (Else) {
    659       SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getLocEnd());
    660       Fixit2 = FixItHint::CreateRemoval(
    661           SourceRange(ElseKwLoc, Else->getLocEnd()));
    662     }
    663   } else {
    664     // If condition is always false, remove all but the 'else'.
    665     if (Else)
    666       Fixit1 = FixItHint::CreateRemoval(
    667           CharSourceRange::getCharRange(If->getLocStart(),
    668                                         Else->getLocStart()));
    669     else
    670       Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
    671   }
    672 }
    673 
    674 /// DiagUninitUse -- Helper function to produce a diagnostic for an
    675 /// uninitialized use of a variable.
    676 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
    677                           bool IsCapturedByBlock) {
    678   bool Diagnosed = false;
    679 
    680   switch (Use.getKind()) {
    681   case UninitUse::Always:
    682     S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
    683         << VD->getDeclName() << IsCapturedByBlock
    684         << Use.getUser()->getSourceRange();
    685     return;
    686 
    687   case UninitUse::AfterDecl:
    688   case UninitUse::AfterCall:
    689     S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
    690       << VD->getDeclName() << IsCapturedByBlock
    691       << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
    692       << const_cast<DeclContext*>(VD->getLexicalDeclContext())
    693       << VD->getSourceRange();
    694     S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
    695       << IsCapturedByBlock << Use.getUser()->getSourceRange();
    696     return;
    697 
    698   case UninitUse::Maybe:
    699   case UninitUse::Sometimes:
    700     // Carry on to report sometimes-uninitialized branches, if possible,
    701     // or a 'may be used uninitialized' diagnostic otherwise.
    702     break;
    703   }
    704 
    705   // Diagnose each branch which leads to a sometimes-uninitialized use.
    706   for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
    707        I != E; ++I) {
    708     assert(Use.getKind() == UninitUse::Sometimes);
    709 
    710     const Expr *User = Use.getUser();
    711     const Stmt *Term = I->Terminator;
    712 
    713     // Information used when building the diagnostic.
    714     unsigned DiagKind;
    715     StringRef Str;
    716     SourceRange Range;
    717 
    718     // FixIts to suppress the diagnostic by removing the dead condition.
    719     // For all binary terminators, branch 0 is taken if the condition is true,
    720     // and branch 1 is taken if the condition is false.
    721     int RemoveDiagKind = -1;
    722     const char *FixitStr =
    723         S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
    724                                   : (I->Output ? "1" : "0");
    725     FixItHint Fixit1, Fixit2;
    726 
    727     switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
    728     default:
    729       // Don't know how to report this. Just fall back to 'may be used
    730       // uninitialized'. FIXME: Can this happen?
    731       continue;
    732 
    733     // "condition is true / condition is false".
    734     case Stmt::IfStmtClass: {
    735       const IfStmt *IS = cast<IfStmt>(Term);
    736       DiagKind = 0;
    737       Str = "if";
    738       Range = IS->getCond()->getSourceRange();
    739       RemoveDiagKind = 0;
    740       CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
    741                     I->Output, Fixit1, Fixit2);
    742       break;
    743     }
    744     case Stmt::ConditionalOperatorClass: {
    745       const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
    746       DiagKind = 0;
    747       Str = "?:";
    748       Range = CO->getCond()->getSourceRange();
    749       RemoveDiagKind = 0;
    750       CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
    751                     I->Output, Fixit1, Fixit2);
    752       break;
    753     }
    754     case Stmt::BinaryOperatorClass: {
    755       const BinaryOperator *BO = cast<BinaryOperator>(Term);
    756       if (!BO->isLogicalOp())
    757         continue;
    758       DiagKind = 0;
    759       Str = BO->getOpcodeStr();
    760       Range = BO->getLHS()->getSourceRange();
    761       RemoveDiagKind = 0;
    762       if ((BO->getOpcode() == BO_LAnd && I->Output) ||
    763           (BO->getOpcode() == BO_LOr && !I->Output))
    764         // true && y -> y, false || y -> y.
    765         Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
    766                                                       BO->getOperatorLoc()));
    767       else
    768         // false && y -> false, true || y -> true.
    769         Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
    770       break;
    771     }
    772 
    773     // "loop is entered / loop is exited".
    774     case Stmt::WhileStmtClass:
    775       DiagKind = 1;
    776       Str = "while";
    777       Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
    778       RemoveDiagKind = 1;
    779       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
    780       break;
    781     case Stmt::ForStmtClass:
    782       DiagKind = 1;
    783       Str = "for";
    784       Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
    785       RemoveDiagKind = 1;
    786       if (I->Output)
    787         Fixit1 = FixItHint::CreateRemoval(Range);
    788       else
    789         Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
    790       break;
    791     case Stmt::CXXForRangeStmtClass:
    792       if (I->Output == 1) {
    793         // The use occurs if a range-based for loop's body never executes.
    794         // That may be impossible, and there's no syntactic fix for this,
    795         // so treat it as a 'may be uninitialized' case.
    796         continue;
    797       }
    798       DiagKind = 1;
    799       Str = "for";
    800       Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
    801       break;
    802 
    803     // "condition is true / loop is exited".
    804     case Stmt::DoStmtClass:
    805       DiagKind = 2;
    806       Str = "do";
    807       Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
    808       RemoveDiagKind = 1;
    809       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
    810       break;
    811 
    812     // "switch case is taken".
    813     case Stmt::CaseStmtClass:
    814       DiagKind = 3;
    815       Str = "case";
    816       Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
    817       break;
    818     case Stmt::DefaultStmtClass:
    819       DiagKind = 3;
    820       Str = "default";
    821       Range = cast<DefaultStmt>(Term)->getDefaultLoc();
    822       break;
    823     }
    824 
    825     S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
    826       << VD->getDeclName() << IsCapturedByBlock << DiagKind
    827       << Str << I->Output << Range;
    828     S.Diag(User->getLocStart(), diag::note_uninit_var_use)
    829       << IsCapturedByBlock << User->getSourceRange();
    830     if (RemoveDiagKind != -1)
    831       S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
    832         << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
    833 
    834     Diagnosed = true;
    835   }
    836 
    837   if (!Diagnosed)
    838     S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
    839         << VD->getDeclName() << IsCapturedByBlock
    840         << Use.getUser()->getSourceRange();
    841 }
    842 
    843 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
    844 /// uninitialized variable. This manages the different forms of diagnostic
    845 /// emitted for particular types of uses. Returns true if the use was diagnosed
    846 /// as a warning. If a particular use is one we omit warnings for, returns
    847 /// false.
    848 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
    849                                      const UninitUse &Use,
    850                                      bool alwaysReportSelfInit = false) {
    851   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
    852     // Inspect the initializer of the variable declaration which is
    853     // being referenced prior to its initialization. We emit
    854     // specialized diagnostics for self-initialization, and we
    855     // specifically avoid warning about self references which take the
    856     // form of:
    857     //
    858     //   int x = x;
    859     //
    860     // This is used to indicate to GCC that 'x' is intentionally left
    861     // uninitialized. Proven code paths which access 'x' in
    862     // an uninitialized state after this will still warn.
    863     if (const Expr *Initializer = VD->getInit()) {
    864       if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
    865         return false;
    866 
    867       ContainsReference CR(S.Context, DRE);
    868       CR.Visit(Initializer);
    869       if (CR.doesContainReference()) {
    870         S.Diag(DRE->getLocStart(),
    871                diag::warn_uninit_self_reference_in_init)
    872           << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
    873         return true;
    874       }
    875     }
    876 
    877     DiagUninitUse(S, VD, Use, false);
    878   } else {
    879     const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
    880     if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
    881       S.Diag(BE->getLocStart(),
    882              diag::warn_uninit_byref_blockvar_captured_by_block)
    883         << VD->getDeclName();
    884     else
    885       DiagUninitUse(S, VD, Use, true);
    886   }
    887 
    888   // Report where the variable was declared when the use wasn't within
    889   // the initializer of that declaration & we didn't already suggest
    890   // an initialization fixit.
    891   if (!SuggestInitializationFixit(S, VD))
    892     S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
    893       << VD->getDeclName();
    894 
    895   return true;
    896 }
    897 
    898 namespace {
    899   class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
    900   public:
    901     FallthroughMapper(Sema &S)
    902       : FoundSwitchStatements(false),
    903         S(S) {
    904     }
    905 
    906     bool foundSwitchStatements() const { return FoundSwitchStatements; }
    907 
    908     void markFallthroughVisited(const AttributedStmt *Stmt) {
    909       bool Found = FallthroughStmts.erase(Stmt);
    910       assert(Found);
    911       (void)Found;
    912     }
    913 
    914     typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
    915 
    916     const AttrStmts &getFallthroughStmts() const {
    917       return FallthroughStmts;
    918     }
    919 
    920     void fillReachableBlocks(CFG *Cfg) {
    921       assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
    922       std::deque<const CFGBlock *> BlockQueue;
    923 
    924       ReachableBlocks.insert(&Cfg->getEntry());
    925       BlockQueue.push_back(&Cfg->getEntry());
    926       // Mark all case blocks reachable to avoid problems with switching on
    927       // constants, covered enums, etc.
    928       // These blocks can contain fall-through annotations, and we don't want to
    929       // issue a warn_fallthrough_attr_unreachable for them.
    930       for (const auto *B : *Cfg) {
    931         const Stmt *L = B->getLabel();
    932         if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
    933           BlockQueue.push_back(B);
    934       }
    935 
    936       while (!BlockQueue.empty()) {
    937         const CFGBlock *P = BlockQueue.front();
    938         BlockQueue.pop_front();
    939         for (CFGBlock::const_succ_iterator I = P->succ_begin(),
    940                                            E = P->succ_end();
    941              I != E; ++I) {
    942           if (*I && ReachableBlocks.insert(*I).second)
    943             BlockQueue.push_back(*I);
    944         }
    945       }
    946     }
    947 
    948     bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
    949       assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
    950 
    951       int UnannotatedCnt = 0;
    952       AnnotatedCnt = 0;
    953 
    954       std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
    955       while (!BlockQueue.empty()) {
    956         const CFGBlock *P = BlockQueue.front();
    957         BlockQueue.pop_front();
    958         if (!P) continue;
    959 
    960         const Stmt *Term = P->getTerminator();
    961         if (Term && isa<SwitchStmt>(Term))
    962           continue; // Switch statement, good.
    963 
    964         const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
    965         if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
    966           continue; // Previous case label has no statements, good.
    967 
    968         const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
    969         if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
    970           continue; // Case label is preceded with a normal label, good.
    971 
    972         if (!ReachableBlocks.count(P)) {
    973           for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
    974                                                 ElemEnd = P->rend();
    975                ElemIt != ElemEnd; ++ElemIt) {
    976             if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
    977               if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
    978                 S.Diag(AS->getLocStart(),
    979                        diag::warn_fallthrough_attr_unreachable);
    980                 markFallthroughVisited(AS);
    981                 ++AnnotatedCnt;
    982                 break;
    983               }
    984               // Don't care about other unreachable statements.
    985             }
    986           }
    987           // If there are no unreachable statements, this may be a special
    988           // case in CFG:
    989           // case X: {
    990           //    A a;  // A has a destructor.
    991           //    break;
    992           // }
    993           // // <<<< This place is represented by a 'hanging' CFG block.
    994           // case Y:
    995           continue;
    996         }
    997 
    998         const Stmt *LastStmt = getLastStmt(*P);
    999         if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
   1000           markFallthroughVisited(AS);
   1001           ++AnnotatedCnt;
   1002           continue; // Fallthrough annotation, good.
   1003         }
   1004 
   1005         if (!LastStmt) { // This block contains no executable statements.
   1006           // Traverse its predecessors.
   1007           std::copy(P->pred_begin(), P->pred_end(),
   1008                     std::back_inserter(BlockQueue));
   1009           continue;
   1010         }
   1011 
   1012         ++UnannotatedCnt;
   1013       }
   1014       return !!UnannotatedCnt;
   1015     }
   1016 
   1017     // RecursiveASTVisitor setup.
   1018     bool shouldWalkTypesOfTypeLocs() const { return false; }
   1019 
   1020     bool VisitAttributedStmt(AttributedStmt *S) {
   1021       if (asFallThroughAttr(S))
   1022         FallthroughStmts.insert(S);
   1023       return true;
   1024     }
   1025 
   1026     bool VisitSwitchStmt(SwitchStmt *S) {
   1027       FoundSwitchStatements = true;
   1028       return true;
   1029     }
   1030 
   1031     // We don't want to traverse local type declarations. We analyze their
   1032     // methods separately.
   1033     bool TraverseDecl(Decl *D) { return true; }
   1034 
   1035     // We analyze lambda bodies separately. Skip them here.
   1036     bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
   1037 
   1038   private:
   1039 
   1040     static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
   1041       if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
   1042         if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
   1043           return AS;
   1044       }
   1045       return nullptr;
   1046     }
   1047 
   1048     static const Stmt *getLastStmt(const CFGBlock &B) {
   1049       if (const Stmt *Term = B.getTerminator())
   1050         return Term;
   1051       for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
   1052                                             ElemEnd = B.rend();
   1053                                             ElemIt != ElemEnd; ++ElemIt) {
   1054         if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
   1055           return CS->getStmt();
   1056       }
   1057       // Workaround to detect a statement thrown out by CFGBuilder:
   1058       //   case X: {} case Y:
   1059       //   case X: ; case Y:
   1060       if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
   1061         if (!isa<SwitchCase>(SW->getSubStmt()))
   1062           return SW->getSubStmt();
   1063 
   1064       return nullptr;
   1065     }
   1066 
   1067     bool FoundSwitchStatements;
   1068     AttrStmts FallthroughStmts;
   1069     Sema &S;
   1070     llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
   1071   };
   1072 } // anonymous namespace
   1073 
   1074 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
   1075                                             bool PerFunction) {
   1076   // Only perform this analysis when using C++11.  There is no good workflow
   1077   // for this warning when not using C++11.  There is no good way to silence
   1078   // the warning (no attribute is available) unless we are using C++11's support
   1079   // for generalized attributes.  Once could use pragmas to silence the warning,
   1080   // but as a general solution that is gross and not in the spirit of this
   1081   // warning.
   1082   //
   1083   // NOTE: This an intermediate solution.  There are on-going discussions on
   1084   // how to properly support this warning outside of C++11 with an annotation.
   1085   if (!AC.getASTContext().getLangOpts().CPlusPlus11)
   1086     return;
   1087 
   1088   FallthroughMapper FM(S);
   1089   FM.TraverseStmt(AC.getBody());
   1090 
   1091   if (!FM.foundSwitchStatements())
   1092     return;
   1093 
   1094   if (PerFunction && FM.getFallthroughStmts().empty())
   1095     return;
   1096 
   1097   CFG *Cfg = AC.getCFG();
   1098 
   1099   if (!Cfg)
   1100     return;
   1101 
   1102   FM.fillReachableBlocks(Cfg);
   1103 
   1104   for (const CFGBlock *B : llvm::reverse(*Cfg)) {
   1105     const Stmt *Label = B->getLabel();
   1106 
   1107     if (!Label || !isa<SwitchCase>(Label))
   1108       continue;
   1109 
   1110     int AnnotatedCnt;
   1111 
   1112     if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
   1113       continue;
   1114 
   1115     S.Diag(Label->getLocStart(),
   1116         PerFunction ? diag::warn_unannotated_fallthrough_per_function
   1117                     : diag::warn_unannotated_fallthrough);
   1118 
   1119     if (!AnnotatedCnt) {
   1120       SourceLocation L = Label->getLocStart();
   1121       if (L.isMacroID())
   1122         continue;
   1123       if (S.getLangOpts().CPlusPlus11) {
   1124         const Stmt *Term = B->getTerminator();
   1125         // Skip empty cases.
   1126         while (B->empty() && !Term && B->succ_size() == 1) {
   1127           B = *B->succ_begin();
   1128           Term = B->getTerminator();
   1129         }
   1130         if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
   1131           Preprocessor &PP = S.getPreprocessor();
   1132           TokenValue Tokens[] = {
   1133             tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
   1134             tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
   1135             tok::r_square, tok::r_square
   1136           };
   1137           StringRef AnnotationSpelling = "[[clang::fallthrough]]";
   1138           StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
   1139           if (!MacroName.empty())
   1140             AnnotationSpelling = MacroName;
   1141           SmallString<64> TextToInsert(AnnotationSpelling);
   1142           TextToInsert += "; ";
   1143           S.Diag(L, diag::note_insert_fallthrough_fixit) <<
   1144               AnnotationSpelling <<
   1145               FixItHint::CreateInsertion(L, TextToInsert);
   1146         }
   1147       }
   1148       S.Diag(L, diag::note_insert_break_fixit) <<
   1149         FixItHint::CreateInsertion(L, "break; ");
   1150     }
   1151   }
   1152 
   1153   for (const auto *F : FM.getFallthroughStmts())
   1154     S.Diag(F->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
   1155 }
   1156 
   1157 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
   1158                      const Stmt *S) {
   1159   assert(S);
   1160 
   1161   do {
   1162     switch (S->getStmtClass()) {
   1163     case Stmt::ForStmtClass:
   1164     case Stmt::WhileStmtClass:
   1165     case Stmt::CXXForRangeStmtClass:
   1166     case Stmt::ObjCForCollectionStmtClass:
   1167       return true;
   1168     case Stmt::DoStmtClass: {
   1169       const Expr *Cond = cast<DoStmt>(S)->getCond();
   1170       llvm::APSInt Val;
   1171       if (!Cond->EvaluateAsInt(Val, Ctx))
   1172         return true;
   1173       return Val.getBoolValue();
   1174     }
   1175     default:
   1176       break;
   1177     }
   1178   } while ((S = PM.getParent(S)));
   1179 
   1180   return false;
   1181 }
   1182 
   1183 static void diagnoseRepeatedUseOfWeak(Sema &S,
   1184                                       const sema::FunctionScopeInfo *CurFn,
   1185                                       const Decl *D,
   1186                                       const ParentMap &PM) {
   1187   typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
   1188   typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
   1189   typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
   1190   typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
   1191   StmtUsesPair;
   1192 
   1193   ASTContext &Ctx = S.getASTContext();
   1194 
   1195   const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
   1196 
   1197   // Extract all weak objects that are referenced more than once.
   1198   SmallVector<StmtUsesPair, 8> UsesByStmt;
   1199   for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
   1200        I != E; ++I) {
   1201     const WeakUseVector &Uses = I->second;
   1202 
   1203     // Find the first read of the weak object.
   1204     WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
   1205     for ( ; UI != UE; ++UI) {
   1206       if (UI->isUnsafe())
   1207         break;
   1208     }
   1209 
   1210     // If there were only writes to this object, don't warn.
   1211     if (UI == UE)
   1212       continue;
   1213 
   1214     // If there was only one read, followed by any number of writes, and the
   1215     // read is not within a loop, don't warn. Additionally, don't warn in a
   1216     // loop if the base object is a local variable -- local variables are often
   1217     // changed in loops.
   1218     if (UI == Uses.begin()) {
   1219       WeakUseVector::const_iterator UI2 = UI;
   1220       for (++UI2; UI2 != UE; ++UI2)
   1221         if (UI2->isUnsafe())
   1222           break;
   1223 
   1224       if (UI2 == UE) {
   1225         if (!isInLoop(Ctx, PM, UI->getUseExpr()))
   1226           continue;
   1227 
   1228         const WeakObjectProfileTy &Profile = I->first;
   1229         if (!Profile.isExactProfile())
   1230           continue;
   1231 
   1232         const NamedDecl *Base = Profile.getBase();
   1233         if (!Base)
   1234           Base = Profile.getProperty();
   1235         assert(Base && "A profile always has a base or property.");
   1236 
   1237         if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
   1238           if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
   1239             continue;
   1240       }
   1241     }
   1242 
   1243     UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
   1244   }
   1245 
   1246   if (UsesByStmt.empty())
   1247     return;
   1248 
   1249   // Sort by first use so that we emit the warnings in a deterministic order.
   1250   SourceManager &SM = S.getSourceManager();
   1251   std::sort(UsesByStmt.begin(), UsesByStmt.end(),
   1252             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
   1253     return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
   1254                                         RHS.first->getLocStart());
   1255   });
   1256 
   1257   // Classify the current code body for better warning text.
   1258   // This enum should stay in sync with the cases in
   1259   // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
   1260   // FIXME: Should we use a common classification enum and the same set of
   1261   // possibilities all throughout Sema?
   1262   enum {
   1263     Function,
   1264     Method,
   1265     Block,
   1266     Lambda
   1267   } FunctionKind;
   1268 
   1269   if (isa<sema::BlockScopeInfo>(CurFn))
   1270     FunctionKind = Block;
   1271   else if (isa<sema::LambdaScopeInfo>(CurFn))
   1272     FunctionKind = Lambda;
   1273   else if (isa<ObjCMethodDecl>(D))
   1274     FunctionKind = Method;
   1275   else
   1276     FunctionKind = Function;
   1277 
   1278   // Iterate through the sorted problems and emit warnings for each.
   1279   for (const auto &P : UsesByStmt) {
   1280     const Stmt *FirstRead = P.first;
   1281     const WeakObjectProfileTy &Key = P.second->first;
   1282     const WeakUseVector &Uses = P.second->second;
   1283 
   1284     // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
   1285     // may not contain enough information to determine that these are different
   1286     // properties. We can only be 100% sure of a repeated use in certain cases,
   1287     // and we adjust the diagnostic kind accordingly so that the less certain
   1288     // case can be turned off if it is too noisy.
   1289     unsigned DiagKind;
   1290     if (Key.isExactProfile())
   1291       DiagKind = diag::warn_arc_repeated_use_of_weak;
   1292     else
   1293       DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
   1294 
   1295     // Classify the weak object being accessed for better warning text.
   1296     // This enum should stay in sync with the cases in
   1297     // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
   1298     enum {
   1299       Variable,
   1300       Property,
   1301       ImplicitProperty,
   1302       Ivar
   1303     } ObjectKind;
   1304 
   1305     const NamedDecl *D = Key.getProperty();
   1306     if (isa<VarDecl>(D))
   1307       ObjectKind = Variable;
   1308     else if (isa<ObjCPropertyDecl>(D))
   1309       ObjectKind = Property;
   1310     else if (isa<ObjCMethodDecl>(D))
   1311       ObjectKind = ImplicitProperty;
   1312     else if (isa<ObjCIvarDecl>(D))
   1313       ObjectKind = Ivar;
   1314     else
   1315       llvm_unreachable("Unexpected weak object kind!");
   1316 
   1317     // Show the first time the object was read.
   1318     S.Diag(FirstRead->getLocStart(), DiagKind)
   1319       << int(ObjectKind) << D << int(FunctionKind)
   1320       << FirstRead->getSourceRange();
   1321 
   1322     // Print all the other accesses as notes.
   1323     for (const auto &Use : Uses) {
   1324       if (Use.getUseExpr() == FirstRead)
   1325         continue;
   1326       S.Diag(Use.getUseExpr()->getLocStart(),
   1327              diag::note_arc_weak_also_accessed_here)
   1328           << Use.getUseExpr()->getSourceRange();
   1329     }
   1330   }
   1331 }
   1332 
   1333 namespace {
   1334 class UninitValsDiagReporter : public UninitVariablesHandler {
   1335   Sema &S;
   1336   typedef SmallVector<UninitUse, 2> UsesVec;
   1337   typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
   1338   // Prefer using MapVector to DenseMap, so that iteration order will be
   1339   // the same as insertion order. This is needed to obtain a deterministic
   1340   // order of diagnostics when calling flushDiagnostics().
   1341   typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
   1342   UsesMap uses;
   1343 
   1344 public:
   1345   UninitValsDiagReporter(Sema &S) : S(S) {}
   1346   ~UninitValsDiagReporter() override { flushDiagnostics(); }
   1347 
   1348   MappedType &getUses(const VarDecl *vd) {
   1349     MappedType &V = uses[vd];
   1350     if (!V.getPointer())
   1351       V.setPointer(new UsesVec());
   1352     return V;
   1353   }
   1354 
   1355   void handleUseOfUninitVariable(const VarDecl *vd,
   1356                                  const UninitUse &use) override {
   1357     getUses(vd).getPointer()->push_back(use);
   1358   }
   1359 
   1360   void handleSelfInit(const VarDecl *vd) override {
   1361     getUses(vd).setInt(true);
   1362   }
   1363 
   1364   void flushDiagnostics() {
   1365     for (const auto &P : uses) {
   1366       const VarDecl *vd = P.first;
   1367       const MappedType &V = P.second;
   1368 
   1369       UsesVec *vec = V.getPointer();
   1370       bool hasSelfInit = V.getInt();
   1371 
   1372       // Specially handle the case where we have uses of an uninitialized
   1373       // variable, but the root cause is an idiomatic self-init.  We want
   1374       // to report the diagnostic at the self-init since that is the root cause.
   1375       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
   1376         DiagnoseUninitializedUse(S, vd,
   1377                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
   1378                                            /* isAlwaysUninit */ true),
   1379                                  /* alwaysReportSelfInit */ true);
   1380       else {
   1381         // Sort the uses by their SourceLocations.  While not strictly
   1382         // guaranteed to produce them in line/column order, this will provide
   1383         // a stable ordering.
   1384         std::sort(vec->begin(), vec->end(),
   1385                   [](const UninitUse &a, const UninitUse &b) {
   1386           // Prefer a more confident report over a less confident one.
   1387           if (a.getKind() != b.getKind())
   1388             return a.getKind() > b.getKind();
   1389           return a.getUser()->getLocStart() < b.getUser()->getLocStart();
   1390         });
   1391 
   1392         for (const auto &U : *vec) {
   1393           // If we have self-init, downgrade all uses to 'may be uninitialized'.
   1394           UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
   1395 
   1396           if (DiagnoseUninitializedUse(S, vd, Use))
   1397             // Skip further diagnostics for this variable. We try to warn only
   1398             // on the first point at which a variable is used uninitialized.
   1399             break;
   1400         }
   1401       }
   1402 
   1403       // Release the uses vector.
   1404       delete vec;
   1405     }
   1406 
   1407     uses.clear();
   1408   }
   1409 
   1410 private:
   1411   static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
   1412     return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
   1413       return U.getKind() == UninitUse::Always ||
   1414              U.getKind() == UninitUse::AfterCall ||
   1415              U.getKind() == UninitUse::AfterDecl;
   1416     });
   1417   }
   1418 };
   1419 } // anonymous namespace
   1420 
   1421 namespace clang {
   1422 namespace {
   1423 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
   1424 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
   1425 typedef std::list<DelayedDiag> DiagList;
   1426 
   1427 struct SortDiagBySourceLocation {
   1428   SourceManager &SM;
   1429   SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
   1430 
   1431   bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
   1432     // Although this call will be slow, this is only called when outputting
   1433     // multiple warnings.
   1434     return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
   1435   }
   1436 };
   1437 } // anonymous namespace
   1438 } // namespace clang
   1439 
   1440 //===----------------------------------------------------------------------===//
   1441 // -Wthread-safety
   1442 //===----------------------------------------------------------------------===//
   1443 namespace clang {
   1444 namespace threadSafety {
   1445 namespace {
   1446 class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
   1447   Sema &S;
   1448   DiagList Warnings;
   1449   SourceLocation FunLocation, FunEndLocation;
   1450 
   1451   const FunctionDecl *CurrentFunction;
   1452   bool Verbose;
   1453 
   1454   OptionalNotes getNotes() const {
   1455     if (Verbose && CurrentFunction) {
   1456       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
   1457                                 S.PDiag(diag::note_thread_warning_in_fun)
   1458                                     << CurrentFunction->getNameAsString());
   1459       return OptionalNotes(1, FNote);
   1460     }
   1461     return OptionalNotes();
   1462   }
   1463 
   1464   OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
   1465     OptionalNotes ONS(1, Note);
   1466     if (Verbose && CurrentFunction) {
   1467       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
   1468                                 S.PDiag(diag::note_thread_warning_in_fun)
   1469                                     << CurrentFunction->getNameAsString());
   1470       ONS.push_back(std::move(FNote));
   1471     }
   1472     return ONS;
   1473   }
   1474 
   1475   OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
   1476                          const PartialDiagnosticAt &Note2) const {
   1477     OptionalNotes ONS;
   1478     ONS.push_back(Note1);
   1479     ONS.push_back(Note2);
   1480     if (Verbose && CurrentFunction) {
   1481       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
   1482                                 S.PDiag(diag::note_thread_warning_in_fun)
   1483                                     << CurrentFunction->getNameAsString());
   1484       ONS.push_back(std::move(FNote));
   1485     }
   1486     return ONS;
   1487   }
   1488 
   1489   // Helper functions
   1490   void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
   1491                         SourceLocation Loc) {
   1492     // Gracefully handle rare cases when the analysis can't get a more
   1493     // precise source location.
   1494     if (!Loc.isValid())
   1495       Loc = FunLocation;
   1496     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
   1497     Warnings.emplace_back(std::move(Warning), getNotes());
   1498   }
   1499 
   1500  public:
   1501   ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
   1502     : S(S), FunLocation(FL), FunEndLocation(FEL),
   1503       CurrentFunction(nullptr), Verbose(false) {}
   1504 
   1505   void setVerbose(bool b) { Verbose = b; }
   1506 
   1507   /// \brief Emit all buffered diagnostics in order of sourcelocation.
   1508   /// We need to output diagnostics produced while iterating through
   1509   /// the lockset in deterministic order, so this function orders diagnostics
   1510   /// and outputs them.
   1511   void emitDiagnostics() {
   1512     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
   1513     for (const auto &Diag : Warnings) {
   1514       S.Diag(Diag.first.first, Diag.first.second);
   1515       for (const auto &Note : Diag.second)
   1516         S.Diag(Note.first, Note.second);
   1517     }
   1518   }
   1519 
   1520   void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
   1521     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
   1522                                          << Loc);
   1523     Warnings.emplace_back(std::move(Warning), getNotes());
   1524   }
   1525 
   1526   void handleUnmatchedUnlock(StringRef Kind, Name LockName,
   1527                              SourceLocation Loc) override {
   1528     warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
   1529   }
   1530 
   1531   void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
   1532                                  LockKind Expected, LockKind Received,
   1533                                  SourceLocation Loc) override {
   1534     if (Loc.isInvalid())
   1535       Loc = FunLocation;
   1536     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
   1537                                          << Kind << LockName << Received
   1538                                          << Expected);
   1539     Warnings.emplace_back(std::move(Warning), getNotes());
   1540   }
   1541 
   1542   void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
   1543     warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
   1544   }
   1545 
   1546   void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
   1547                                  SourceLocation LocLocked,
   1548                                  SourceLocation LocEndOfScope,
   1549                                  LockErrorKind LEK) override {
   1550     unsigned DiagID = 0;
   1551     switch (LEK) {
   1552       case LEK_LockedSomePredecessors:
   1553         DiagID = diag::warn_lock_some_predecessors;
   1554         break;
   1555       case LEK_LockedSomeLoopIterations:
   1556         DiagID = diag::warn_expecting_lock_held_on_loop;
   1557         break;
   1558       case LEK_LockedAtEndOfFunction:
   1559         DiagID = diag::warn_no_unlock;
   1560         break;
   1561       case LEK_NotLockedAtEndOfFunction:
   1562         DiagID = diag::warn_expecting_locked;
   1563         break;
   1564     }
   1565     if (LocEndOfScope.isInvalid())
   1566       LocEndOfScope = FunEndLocation;
   1567 
   1568     PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
   1569                                                                << LockName);
   1570     if (LocLocked.isValid()) {
   1571       PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
   1572                                               << Kind);
   1573       Warnings.emplace_back(std::move(Warning), getNotes(Note));
   1574       return;
   1575     }
   1576     Warnings.emplace_back(std::move(Warning), getNotes());
   1577   }
   1578 
   1579   void handleExclusiveAndShared(StringRef Kind, Name LockName,
   1580                                 SourceLocation Loc1,
   1581                                 SourceLocation Loc2) override {
   1582     PartialDiagnosticAt Warning(Loc1,
   1583                                 S.PDiag(diag::warn_lock_exclusive_and_shared)
   1584                                     << Kind << LockName);
   1585     PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
   1586                                        << Kind << LockName);
   1587     Warnings.emplace_back(std::move(Warning), getNotes(Note));
   1588   }
   1589 
   1590   void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
   1591                          ProtectedOperationKind POK, AccessKind AK,
   1592                          SourceLocation Loc) override {
   1593     assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
   1594            "Only works for variables");
   1595     unsigned DiagID = POK == POK_VarAccess?
   1596                         diag::warn_variable_requires_any_lock:
   1597                         diag::warn_var_deref_requires_any_lock;
   1598     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
   1599       << D->getNameAsString() << getLockKindFromAccessKind(AK));
   1600     Warnings.emplace_back(std::move(Warning), getNotes());
   1601   }
   1602 
   1603   void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
   1604                           ProtectedOperationKind POK, Name LockName,
   1605                           LockKind LK, SourceLocation Loc,
   1606                           Name *PossibleMatch) override {
   1607     unsigned DiagID = 0;
   1608     if (PossibleMatch) {
   1609       switch (POK) {
   1610         case POK_VarAccess:
   1611           DiagID = diag::warn_variable_requires_lock_precise;
   1612           break;
   1613         case POK_VarDereference:
   1614           DiagID = diag::warn_var_deref_requires_lock_precise;
   1615           break;
   1616         case POK_FunctionCall:
   1617           DiagID = diag::warn_fun_requires_lock_precise;
   1618           break;
   1619         case POK_PassByRef:
   1620           DiagID = diag::warn_guarded_pass_by_reference;
   1621           break;
   1622         case POK_PtPassByRef:
   1623           DiagID = diag::warn_pt_guarded_pass_by_reference;
   1624           break;
   1625       }
   1626       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
   1627                                                        << D->getNameAsString()
   1628                                                        << LockName << LK);
   1629       PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
   1630                                         << *PossibleMatch);
   1631       if (Verbose && POK == POK_VarAccess) {
   1632         PartialDiagnosticAt VNote(D->getLocation(),
   1633                                  S.PDiag(diag::note_guarded_by_declared_here)
   1634                                      << D->getNameAsString());
   1635         Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
   1636       } else
   1637         Warnings.emplace_back(std::move(Warning), getNotes(Note));
   1638     } else {
   1639       switch (POK) {
   1640         case POK_VarAccess:
   1641           DiagID = diag::warn_variable_requires_lock;
   1642           break;
   1643         case POK_VarDereference:
   1644           DiagID = diag::warn_var_deref_requires_lock;
   1645           break;
   1646         case POK_FunctionCall:
   1647           DiagID = diag::warn_fun_requires_lock;
   1648           break;
   1649         case POK_PassByRef:
   1650           DiagID = diag::warn_guarded_pass_by_reference;
   1651           break;
   1652         case POK_PtPassByRef:
   1653           DiagID = diag::warn_pt_guarded_pass_by_reference;
   1654           break;
   1655       }
   1656       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
   1657                                                        << D->getNameAsString()
   1658                                                        << LockName << LK);
   1659       if (Verbose && POK == POK_VarAccess) {
   1660         PartialDiagnosticAt Note(D->getLocation(),
   1661                                  S.PDiag(diag::note_guarded_by_declared_here)
   1662                                      << D->getNameAsString());
   1663         Warnings.emplace_back(std::move(Warning), getNotes(Note));
   1664       } else
   1665         Warnings.emplace_back(std::move(Warning), getNotes());
   1666     }
   1667   }
   1668 
   1669   void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
   1670                              SourceLocation Loc) override {
   1671     PartialDiagnosticAt Warning(Loc,
   1672         S.PDiag(diag::warn_acquire_requires_negative_cap)
   1673         << Kind << LockName << Neg);
   1674     Warnings.emplace_back(std::move(Warning), getNotes());
   1675   }
   1676 
   1677   void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
   1678                              SourceLocation Loc) override {
   1679     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
   1680                                          << Kind << FunName << LockName);
   1681     Warnings.emplace_back(std::move(Warning), getNotes());
   1682   }
   1683 
   1684   void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
   1685                                 SourceLocation Loc) override {
   1686     PartialDiagnosticAt Warning(Loc,
   1687       S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
   1688     Warnings.emplace_back(std::move(Warning), getNotes());
   1689   }
   1690 
   1691   void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
   1692     PartialDiagnosticAt Warning(Loc,
   1693       S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
   1694     Warnings.emplace_back(std::move(Warning), getNotes());
   1695   }
   1696 
   1697   void enterFunction(const FunctionDecl* FD) override {
   1698     CurrentFunction = FD;
   1699   }
   1700 
   1701   void leaveFunction(const FunctionDecl* FD) override {
   1702     CurrentFunction = nullptr;
   1703   }
   1704 };
   1705 } // anonymous namespace
   1706 } // namespace threadSafety
   1707 } // namespace clang
   1708 
   1709 //===----------------------------------------------------------------------===//
   1710 // -Wconsumed
   1711 //===----------------------------------------------------------------------===//
   1712 
   1713 namespace clang {
   1714 namespace consumed {
   1715 namespace {
   1716 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
   1717 
   1718   Sema &S;
   1719   DiagList Warnings;
   1720 
   1721 public:
   1722 
   1723   ConsumedWarningsHandler(Sema &S) : S(S) {}
   1724 
   1725   void emitDiagnostics() override {
   1726     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
   1727     for (const auto &Diag : Warnings) {
   1728       S.Diag(Diag.first.first, Diag.first.second);
   1729       for (const auto &Note : Diag.second)
   1730         S.Diag(Note.first, Note.second);
   1731     }
   1732   }
   1733 
   1734   void warnLoopStateMismatch(SourceLocation Loc,
   1735                              StringRef VariableName) override {
   1736     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
   1737       VariableName);
   1738 
   1739     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1740   }
   1741 
   1742   void warnParamReturnTypestateMismatch(SourceLocation Loc,
   1743                                         StringRef VariableName,
   1744                                         StringRef ExpectedState,
   1745                                         StringRef ObservedState) override {
   1746 
   1747     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1748       diag::warn_param_return_typestate_mismatch) << VariableName <<
   1749         ExpectedState << ObservedState);
   1750 
   1751     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1752   }
   1753 
   1754   void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
   1755                                   StringRef ObservedState) override {
   1756 
   1757     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1758       diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
   1759 
   1760     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1761   }
   1762 
   1763   void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
   1764                                               StringRef TypeName) override {
   1765     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1766       diag::warn_return_typestate_for_unconsumable_type) << TypeName);
   1767 
   1768     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1769   }
   1770 
   1771   void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
   1772                                    StringRef ObservedState) override {
   1773 
   1774     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1775       diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
   1776 
   1777     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1778   }
   1779 
   1780   void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
   1781                                    SourceLocation Loc) override {
   1782 
   1783     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1784       diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
   1785 
   1786     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1787   }
   1788 
   1789   void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
   1790                              StringRef State, SourceLocation Loc) override {
   1791 
   1792     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
   1793                                 MethodName << VariableName << State);
   1794 
   1795     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1796   }
   1797 };
   1798 } // anonymous namespace
   1799 } // namespace consumed
   1800 } // namespace clang
   1801 
   1802 //===----------------------------------------------------------------------===//
   1803 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
   1804 //  warnings on a function, method, or block.
   1805 //===----------------------------------------------------------------------===//
   1806 
   1807 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
   1808   enableCheckFallThrough = 1;
   1809   enableCheckUnreachable = 0;
   1810   enableThreadSafetyAnalysis = 0;
   1811   enableConsumedAnalysis = 0;
   1812 }
   1813 
   1814 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
   1815   return (unsigned)!D.isIgnored(diag, SourceLocation());
   1816 }
   1817 
   1818 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
   1819   : S(s),
   1820     NumFunctionsAnalyzed(0),
   1821     NumFunctionsWithBadCFGs(0),
   1822     NumCFGBlocks(0),
   1823     MaxCFGBlocksPerFunction(0),
   1824     NumUninitAnalysisFunctions(0),
   1825     NumUninitAnalysisVariables(0),
   1826     MaxUninitAnalysisVariablesPerFunction(0),
   1827     NumUninitAnalysisBlockVisits(0),
   1828     MaxUninitAnalysisBlockVisitsPerFunction(0) {
   1829 
   1830   using namespace diag;
   1831   DiagnosticsEngine &D = S.getDiagnostics();
   1832 
   1833   DefaultPolicy.enableCheckUnreachable =
   1834     isEnabled(D, warn_unreachable) ||
   1835     isEnabled(D, warn_unreachable_break) ||
   1836     isEnabled(D, warn_unreachable_return) ||
   1837     isEnabled(D, warn_unreachable_loop_increment);
   1838 
   1839   DefaultPolicy.enableThreadSafetyAnalysis =
   1840     isEnabled(D, warn_double_lock);
   1841 
   1842   DefaultPolicy.enableConsumedAnalysis =
   1843     isEnabled(D, warn_use_in_invalid_state);
   1844 }
   1845 
   1846 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
   1847   for (const auto &D : fscope->PossiblyUnreachableDiags)
   1848     S.Diag(D.Loc, D.PD);
   1849 }
   1850 
   1851 void clang::sema::
   1852 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
   1853                                      sema::FunctionScopeInfo *fscope,
   1854                                      const Decl *D, const BlockExpr *blkExpr) {
   1855 
   1856   // We avoid doing analysis-based warnings when there are errors for
   1857   // two reasons:
   1858   // (1) The CFGs often can't be constructed (if the body is invalid), so
   1859   //     don't bother trying.
   1860   // (2) The code already has problems; running the analysis just takes more
   1861   //     time.
   1862   DiagnosticsEngine &Diags = S.getDiagnostics();
   1863 
   1864   // Do not do any analysis for declarations in system headers if we are
   1865   // going to just ignore them.
   1866   if (Diags.getSuppressSystemWarnings() &&
   1867       S.SourceMgr.isInSystemHeader(D->getLocation()))
   1868     return;
   1869 
   1870   // For code in dependent contexts, we'll do this at instantiation time.
   1871   if (cast<DeclContext>(D)->isDependentContext())
   1872     return;
   1873 
   1874   if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
   1875     // Flush out any possibly unreachable diagnostics.
   1876     flushDiagnostics(S, fscope);
   1877     return;
   1878   }
   1879 
   1880   const Stmt *Body = D->getBody();
   1881   assert(Body);
   1882 
   1883   // Construct the analysis context with the specified CFG build options.
   1884   AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
   1885 
   1886   // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
   1887   // explosion for destructors that can result and the compile time hit.
   1888   AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
   1889   AC.getCFGBuildOptions().AddEHEdges = false;
   1890   AC.getCFGBuildOptions().AddInitializers = true;
   1891   AC.getCFGBuildOptions().AddImplicitDtors = true;
   1892   AC.getCFGBuildOptions().AddTemporaryDtors = true;
   1893   AC.getCFGBuildOptions().AddCXXNewAllocator = false;
   1894   AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
   1895 
   1896   // Force that certain expressions appear as CFGElements in the CFG.  This
   1897   // is used to speed up various analyses.
   1898   // FIXME: This isn't the right factoring.  This is here for initial
   1899   // prototyping, but we need a way for analyses to say what expressions they
   1900   // expect to always be CFGElements and then fill in the BuildOptions
   1901   // appropriately.  This is essentially a layering violation.
   1902   if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
   1903       P.enableConsumedAnalysis) {
   1904     // Unreachable code analysis and thread safety require a linearized CFG.
   1905     AC.getCFGBuildOptions().setAllAlwaysAdd();
   1906   }
   1907   else {
   1908     AC.getCFGBuildOptions()
   1909       .setAlwaysAdd(Stmt::BinaryOperatorClass)
   1910       .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
   1911       .setAlwaysAdd(Stmt::BlockExprClass)
   1912       .setAlwaysAdd(Stmt::CStyleCastExprClass)
   1913       .setAlwaysAdd(Stmt::DeclRefExprClass)
   1914       .setAlwaysAdd(Stmt::ImplicitCastExprClass)
   1915       .setAlwaysAdd(Stmt::UnaryOperatorClass)
   1916       .setAlwaysAdd(Stmt::AttributedStmtClass);
   1917   }
   1918 
   1919   // Install the logical handler for -Wtautological-overlap-compare
   1920   std::unique_ptr<LogicalErrorHandler> LEH;
   1921   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
   1922                        D->getLocStart())) {
   1923     LEH.reset(new LogicalErrorHandler(S));
   1924     AC.getCFGBuildOptions().Observer = LEH.get();
   1925   }
   1926 
   1927   // Emit delayed diagnostics.
   1928   if (!fscope->PossiblyUnreachableDiags.empty()) {
   1929     bool analyzed = false;
   1930 
   1931     // Register the expressions with the CFGBuilder.
   1932     for (const auto &D : fscope->PossiblyUnreachableDiags) {
   1933       if (D.stmt)
   1934         AC.registerForcedBlockExpression(D.stmt);
   1935     }
   1936 
   1937     if (AC.getCFG()) {
   1938       analyzed = true;
   1939       for (const auto &D : fscope->PossiblyUnreachableDiags) {
   1940         bool processed = false;
   1941         if (D.stmt) {
   1942           const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
   1943           CFGReverseBlockReachabilityAnalysis *cra =
   1944               AC.getCFGReachablityAnalysis();
   1945           // FIXME: We should be able to assert that block is non-null, but
   1946           // the CFG analysis can skip potentially-evaluated expressions in
   1947           // edge cases; see test/Sema/vla-2.c.
   1948           if (block && cra) {
   1949             // Can this block be reached from the entrance?
   1950             if (cra->isReachable(&AC.getCFG()->getEntry(), block))
   1951               S.Diag(D.Loc, D.PD);
   1952             processed = true;
   1953           }
   1954         }
   1955         if (!processed) {
   1956           // Emit the warning anyway if we cannot map to a basic block.
   1957           S.Diag(D.Loc, D.PD);
   1958         }
   1959       }
   1960     }
   1961 
   1962     if (!analyzed)
   1963       flushDiagnostics(S, fscope);
   1964   }
   1965 
   1966   // Warning: check missing 'return'
   1967   if (P.enableCheckFallThrough) {
   1968     const CheckFallThroughDiagnostics &CD =
   1969       (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
   1970        : (isa<CXXMethodDecl>(D) &&
   1971           cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
   1972           cast<CXXMethodDecl>(D)->getParent()->isLambda())
   1973             ? CheckFallThroughDiagnostics::MakeForLambda()
   1974             : CheckFallThroughDiagnostics::MakeForFunction(D));
   1975     CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
   1976   }
   1977 
   1978   // Warning: check for unreachable code
   1979   if (P.enableCheckUnreachable) {
   1980     // Only check for unreachable code on non-template instantiations.
   1981     // Different template instantiations can effectively change the control-flow
   1982     // and it is very difficult to prove that a snippet of code in a template
   1983     // is unreachable for all instantiations.
   1984     bool isTemplateInstantiation = false;
   1985     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
   1986       isTemplateInstantiation = Function->isTemplateInstantiation();
   1987     if (!isTemplateInstantiation)
   1988       CheckUnreachable(S, AC);
   1989   }
   1990 
   1991   // Check for thread safety violations
   1992   if (P.enableThreadSafetyAnalysis) {
   1993     SourceLocation FL = AC.getDecl()->getLocation();
   1994     SourceLocation FEL = AC.getDecl()->getLocEnd();
   1995     threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
   1996     if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
   1997       Reporter.setIssueBetaWarnings(true);
   1998     if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getLocStart()))
   1999       Reporter.setVerbose(true);
   2000 
   2001     threadSafety::runThreadSafetyAnalysis(AC, Reporter,
   2002                                           &S.ThreadSafetyDeclCache);
   2003     Reporter.emitDiagnostics();
   2004   }
   2005 
   2006   // Check for violations of consumed properties.
   2007   if (P.enableConsumedAnalysis) {
   2008     consumed::ConsumedWarningsHandler WarningHandler(S);
   2009     consumed::ConsumedAnalyzer Analyzer(WarningHandler);
   2010     Analyzer.run(AC);
   2011   }
   2012 
   2013   if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
   2014       !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
   2015       !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
   2016     if (CFG *cfg = AC.getCFG()) {
   2017       UninitValsDiagReporter reporter(S);
   2018       UninitVariablesAnalysisStats stats;
   2019       std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
   2020       runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
   2021                                         reporter, stats);
   2022 
   2023       if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
   2024         ++NumUninitAnalysisFunctions;
   2025         NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
   2026         NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
   2027         MaxUninitAnalysisVariablesPerFunction =
   2028             std::max(MaxUninitAnalysisVariablesPerFunction,
   2029                      stats.NumVariablesAnalyzed);
   2030         MaxUninitAnalysisBlockVisitsPerFunction =
   2031             std::max(MaxUninitAnalysisBlockVisitsPerFunction,
   2032                      stats.NumBlockVisits);
   2033       }
   2034     }
   2035   }
   2036 
   2037   bool FallThroughDiagFull =
   2038       !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
   2039   bool FallThroughDiagPerFunction = !Diags.isIgnored(
   2040       diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
   2041   if (FallThroughDiagFull || FallThroughDiagPerFunction) {
   2042     DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
   2043   }
   2044 
   2045   if (S.getLangOpts().ObjCWeak &&
   2046       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
   2047     diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
   2048 
   2049 
   2050   // Check for infinite self-recursion in functions
   2051   if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
   2052                        D->getLocStart())) {
   2053     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2054       checkRecursiveFunction(S, FD, Body, AC);
   2055     }
   2056   }
   2057 
   2058   // If none of the previous checks caused a CFG build, trigger one here
   2059   // for -Wtautological-overlap-compare
   2060   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
   2061                                D->getLocStart())) {
   2062     AC.getCFG();
   2063   }
   2064 
   2065   // Collect statistics about the CFG if it was built.
   2066   if (S.CollectStats && AC.isCFGBuilt()) {
   2067     ++NumFunctionsAnalyzed;
   2068     if (CFG *cfg = AC.getCFG()) {
   2069       // If we successfully built a CFG for this context, record some more
   2070       // detail information about it.
   2071       NumCFGBlocks += cfg->getNumBlockIDs();
   2072       MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
   2073                                          cfg->getNumBlockIDs());
   2074     } else {
   2075       ++NumFunctionsWithBadCFGs;
   2076     }
   2077   }
   2078 }
   2079 
   2080 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
   2081   llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
   2082 
   2083   unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
   2084   unsigned AvgCFGBlocksPerFunction =
   2085       !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
   2086   llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
   2087                << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
   2088                << "  " << NumCFGBlocks << " CFG blocks built.\n"
   2089                << "  " << AvgCFGBlocksPerFunction
   2090                << " average CFG blocks per function.\n"
   2091                << "  " << MaxCFGBlocksPerFunction
   2092                << " max CFG blocks per function.\n";
   2093 
   2094   unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
   2095       : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
   2096   unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
   2097       : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
   2098   llvm::errs() << NumUninitAnalysisFunctions
   2099                << " functions analyzed for uninitialiazed variables\n"
   2100                << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
   2101                << "  " << AvgUninitVariablesPerFunction
   2102                << " average variables per function.\n"
   2103                << "  " << MaxUninitAnalysisVariablesPerFunction
   2104                << " max variables per function.\n"
   2105                << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
   2106                << "  " << AvgUninitBlockVisitsPerFunction
   2107                << " average block visits per function.\n"
   2108                << "  " << MaxUninitAnalysisBlockVisitsPerFunction
   2109                << " max block visits per function.\n";
   2110 }
   2111