Home | History | Annotate | Download | only in Parse
      1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Provides the Expression parsing implementation.
     12 ///
     13 /// Expressions in C99 basically consist of a bunch of binary operators with
     14 /// unary operators and other random stuff at the leaves.
     15 ///
     16 /// In the C99 grammar, these unary operators bind tightest and are represented
     17 /// as the 'cast-expression' production.  Everything else is either a binary
     18 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
     19 /// handled by ParseCastExpression, the higher level pieces are handled by
     20 /// ParseBinaryExpression.
     21 ///
     22 //===----------------------------------------------------------------------===//
     23 
     24 #include "clang/Parse/Parser.h"
     25 #include "RAIIObjectsForParser.h"
     26 #include "clang/AST/ASTContext.h"
     27 #include "clang/Basic/PrettyStackTrace.h"
     28 #include "clang/Sema/DeclSpec.h"
     29 #include "clang/Sema/ParsedTemplate.h"
     30 #include "clang/Sema/Scope.h"
     31 #include "clang/Sema/TypoCorrection.h"
     32 #include "llvm/ADT/SmallString.h"
     33 #include "llvm/ADT/SmallVector.h"
     34 using namespace clang;
     35 
     36 /// \brief Simple precedence-based parser for binary/ternary operators.
     37 ///
     38 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
     39 /// production.  C99 specifies that the LHS of an assignment operator should be
     40 /// parsed as a unary-expression, but consistency dictates that it be a
     41 /// conditional-expession.  In practice, the important thing here is that the
     42 /// LHS of an assignment has to be an l-value, which productions between
     43 /// unary-expression and conditional-expression don't produce.  Because we want
     44 /// consistency, we parse the LHS as a conditional-expression, then check for
     45 /// l-value-ness in semantic analysis stages.
     46 ///
     47 /// \verbatim
     48 ///       pm-expression: [C++ 5.5]
     49 ///         cast-expression
     50 ///         pm-expression '.*' cast-expression
     51 ///         pm-expression '->*' cast-expression
     52 ///
     53 ///       multiplicative-expression: [C99 6.5.5]
     54 ///     Note: in C++, apply pm-expression instead of cast-expression
     55 ///         cast-expression
     56 ///         multiplicative-expression '*' cast-expression
     57 ///         multiplicative-expression '/' cast-expression
     58 ///         multiplicative-expression '%' cast-expression
     59 ///
     60 ///       additive-expression: [C99 6.5.6]
     61 ///         multiplicative-expression
     62 ///         additive-expression '+' multiplicative-expression
     63 ///         additive-expression '-' multiplicative-expression
     64 ///
     65 ///       shift-expression: [C99 6.5.7]
     66 ///         additive-expression
     67 ///         shift-expression '<<' additive-expression
     68 ///         shift-expression '>>' additive-expression
     69 ///
     70 ///       relational-expression: [C99 6.5.8]
     71 ///         shift-expression
     72 ///         relational-expression '<' shift-expression
     73 ///         relational-expression '>' shift-expression
     74 ///         relational-expression '<=' shift-expression
     75 ///         relational-expression '>=' shift-expression
     76 ///
     77 ///       equality-expression: [C99 6.5.9]
     78 ///         relational-expression
     79 ///         equality-expression '==' relational-expression
     80 ///         equality-expression '!=' relational-expression
     81 ///
     82 ///       AND-expression: [C99 6.5.10]
     83 ///         equality-expression
     84 ///         AND-expression '&' equality-expression
     85 ///
     86 ///       exclusive-OR-expression: [C99 6.5.11]
     87 ///         AND-expression
     88 ///         exclusive-OR-expression '^' AND-expression
     89 ///
     90 ///       inclusive-OR-expression: [C99 6.5.12]
     91 ///         exclusive-OR-expression
     92 ///         inclusive-OR-expression '|' exclusive-OR-expression
     93 ///
     94 ///       logical-AND-expression: [C99 6.5.13]
     95 ///         inclusive-OR-expression
     96 ///         logical-AND-expression '&&' inclusive-OR-expression
     97 ///
     98 ///       logical-OR-expression: [C99 6.5.14]
     99 ///         logical-AND-expression
    100 ///         logical-OR-expression '||' logical-AND-expression
    101 ///
    102 ///       conditional-expression: [C99 6.5.15]
    103 ///         logical-OR-expression
    104 ///         logical-OR-expression '?' expression ':' conditional-expression
    105 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
    106 /// [C++] the third operand is an assignment-expression
    107 ///
    108 ///       assignment-expression: [C99 6.5.16]
    109 ///         conditional-expression
    110 ///         unary-expression assignment-operator assignment-expression
    111 /// [C++]   throw-expression [C++ 15]
    112 ///
    113 ///       assignment-operator: one of
    114 ///         = *= /= %= += -= <<= >>= &= ^= |=
    115 ///
    116 ///       expression: [C99 6.5.17]
    117 ///         assignment-expression ...[opt]
    118 ///         expression ',' assignment-expression ...[opt]
    119 /// \endverbatim
    120 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
    121   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
    122   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
    123 }
    124 
    125 /// This routine is called when the '@' is seen and consumed.
    126 /// Current token is an Identifier and is not a 'try'. This
    127 /// routine is necessary to disambiguate \@try-statement from,
    128 /// for example, \@encode-expression.
    129 ///
    130 ExprResult
    131 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
    132   ExprResult LHS(ParseObjCAtExpression(AtLoc));
    133   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
    134 }
    135 
    136 /// This routine is called when a leading '__extension__' is seen and
    137 /// consumed.  This is necessary because the token gets consumed in the
    138 /// process of disambiguating between an expression and a declaration.
    139 ExprResult
    140 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
    141   ExprResult LHS(true);
    142   {
    143     // Silence extension warnings in the sub-expression
    144     ExtensionRAIIObject O(Diags);
    145 
    146     LHS = ParseCastExpression(false);
    147   }
    148 
    149   if (!LHS.isInvalid())
    150     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
    151                                LHS.get());
    152 
    153   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
    154 }
    155 
    156 /// \brief Parse an expr that doesn't include (top-level) commas.
    157 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
    158   if (Tok.is(tok::code_completion)) {
    159     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
    160     cutOffParsing();
    161     return ExprError();
    162   }
    163 
    164   if (Tok.is(tok::kw_throw))
    165     return ParseThrowExpression();
    166   if (Tok.is(tok::kw_co_yield))
    167     return ParseCoyieldExpression();
    168 
    169   ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
    170                                        /*isAddressOfOperand=*/false,
    171                                        isTypeCast);
    172   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
    173 }
    174 
    175 /// \brief Parse an assignment expression where part of an Objective-C message
    176 /// send has already been parsed.
    177 ///
    178 /// In this case \p LBracLoc indicates the location of the '[' of the message
    179 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
    180 /// the receiver of the message.
    181 ///
    182 /// Since this handles full assignment-expression's, it handles postfix
    183 /// expressions and other binary operators for these expressions as well.
    184 ExprResult
    185 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
    186                                                     SourceLocation SuperLoc,
    187                                                     ParsedType ReceiverType,
    188                                                     Expr *ReceiverExpr) {
    189   ExprResult R
    190     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
    191                                      ReceiverType, ReceiverExpr);
    192   R = ParsePostfixExpressionSuffix(R);
    193   return ParseRHSOfBinaryExpression(R, prec::Assignment);
    194 }
    195 
    196 
    197 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
    198   // C++03 [basic.def.odr]p2:
    199   //   An expression is potentially evaluated unless it appears where an
    200   //   integral constant expression is required (see 5.19) [...].
    201   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
    202   EnterExpressionEvaluationContext Unevaluated(Actions,
    203                                                Sema::ConstantEvaluated);
    204 
    205   ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
    206   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
    207   return Actions.ActOnConstantExpression(Res);
    208 }
    209 
    210 /// \brief Parse a constraint-expression.
    211 ///
    212 /// \verbatim
    213 ///       constraint-expression: [Concepts TS temp.constr.decl p1]
    214 ///         logical-or-expression
    215 /// \endverbatim
    216 ExprResult Parser::ParseConstraintExpression() {
    217   // FIXME: this may erroneously consume a function-body as the braced
    218   // initializer list of a compound literal
    219   //
    220   // FIXME: this may erroneously consume a parenthesized rvalue reference
    221   // declarator as a parenthesized address-of-label expression
    222   ExprResult LHS(ParseCastExpression(/*isUnaryExpression=*/false));
    223   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
    224 
    225   return Res;
    226 }
    227 
    228 bool Parser::isNotExpressionStart() {
    229   tok::TokenKind K = Tok.getKind();
    230   if (K == tok::l_brace || K == tok::r_brace  ||
    231       K == tok::kw_for  || K == tok::kw_while ||
    232       K == tok::kw_if   || K == tok::kw_else  ||
    233       K == tok::kw_goto || K == tok::kw_try)
    234     return true;
    235   // If this is a decl-specifier, we can't be at the start of an expression.
    236   return isKnownToBeDeclarationSpecifier();
    237 }
    238 
    239 static bool isFoldOperator(prec::Level Level) {
    240   return Level > prec::Unknown && Level != prec::Conditional;
    241 }
    242 static bool isFoldOperator(tok::TokenKind Kind) {
    243   return isFoldOperator(getBinOpPrecedence(Kind, false, true));
    244 }
    245 
    246 /// \brief Parse a binary expression that starts with \p LHS and has a
    247 /// precedence of at least \p MinPrec.
    248 ExprResult
    249 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
    250   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
    251                                                GreaterThanIsOperator,
    252                                                getLangOpts().CPlusPlus11);
    253   SourceLocation ColonLoc;
    254 
    255   while (1) {
    256     // If this token has a lower precedence than we are allowed to parse (e.g.
    257     // because we are called recursively, or because the token is not a binop),
    258     // then we are done!
    259     if (NextTokPrec < MinPrec)
    260       return LHS;
    261 
    262     // Consume the operator, saving the operator token for error reporting.
    263     Token OpToken = Tok;
    264     ConsumeToken();
    265 
    266     // Bail out when encountering a comma followed by a token which can't
    267     // possibly be the start of an expression. For instance:
    268     //   int f() { return 1, }
    269     // We can't do this before consuming the comma, because
    270     // isNotExpressionStart() looks at the token stream.
    271     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
    272       PP.EnterToken(Tok);
    273       Tok = OpToken;
    274       return LHS;
    275     }
    276 
    277     // If the next token is an ellipsis, then this is a fold-expression. Leave
    278     // it alone so we can handle it in the paren expression.
    279     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
    280       // FIXME: We can't check this via lookahead before we consume the token
    281       // because that tickles a lexer bug.
    282       PP.EnterToken(Tok);
    283       Tok = OpToken;
    284       return LHS;
    285     }
    286 
    287     // Special case handling for the ternary operator.
    288     ExprResult TernaryMiddle(true);
    289     if (NextTokPrec == prec::Conditional) {
    290       if (Tok.isNot(tok::colon)) {
    291         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
    292         ColonProtectionRAIIObject X(*this);
    293 
    294         // Handle this production specially:
    295         //   logical-OR-expression '?' expression ':' conditional-expression
    296         // In particular, the RHS of the '?' is 'expression', not
    297         // 'logical-OR-expression' as we might expect.
    298         TernaryMiddle = ParseExpression();
    299         if (TernaryMiddle.isInvalid()) {
    300           Actions.CorrectDelayedTyposInExpr(LHS);
    301           LHS = ExprError();
    302           TernaryMiddle = nullptr;
    303         }
    304       } else {
    305         // Special case handling of "X ? Y : Z" where Y is empty:
    306         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
    307         TernaryMiddle = nullptr;
    308         Diag(Tok, diag::ext_gnu_conditional_expr);
    309       }
    310 
    311       if (!TryConsumeToken(tok::colon, ColonLoc)) {
    312         // Otherwise, we're missing a ':'.  Assume that this was a typo that
    313         // the user forgot. If we're not in a macro expansion, we can suggest
    314         // a fixit hint. If there were two spaces before the current token,
    315         // suggest inserting the colon in between them, otherwise insert ": ".
    316         SourceLocation FILoc = Tok.getLocation();
    317         const char *FIText = ": ";
    318         const SourceManager &SM = PP.getSourceManager();
    319         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
    320           assert(FILoc.isFileID());
    321           bool IsInvalid = false;
    322           const char *SourcePtr =
    323             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
    324           if (!IsInvalid && *SourcePtr == ' ') {
    325             SourcePtr =
    326               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
    327             if (!IsInvalid && *SourcePtr == ' ') {
    328               FILoc = FILoc.getLocWithOffset(-1);
    329               FIText = ":";
    330             }
    331           }
    332         }
    333 
    334         Diag(Tok, diag::err_expected)
    335             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
    336         Diag(OpToken, diag::note_matching) << tok::question;
    337         ColonLoc = Tok.getLocation();
    338       }
    339     }
    340 
    341     // Code completion for the right-hand side of an assignment expression
    342     // goes through a special hook that takes the left-hand side into account.
    343     if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
    344       Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
    345       cutOffParsing();
    346       return ExprError();
    347     }
    348 
    349     // Parse another leaf here for the RHS of the operator.
    350     // ParseCastExpression works here because all RHS expressions in C have it
    351     // as a prefix, at least. However, in C++, an assignment-expression could
    352     // be a throw-expression, which is not a valid cast-expression.
    353     // Therefore we need some special-casing here.
    354     // Also note that the third operand of the conditional operator is
    355     // an assignment-expression in C++, and in C++11, we can have a
    356     // braced-init-list on the RHS of an assignment. For better diagnostics,
    357     // parse as if we were allowed braced-init-lists everywhere, and check that
    358     // they only appear on the RHS of assignments later.
    359     ExprResult RHS;
    360     bool RHSIsInitList = false;
    361     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
    362       RHS = ParseBraceInitializer();
    363       RHSIsInitList = true;
    364     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
    365       RHS = ParseAssignmentExpression();
    366     else
    367       RHS = ParseCastExpression(false);
    368 
    369     if (RHS.isInvalid()) {
    370       // FIXME: Errors generated by the delayed typo correction should be
    371       // printed before errors from parsing the RHS, not after.
    372       Actions.CorrectDelayedTyposInExpr(LHS);
    373       if (TernaryMiddle.isUsable())
    374         TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
    375       LHS = ExprError();
    376     }
    377 
    378     // Remember the precedence of this operator and get the precedence of the
    379     // operator immediately to the right of the RHS.
    380     prec::Level ThisPrec = NextTokPrec;
    381     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
    382                                      getLangOpts().CPlusPlus11);
    383 
    384     // Assignment and conditional expressions are right-associative.
    385     bool isRightAssoc = ThisPrec == prec::Conditional ||
    386                         ThisPrec == prec::Assignment;
    387 
    388     // Get the precedence of the operator to the right of the RHS.  If it binds
    389     // more tightly with RHS than we do, evaluate it completely first.
    390     if (ThisPrec < NextTokPrec ||
    391         (ThisPrec == NextTokPrec && isRightAssoc)) {
    392       if (!RHS.isInvalid() && RHSIsInitList) {
    393         Diag(Tok, diag::err_init_list_bin_op)
    394           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
    395         RHS = ExprError();
    396       }
    397       // If this is left-associative, only parse things on the RHS that bind
    398       // more tightly than the current operator.  If it is left-associative, it
    399       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
    400       // A=(B=(C=D)), where each paren is a level of recursion here.
    401       // The function takes ownership of the RHS.
    402       RHS = ParseRHSOfBinaryExpression(RHS,
    403                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
    404       RHSIsInitList = false;
    405 
    406       if (RHS.isInvalid()) {
    407         // FIXME: Errors generated by the delayed typo correction should be
    408         // printed before errors from ParseRHSOfBinaryExpression, not after.
    409         Actions.CorrectDelayedTyposInExpr(LHS);
    410         if (TernaryMiddle.isUsable())
    411           TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
    412         LHS = ExprError();
    413       }
    414 
    415       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
    416                                        getLangOpts().CPlusPlus11);
    417     }
    418 
    419     if (!RHS.isInvalid() && RHSIsInitList) {
    420       if (ThisPrec == prec::Assignment) {
    421         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
    422           << Actions.getExprRange(RHS.get());
    423       } else {
    424         Diag(OpToken, diag::err_init_list_bin_op)
    425           << /*RHS*/1 << PP.getSpelling(OpToken)
    426           << Actions.getExprRange(RHS.get());
    427         LHS = ExprError();
    428       }
    429     }
    430 
    431     if (!LHS.isInvalid()) {
    432       // Combine the LHS and RHS into the LHS (e.g. build AST).
    433       if (TernaryMiddle.isInvalid()) {
    434         // If we're using '>>' as an operator within a template
    435         // argument list (in C++98), suggest the addition of
    436         // parentheses so that the code remains well-formed in C++0x.
    437         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
    438           SuggestParentheses(OpToken.getLocation(),
    439                              diag::warn_cxx11_right_shift_in_template_arg,
    440                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
    441                                      Actions.getExprRange(RHS.get()).getEnd()));
    442 
    443         LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
    444                                  OpToken.getKind(), LHS.get(), RHS.get());
    445       } else
    446         LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
    447                                          LHS.get(), TernaryMiddle.get(),
    448                                          RHS.get());
    449     } else
    450       // Ensure potential typos in the RHS aren't left undiagnosed.
    451       Actions.CorrectDelayedTyposInExpr(RHS);
    452   }
    453 }
    454 
    455 /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
    456 /// parse a unary-expression.
    457 ///
    458 /// \p isAddressOfOperand exists because an id-expression that is the
    459 /// operand of address-of gets special treatment due to member pointers.
    460 ///
    461 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
    462                                        bool isAddressOfOperand,
    463                                        TypeCastState isTypeCast) {
    464   bool NotCastExpr;
    465   ExprResult Res = ParseCastExpression(isUnaryExpression,
    466                                        isAddressOfOperand,
    467                                        NotCastExpr,
    468                                        isTypeCast);
    469   if (NotCastExpr)
    470     Diag(Tok, diag::err_expected_expression);
    471   return Res;
    472 }
    473 
    474 namespace {
    475 class CastExpressionIdValidator : public CorrectionCandidateCallback {
    476  public:
    477   CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
    478       : NextToken(Next), AllowNonTypes(AllowNonTypes) {
    479     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
    480   }
    481 
    482   bool ValidateCandidate(const TypoCorrection &candidate) override {
    483     NamedDecl *ND = candidate.getCorrectionDecl();
    484     if (!ND)
    485       return candidate.isKeyword();
    486 
    487     if (isa<TypeDecl>(ND))
    488       return WantTypeSpecifiers;
    489 
    490     if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
    491       return false;
    492 
    493     if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
    494       return true;
    495 
    496     for (auto *C : candidate) {
    497       NamedDecl *ND = C->getUnderlyingDecl();
    498       if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
    499         return true;
    500     }
    501     return false;
    502   }
    503 
    504  private:
    505   Token NextToken;
    506   bool AllowNonTypes;
    507 };
    508 }
    509 
    510 /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
    511 /// a unary-expression.
    512 ///
    513 /// \p isAddressOfOperand exists because an id-expression that is the operand
    514 /// of address-of gets special treatment due to member pointers. NotCastExpr
    515 /// is set to true if the token is not the start of a cast-expression, and no
    516 /// diagnostic is emitted in this case.
    517 ///
    518 /// \verbatim
    519 ///       cast-expression: [C99 6.5.4]
    520 ///         unary-expression
    521 ///         '(' type-name ')' cast-expression
    522 ///
    523 ///       unary-expression:  [C99 6.5.3]
    524 ///         postfix-expression
    525 ///         '++' unary-expression
    526 ///         '--' unary-expression
    527 /// [Coro]  'co_await' cast-expression
    528 ///         unary-operator cast-expression
    529 ///         'sizeof' unary-expression
    530 ///         'sizeof' '(' type-name ')'
    531 /// [C++11] 'sizeof' '...' '(' identifier ')'
    532 /// [GNU]   '__alignof' unary-expression
    533 /// [GNU]   '__alignof' '(' type-name ')'
    534 /// [C11]   '_Alignof' '(' type-name ')'
    535 /// [C++11] 'alignof' '(' type-id ')'
    536 /// [GNU]   '&&' identifier
    537 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
    538 /// [C++]   new-expression
    539 /// [C++]   delete-expression
    540 ///
    541 ///       unary-operator: one of
    542 ///         '&'  '*'  '+'  '-'  '~'  '!'
    543 /// [GNU]   '__extension__'  '__real'  '__imag'
    544 ///
    545 ///       primary-expression: [C99 6.5.1]
    546 /// [C99]   identifier
    547 /// [C++]   id-expression
    548 ///         constant
    549 ///         string-literal
    550 /// [C++]   boolean-literal  [C++ 2.13.5]
    551 /// [C++11] 'nullptr'        [C++11 2.14.7]
    552 /// [C++11] user-defined-literal
    553 ///         '(' expression ')'
    554 /// [C11]   generic-selection
    555 ///         '__func__'        [C99 6.4.2.2]
    556 /// [GNU]   '__FUNCTION__'
    557 /// [MS]    '__FUNCDNAME__'
    558 /// [MS]    'L__FUNCTION__'
    559 /// [GNU]   '__PRETTY_FUNCTION__'
    560 /// [GNU]   '(' compound-statement ')'
    561 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
    562 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
    563 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
    564 ///                                     assign-expr ')'
    565 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
    566 /// [GNU]   '__null'
    567 /// [OBJC]  '[' objc-message-expr ']'
    568 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
    569 /// [OBJC]  '\@protocol' '(' identifier ')'
    570 /// [OBJC]  '\@encode' '(' type-name ')'
    571 /// [OBJC]  objc-string-literal
    572 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
    573 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
    574 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
    575 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
    576 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
    577 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
    578 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
    579 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
    580 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
    581 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
    582 /// [C++]   'this'          [C++ 9.3.2]
    583 /// [G++]   unary-type-trait '(' type-id ')'
    584 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
    585 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
    586 /// [clang] '^' block-literal
    587 ///
    588 ///       constant: [C99 6.4.4]
    589 ///         integer-constant
    590 ///         floating-constant
    591 ///         enumeration-constant -> identifier
    592 ///         character-constant
    593 ///
    594 ///       id-expression: [C++ 5.1]
    595 ///                   unqualified-id
    596 ///                   qualified-id
    597 ///
    598 ///       unqualified-id: [C++ 5.1]
    599 ///                   identifier
    600 ///                   operator-function-id
    601 ///                   conversion-function-id
    602 ///                   '~' class-name
    603 ///                   template-id
    604 ///
    605 ///       new-expression: [C++ 5.3.4]
    606 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
    607 ///                                     new-initializer[opt]
    608 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
    609 ///                                     new-initializer[opt]
    610 ///
    611 ///       delete-expression: [C++ 5.3.5]
    612 ///                   '::'[opt] 'delete' cast-expression
    613 ///                   '::'[opt] 'delete' '[' ']' cast-expression
    614 ///
    615 /// [GNU/Embarcadero] unary-type-trait:
    616 ///                   '__is_arithmetic'
    617 ///                   '__is_floating_point'
    618 ///                   '__is_integral'
    619 ///                   '__is_lvalue_expr'
    620 ///                   '__is_rvalue_expr'
    621 ///                   '__is_complete_type'
    622 ///                   '__is_void'
    623 ///                   '__is_array'
    624 ///                   '__is_function'
    625 ///                   '__is_reference'
    626 ///                   '__is_lvalue_reference'
    627 ///                   '__is_rvalue_reference'
    628 ///                   '__is_fundamental'
    629 ///                   '__is_object'
    630 ///                   '__is_scalar'
    631 ///                   '__is_compound'
    632 ///                   '__is_pointer'
    633 ///                   '__is_member_object_pointer'
    634 ///                   '__is_member_function_pointer'
    635 ///                   '__is_member_pointer'
    636 ///                   '__is_const'
    637 ///                   '__is_volatile'
    638 ///                   '__is_trivial'
    639 ///                   '__is_standard_layout'
    640 ///                   '__is_signed'
    641 ///                   '__is_unsigned'
    642 ///
    643 /// [GNU] unary-type-trait:
    644 ///                   '__has_nothrow_assign'
    645 ///                   '__has_nothrow_copy'
    646 ///                   '__has_nothrow_constructor'
    647 ///                   '__has_trivial_assign'                  [TODO]
    648 ///                   '__has_trivial_copy'                    [TODO]
    649 ///                   '__has_trivial_constructor'
    650 ///                   '__has_trivial_destructor'
    651 ///                   '__has_virtual_destructor'
    652 ///                   '__is_abstract'                         [TODO]
    653 ///                   '__is_class'
    654 ///                   '__is_empty'                            [TODO]
    655 ///                   '__is_enum'
    656 ///                   '__is_final'
    657 ///                   '__is_pod'
    658 ///                   '__is_polymorphic'
    659 ///                   '__is_sealed'                           [MS]
    660 ///                   '__is_trivial'
    661 ///                   '__is_union'
    662 ///
    663 /// [Clang] unary-type-trait:
    664 ///                   '__trivially_copyable'
    665 ///
    666 ///       binary-type-trait:
    667 /// [GNU]             '__is_base_of'
    668 /// [MS]              '__is_convertible_to'
    669 ///                   '__is_convertible'
    670 ///                   '__is_same'
    671 ///
    672 /// [Embarcadero] array-type-trait:
    673 ///                   '__array_rank'
    674 ///                   '__array_extent'
    675 ///
    676 /// [Embarcadero] expression-trait:
    677 ///                   '__is_lvalue_expr'
    678 ///                   '__is_rvalue_expr'
    679 /// \endverbatim
    680 ///
    681 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
    682                                        bool isAddressOfOperand,
    683                                        bool &NotCastExpr,
    684                                        TypeCastState isTypeCast) {
    685   ExprResult Res;
    686   tok::TokenKind SavedKind = Tok.getKind();
    687   NotCastExpr = false;
    688 
    689   // This handles all of cast-expression, unary-expression, postfix-expression,
    690   // and primary-expression.  We handle them together like this for efficiency
    691   // and to simplify handling of an expression starting with a '(' token: which
    692   // may be one of a parenthesized expression, cast-expression, compound literal
    693   // expression, or statement expression.
    694   //
    695   // If the parsed tokens consist of a primary-expression, the cases below
    696   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
    697   // to handle the postfix expression suffixes.  Cases that cannot be followed
    698   // by postfix exprs should return without invoking
    699   // ParsePostfixExpressionSuffix.
    700   switch (SavedKind) {
    701   case tok::l_paren: {
    702     // If this expression is limited to being a unary-expression, the parent can
    703     // not start a cast expression.
    704     ParenParseOption ParenExprType =
    705         (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
    706                                                         : CastExpr;
    707     ParsedType CastTy;
    708     SourceLocation RParenLoc;
    709     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
    710                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
    711 
    712     switch (ParenExprType) {
    713     case SimpleExpr:   break;    // Nothing else to do.
    714     case CompoundStmt: break;  // Nothing else to do.
    715     case CompoundLiteral:
    716       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
    717       // postfix-expression exist, parse them now.
    718       break;
    719     case CastExpr:
    720       // We have parsed the cast-expression and no postfix-expr pieces are
    721       // following.
    722       return Res;
    723     }
    724 
    725     break;
    726   }
    727 
    728     // primary-expression
    729   case tok::numeric_constant:
    730     // constant: integer-constant
    731     // constant: floating-constant
    732 
    733     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
    734     ConsumeToken();
    735     break;
    736 
    737   case tok::kw_true:
    738   case tok::kw_false:
    739     return ParseCXXBoolLiteral();
    740 
    741   case tok::kw___objc_yes:
    742   case tok::kw___objc_no:
    743       return ParseObjCBoolLiteral();
    744 
    745   case tok::kw_nullptr:
    746     Diag(Tok, diag::warn_cxx98_compat_nullptr);
    747     return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
    748 
    749   case tok::annot_primary_expr:
    750     assert(Res.get() == nullptr && "Stray primary-expression annotation?");
    751     Res = getExprAnnotation(Tok);
    752     ConsumeToken();
    753     break;
    754 
    755   case tok::kw___super:
    756   case tok::kw_decltype:
    757     // Annotate the token and tail recurse.
    758     if (TryAnnotateTypeOrScopeToken())
    759       return ExprError();
    760     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
    761     return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
    762 
    763   case tok::identifier: {      // primary-expression: identifier
    764                                // unqualified-id: identifier
    765                                // constant: enumeration-constant
    766     // Turn a potentially qualified name into a annot_typename or
    767     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
    768     if (getLangOpts().CPlusPlus) {
    769       // Avoid the unnecessary parse-time lookup in the common case
    770       // where the syntax forbids a type.
    771       const Token &Next = NextToken();
    772 
    773       // If this identifier was reverted from a token ID, and the next token
    774       // is a parenthesis, this is likely to be a use of a type trait. Check
    775       // those tokens.
    776       if (Next.is(tok::l_paren) &&
    777           Tok.is(tok::identifier) &&
    778           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
    779         IdentifierInfo *II = Tok.getIdentifierInfo();
    780         // Build up the mapping of revertible type traits, for future use.
    781         if (RevertibleTypeTraits.empty()) {
    782 #define RTT_JOIN(X,Y) X##Y
    783 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
    784           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
    785             = RTT_JOIN(tok::kw_,Name)
    786 
    787           REVERTIBLE_TYPE_TRAIT(__is_abstract);
    788           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
    789           REVERTIBLE_TYPE_TRAIT(__is_array);
    790           REVERTIBLE_TYPE_TRAIT(__is_base_of);
    791           REVERTIBLE_TYPE_TRAIT(__is_class);
    792           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
    793           REVERTIBLE_TYPE_TRAIT(__is_compound);
    794           REVERTIBLE_TYPE_TRAIT(__is_const);
    795           REVERTIBLE_TYPE_TRAIT(__is_constructible);
    796           REVERTIBLE_TYPE_TRAIT(__is_convertible);
    797           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
    798           REVERTIBLE_TYPE_TRAIT(__is_destructible);
    799           REVERTIBLE_TYPE_TRAIT(__is_empty);
    800           REVERTIBLE_TYPE_TRAIT(__is_enum);
    801           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
    802           REVERTIBLE_TYPE_TRAIT(__is_final);
    803           REVERTIBLE_TYPE_TRAIT(__is_function);
    804           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
    805           REVERTIBLE_TYPE_TRAIT(__is_integral);
    806           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
    807           REVERTIBLE_TYPE_TRAIT(__is_literal);
    808           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
    809           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
    810           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
    811           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
    812           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
    813           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
    814           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
    815           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
    816           REVERTIBLE_TYPE_TRAIT(__is_object);
    817           REVERTIBLE_TYPE_TRAIT(__is_pod);
    818           REVERTIBLE_TYPE_TRAIT(__is_pointer);
    819           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
    820           REVERTIBLE_TYPE_TRAIT(__is_reference);
    821           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
    822           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
    823           REVERTIBLE_TYPE_TRAIT(__is_same);
    824           REVERTIBLE_TYPE_TRAIT(__is_scalar);
    825           REVERTIBLE_TYPE_TRAIT(__is_sealed);
    826           REVERTIBLE_TYPE_TRAIT(__is_signed);
    827           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
    828           REVERTIBLE_TYPE_TRAIT(__is_trivial);
    829           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
    830           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
    831           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
    832           REVERTIBLE_TYPE_TRAIT(__is_union);
    833           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
    834           REVERTIBLE_TYPE_TRAIT(__is_void);
    835           REVERTIBLE_TYPE_TRAIT(__is_volatile);
    836 #undef REVERTIBLE_TYPE_TRAIT
    837 #undef RTT_JOIN
    838         }
    839 
    840         // If we find that this is in fact the name of a type trait,
    841         // update the token kind in place and parse again to treat it as
    842         // the appropriate kind of type trait.
    843         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
    844           = RevertibleTypeTraits.find(II);
    845         if (Known != RevertibleTypeTraits.end()) {
    846           Tok.setKind(Known->second);
    847           return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
    848                                      NotCastExpr, isTypeCast);
    849         }
    850       }
    851 
    852       if ((!ColonIsSacred && Next.is(tok::colon)) ||
    853           Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
    854                        tok::l_brace)) {
    855         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
    856         if (TryAnnotateTypeOrScopeToken())
    857           return ExprError();
    858         if (!Tok.is(tok::identifier))
    859           return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
    860       }
    861     }
    862 
    863     // Consume the identifier so that we can see if it is followed by a '(' or
    864     // '.'.
    865     IdentifierInfo &II = *Tok.getIdentifierInfo();
    866     SourceLocation ILoc = ConsumeToken();
    867 
    868     // Support 'Class.property' and 'super.property' notation.
    869     if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
    870         (Actions.getTypeName(II, ILoc, getCurScope()) ||
    871          // Allow the base to be 'super' if in an objc-method.
    872          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
    873       ConsumeToken();
    874 
    875       // Allow either an identifier or the keyword 'class' (in C++).
    876       if (Tok.isNot(tok::identifier) &&
    877           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
    878         Diag(Tok, diag::err_expected_property_name);
    879         return ExprError();
    880       }
    881       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
    882       SourceLocation PropertyLoc = ConsumeToken();
    883 
    884       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
    885                                               ILoc, PropertyLoc);
    886       break;
    887     }
    888 
    889     // In an Objective-C method, if we have "super" followed by an identifier,
    890     // the token sequence is ill-formed. However, if there's a ':' or ']' after
    891     // that identifier, this is probably a message send with a missing open
    892     // bracket. Treat it as such.
    893     if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
    894         getCurScope()->isInObjcMethodScope() &&
    895         ((Tok.is(tok::identifier) &&
    896          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
    897          Tok.is(tok::code_completion))) {
    898       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
    899                                            nullptr);
    900       break;
    901     }
    902 
    903     // If we have an Objective-C class name followed by an identifier
    904     // and either ':' or ']', this is an Objective-C class message
    905     // send that's missing the opening '['. Recovery
    906     // appropriately. Also take this path if we're performing code
    907     // completion after an Objective-C class name.
    908     if (getLangOpts().ObjC1 &&
    909         ((Tok.is(tok::identifier) && !InMessageExpression) ||
    910          Tok.is(tok::code_completion))) {
    911       const Token& Next = NextToken();
    912       if (Tok.is(tok::code_completion) ||
    913           Next.is(tok::colon) || Next.is(tok::r_square))
    914         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
    915           if (Typ.get()->isObjCObjectOrInterfaceType()) {
    916             // Fake up a Declarator to use with ActOnTypeName.
    917             DeclSpec DS(AttrFactory);
    918             DS.SetRangeStart(ILoc);
    919             DS.SetRangeEnd(ILoc);
    920             const char *PrevSpec = nullptr;
    921             unsigned DiagID;
    922             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
    923                                Actions.getASTContext().getPrintingPolicy());
    924 
    925             Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
    926             TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
    927                                                   DeclaratorInfo);
    928             if (Ty.isInvalid())
    929               break;
    930 
    931             Res = ParseObjCMessageExpressionBody(SourceLocation(),
    932                                                  SourceLocation(),
    933                                                  Ty.get(), nullptr);
    934             break;
    935           }
    936     }
    937 
    938     // Make sure to pass down the right value for isAddressOfOperand.
    939     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
    940       isAddressOfOperand = false;
    941 
    942     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
    943     // need to know whether or not this identifier is a function designator or
    944     // not.
    945     UnqualifiedId Name;
    946     CXXScopeSpec ScopeSpec;
    947     SourceLocation TemplateKWLoc;
    948     Token Replacement;
    949     auto Validator = llvm::make_unique<CastExpressionIdValidator>(
    950         Tok, isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
    951     Validator->IsAddressOfOperand = isAddressOfOperand;
    952     if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
    953       Validator->WantExpressionKeywords = false;
    954       Validator->WantRemainingKeywords = false;
    955     } else {
    956       Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
    957     }
    958     Name.setIdentifier(&II, ILoc);
    959     Res = Actions.ActOnIdExpression(
    960         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
    961         isAddressOfOperand, std::move(Validator),
    962         /*IsInlineAsmIdentifier=*/false,
    963         Tok.is(tok::r_paren) ? nullptr : &Replacement);
    964     if (!Res.isInvalid() && !Res.get()) {
    965       UnconsumeToken(Replacement);
    966       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
    967                                  NotCastExpr, isTypeCast);
    968     }
    969     break;
    970   }
    971   case tok::char_constant:     // constant: character-constant
    972   case tok::wide_char_constant:
    973   case tok::utf8_char_constant:
    974   case tok::utf16_char_constant:
    975   case tok::utf32_char_constant:
    976     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
    977     ConsumeToken();
    978     break;
    979   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
    980   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
    981   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
    982   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
    983   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
    984   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
    985     Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
    986     ConsumeToken();
    987     break;
    988   case tok::string_literal:    // primary-expression: string-literal
    989   case tok::wide_string_literal:
    990   case tok::utf8_string_literal:
    991   case tok::utf16_string_literal:
    992   case tok::utf32_string_literal:
    993     Res = ParseStringLiteralExpression(true);
    994     break;
    995   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
    996     Res = ParseGenericSelectionExpression();
    997     break;
    998   case tok::kw___builtin_va_arg:
    999   case tok::kw___builtin_offsetof:
   1000   case tok::kw___builtin_choose_expr:
   1001   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
   1002   case tok::kw___builtin_convertvector:
   1003     return ParseBuiltinPrimaryExpression();
   1004   case tok::kw___null:
   1005     return Actions.ActOnGNUNullExpr(ConsumeToken());
   1006 
   1007   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
   1008   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
   1009     // C++ [expr.unary] has:
   1010     //   unary-expression:
   1011     //     ++ cast-expression
   1012     //     -- cast-expression
   1013     SourceLocation SavedLoc = ConsumeToken();
   1014     // One special case is implicitly handled here: if the preceding tokens are
   1015     // an ambiguous cast expression, such as "(T())++", then we recurse to
   1016     // determine whether the '++' is prefix or postfix.
   1017     Res = ParseCastExpression(!getLangOpts().CPlusPlus,
   1018                               /*isAddressOfOperand*/false, NotCastExpr,
   1019                               NotTypeCast);
   1020     if (!Res.isInvalid())
   1021       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
   1022     return Res;
   1023   }
   1024   case tok::amp: {         // unary-expression: '&' cast-expression
   1025     // Special treatment because of member pointers
   1026     SourceLocation SavedLoc = ConsumeToken();
   1027     Res = ParseCastExpression(false, true);
   1028     if (!Res.isInvalid())
   1029       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
   1030     return Res;
   1031   }
   1032 
   1033   case tok::star:          // unary-expression: '*' cast-expression
   1034   case tok::plus:          // unary-expression: '+' cast-expression
   1035   case tok::minus:         // unary-expression: '-' cast-expression
   1036   case tok::tilde:         // unary-expression: '~' cast-expression
   1037   case tok::exclaim:       // unary-expression: '!' cast-expression
   1038   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
   1039   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
   1040     SourceLocation SavedLoc = ConsumeToken();
   1041     Res = ParseCastExpression(false);
   1042     if (!Res.isInvalid())
   1043       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
   1044     return Res;
   1045   }
   1046 
   1047   case tok::kw_co_await: {  // unary-expression: 'co_await' cast-expression
   1048     SourceLocation CoawaitLoc = ConsumeToken();
   1049     Res = ParseCastExpression(false);
   1050     if (!Res.isInvalid())
   1051       Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
   1052     return Res;
   1053   }
   1054 
   1055   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
   1056     // __extension__ silences extension warnings in the subexpression.
   1057     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
   1058     SourceLocation SavedLoc = ConsumeToken();
   1059     Res = ParseCastExpression(false);
   1060     if (!Res.isInvalid())
   1061       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
   1062     return Res;
   1063   }
   1064   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
   1065     if (!getLangOpts().C11)
   1066       Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
   1067     // fallthrough
   1068   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
   1069   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
   1070                            // unary-expression: '__alignof' '(' type-name ')'
   1071   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
   1072                            // unary-expression: 'sizeof' '(' type-name ')'
   1073   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
   1074   // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
   1075   case tok::kw___builtin_omp_required_simd_align:
   1076     return ParseUnaryExprOrTypeTraitExpression();
   1077   case tok::ampamp: {      // unary-expression: '&&' identifier
   1078     SourceLocation AmpAmpLoc = ConsumeToken();
   1079     if (Tok.isNot(tok::identifier))
   1080       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
   1081 
   1082     if (getCurScope()->getFnParent() == nullptr)
   1083       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
   1084 
   1085     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
   1086     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
   1087                                                 Tok.getLocation());
   1088     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
   1089     ConsumeToken();
   1090     return Res;
   1091   }
   1092   case tok::kw_const_cast:
   1093   case tok::kw_dynamic_cast:
   1094   case tok::kw_reinterpret_cast:
   1095   case tok::kw_static_cast:
   1096     Res = ParseCXXCasts();
   1097     break;
   1098   case tok::kw_typeid:
   1099     Res = ParseCXXTypeid();
   1100     break;
   1101   case tok::kw___uuidof:
   1102     Res = ParseCXXUuidof();
   1103     break;
   1104   case tok::kw_this:
   1105     Res = ParseCXXThis();
   1106     break;
   1107 
   1108   case tok::annot_typename:
   1109     if (isStartOfObjCClassMessageMissingOpenBracket()) {
   1110       ParsedType Type = getTypeAnnotation(Tok);
   1111 
   1112       // Fake up a Declarator to use with ActOnTypeName.
   1113       DeclSpec DS(AttrFactory);
   1114       DS.SetRangeStart(Tok.getLocation());
   1115       DS.SetRangeEnd(Tok.getLastLoc());
   1116 
   1117       const char *PrevSpec = nullptr;
   1118       unsigned DiagID;
   1119       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
   1120                          PrevSpec, DiagID, Type,
   1121                          Actions.getASTContext().getPrintingPolicy());
   1122 
   1123       Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   1124       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
   1125       if (Ty.isInvalid())
   1126         break;
   1127 
   1128       ConsumeToken();
   1129       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
   1130                                            Ty.get(), nullptr);
   1131       break;
   1132     }
   1133     // Fall through
   1134 
   1135   case tok::annot_decltype:
   1136   case tok::kw_char:
   1137   case tok::kw_wchar_t:
   1138   case tok::kw_char16_t:
   1139   case tok::kw_char32_t:
   1140   case tok::kw_bool:
   1141   case tok::kw_short:
   1142   case tok::kw_int:
   1143   case tok::kw_long:
   1144   case tok::kw___int64:
   1145   case tok::kw___int128:
   1146   case tok::kw_signed:
   1147   case tok::kw_unsigned:
   1148   case tok::kw_half:
   1149   case tok::kw_float:
   1150   case tok::kw_double:
   1151   case tok::kw_void:
   1152   case tok::kw_typename:
   1153   case tok::kw_typeof:
   1154   case tok::kw___vector: {
   1155     if (!getLangOpts().CPlusPlus) {
   1156       Diag(Tok, diag::err_expected_expression);
   1157       return ExprError();
   1158     }
   1159 
   1160     if (SavedKind == tok::kw_typename) {
   1161       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
   1162       //                     typename-specifier braced-init-list
   1163       if (TryAnnotateTypeOrScopeToken())
   1164         return ExprError();
   1165 
   1166       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
   1167         // We are trying to parse a simple-type-specifier but might not get such
   1168         // a token after error recovery.
   1169         return ExprError();
   1170     }
   1171 
   1172     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
   1173     //                     simple-type-specifier braced-init-list
   1174     //
   1175     DeclSpec DS(AttrFactory);
   1176 
   1177     ParseCXXSimpleTypeSpecifier(DS);
   1178     if (Tok.isNot(tok::l_paren) &&
   1179         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
   1180       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
   1181                          << DS.getSourceRange());
   1182 
   1183     if (Tok.is(tok::l_brace))
   1184       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   1185 
   1186     Res = ParseCXXTypeConstructExpression(DS);
   1187     break;
   1188   }
   1189 
   1190   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
   1191     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
   1192     // (We can end up in this situation after tentative parsing.)
   1193     if (TryAnnotateTypeOrScopeToken())
   1194       return ExprError();
   1195     if (!Tok.is(tok::annot_cxxscope))
   1196       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
   1197                                  NotCastExpr, isTypeCast);
   1198 
   1199     Token Next = NextToken();
   1200     if (Next.is(tok::annot_template_id)) {
   1201       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
   1202       if (TemplateId->Kind == TNK_Type_template) {
   1203         // We have a qualified template-id that we know refers to a
   1204         // type, translate it into a type and continue parsing as a
   1205         // cast expression.
   1206         CXXScopeSpec SS;
   1207         ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
   1208                                        /*EnteringContext=*/false);
   1209         AnnotateTemplateIdTokenAsType();
   1210         return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
   1211                                    NotCastExpr, isTypeCast);
   1212       }
   1213     }
   1214 
   1215     // Parse as an id-expression.
   1216     Res = ParseCXXIdExpression(isAddressOfOperand);
   1217     break;
   1218   }
   1219 
   1220   case tok::annot_template_id: { // [C++]          template-id
   1221     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
   1222     if (TemplateId->Kind == TNK_Type_template) {
   1223       // We have a template-id that we know refers to a type,
   1224       // translate it into a type and continue parsing as a cast
   1225       // expression.
   1226       AnnotateTemplateIdTokenAsType();
   1227       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
   1228                                  NotCastExpr, isTypeCast);
   1229     }
   1230 
   1231     // Fall through to treat the template-id as an id-expression.
   1232   }
   1233 
   1234   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
   1235     Res = ParseCXXIdExpression(isAddressOfOperand);
   1236     break;
   1237 
   1238   case tok::coloncolon: {
   1239     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
   1240     // annotates the token, tail recurse.
   1241     if (TryAnnotateTypeOrScopeToken())
   1242       return ExprError();
   1243     if (!Tok.is(tok::coloncolon))
   1244       return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
   1245 
   1246     // ::new -> [C++] new-expression
   1247     // ::delete -> [C++] delete-expression
   1248     SourceLocation CCLoc = ConsumeToken();
   1249     if (Tok.is(tok::kw_new))
   1250       return ParseCXXNewExpression(true, CCLoc);
   1251     if (Tok.is(tok::kw_delete))
   1252       return ParseCXXDeleteExpression(true, CCLoc);
   1253 
   1254     // This is not a type name or scope specifier, it is an invalid expression.
   1255     Diag(CCLoc, diag::err_expected_expression);
   1256     return ExprError();
   1257   }
   1258 
   1259   case tok::kw_new: // [C++] new-expression
   1260     return ParseCXXNewExpression(false, Tok.getLocation());
   1261 
   1262   case tok::kw_delete: // [C++] delete-expression
   1263     return ParseCXXDeleteExpression(false, Tok.getLocation());
   1264 
   1265   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
   1266     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
   1267     SourceLocation KeyLoc = ConsumeToken();
   1268     BalancedDelimiterTracker T(*this, tok::l_paren);
   1269 
   1270     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
   1271       return ExprError();
   1272     // C++11 [expr.unary.noexcept]p1:
   1273     //   The noexcept operator determines whether the evaluation of its operand,
   1274     //   which is an unevaluated operand, can throw an exception.
   1275     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
   1276     ExprResult Result = ParseExpression();
   1277 
   1278     T.consumeClose();
   1279 
   1280     if (!Result.isInvalid())
   1281       Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
   1282                                          Result.get(), T.getCloseLocation());
   1283     return Result;
   1284   }
   1285 
   1286 #define TYPE_TRAIT(N,Spelling,K) \
   1287   case tok::kw_##Spelling:
   1288 #include "clang/Basic/TokenKinds.def"
   1289     return ParseTypeTrait();
   1290 
   1291   case tok::kw___array_rank:
   1292   case tok::kw___array_extent:
   1293     return ParseArrayTypeTrait();
   1294 
   1295   case tok::kw___is_lvalue_expr:
   1296   case tok::kw___is_rvalue_expr:
   1297     return ParseExpressionTrait();
   1298 
   1299   case tok::at: {
   1300     SourceLocation AtLoc = ConsumeToken();
   1301     return ParseObjCAtExpression(AtLoc);
   1302   }
   1303   case tok::caret:
   1304     Res = ParseBlockLiteralExpression();
   1305     break;
   1306   case tok::code_completion: {
   1307     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
   1308     cutOffParsing();
   1309     return ExprError();
   1310   }
   1311   case tok::l_square:
   1312     if (getLangOpts().CPlusPlus11) {
   1313       if (getLangOpts().ObjC1) {
   1314         // C++11 lambda expressions and Objective-C message sends both start with a
   1315         // square bracket.  There are three possibilities here:
   1316         // we have a valid lambda expression, we have an invalid lambda
   1317         // expression, or we have something that doesn't appear to be a lambda.
   1318         // If we're in the last case, we fall back to ParseObjCMessageExpression.
   1319         Res = TryParseLambdaExpression();
   1320         if (!Res.isInvalid() && !Res.get())
   1321           Res = ParseObjCMessageExpression();
   1322         break;
   1323       }
   1324       Res = ParseLambdaExpression();
   1325       break;
   1326     }
   1327     if (getLangOpts().ObjC1) {
   1328       Res = ParseObjCMessageExpression();
   1329       break;
   1330     }
   1331     // FALL THROUGH.
   1332   default:
   1333     NotCastExpr = true;
   1334     return ExprError();
   1335   }
   1336 
   1337   // These can be followed by postfix-expr pieces.
   1338   return ParsePostfixExpressionSuffix(Res);
   1339 }
   1340 
   1341 /// \brief Once the leading part of a postfix-expression is parsed, this
   1342 /// method parses any suffixes that apply.
   1343 ///
   1344 /// \verbatim
   1345 ///       postfix-expression: [C99 6.5.2]
   1346 ///         primary-expression
   1347 ///         postfix-expression '[' expression ']'
   1348 ///         postfix-expression '[' braced-init-list ']'
   1349 ///         postfix-expression '(' argument-expression-list[opt] ')'
   1350 ///         postfix-expression '.' identifier
   1351 ///         postfix-expression '->' identifier
   1352 ///         postfix-expression '++'
   1353 ///         postfix-expression '--'
   1354 ///         '(' type-name ')' '{' initializer-list '}'
   1355 ///         '(' type-name ')' '{' initializer-list ',' '}'
   1356 ///
   1357 ///       argument-expression-list: [C99 6.5.2]
   1358 ///         argument-expression ...[opt]
   1359 ///         argument-expression-list ',' assignment-expression ...[opt]
   1360 /// \endverbatim
   1361 ExprResult
   1362 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
   1363   // Now that the primary-expression piece of the postfix-expression has been
   1364   // parsed, see if there are any postfix-expression pieces here.
   1365   SourceLocation Loc;
   1366   while (1) {
   1367     switch (Tok.getKind()) {
   1368     case tok::code_completion:
   1369       if (InMessageExpression)
   1370         return LHS;
   1371 
   1372       Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
   1373       cutOffParsing();
   1374       return ExprError();
   1375 
   1376     case tok::identifier:
   1377       // If we see identifier: after an expression, and we're not already in a
   1378       // message send, then this is probably a message send with a missing
   1379       // opening bracket '['.
   1380       if (getLangOpts().ObjC1 && !InMessageExpression &&
   1381           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
   1382         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
   1383                                              ParsedType(), LHS.get());
   1384         break;
   1385       }
   1386 
   1387       // Fall through; this isn't a message send.
   1388 
   1389     default:  // Not a postfix-expression suffix.
   1390       return LHS;
   1391     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
   1392       // If we have a array postfix expression that starts on a new line and
   1393       // Objective-C is enabled, it is highly likely that the user forgot a
   1394       // semicolon after the base expression and that the array postfix-expr is
   1395       // actually another message send.  In this case, do some look-ahead to see
   1396       // if the contents of the square brackets are obviously not a valid
   1397       // expression and recover by pretending there is no suffix.
   1398       if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
   1399           isSimpleObjCMessageExpression())
   1400         return LHS;
   1401 
   1402       // Reject array indices starting with a lambda-expression. '[[' is
   1403       // reserved for attributes.
   1404       if (CheckProhibitedCXX11Attribute())
   1405         return ExprError();
   1406 
   1407       BalancedDelimiterTracker T(*this, tok::l_square);
   1408       T.consumeOpen();
   1409       Loc = T.getOpenLocation();
   1410       ExprResult Idx, Length;
   1411       SourceLocation ColonLoc;
   1412       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
   1413         Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   1414         Idx = ParseBraceInitializer();
   1415       } else if (getLangOpts().OpenMP) {
   1416         ColonProtectionRAIIObject RAII(*this);
   1417         // Parse [: or [ expr or [ expr :
   1418         if (!Tok.is(tok::colon)) {
   1419           // [ expr
   1420           Idx = ParseExpression();
   1421         }
   1422         if (Tok.is(tok::colon)) {
   1423           // Consume ':'
   1424           ColonLoc = ConsumeToken();
   1425           if (Tok.isNot(tok::r_square))
   1426             Length = ParseExpression();
   1427         }
   1428       } else
   1429         Idx = ParseExpression();
   1430 
   1431       SourceLocation RLoc = Tok.getLocation();
   1432 
   1433       if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() &&
   1434           Tok.is(tok::r_square)) {
   1435         if (ColonLoc.isValid()) {
   1436           LHS = Actions.ActOnOMPArraySectionExpr(LHS.get(), Loc, Idx.get(),
   1437                                                  ColonLoc, Length.get(), RLoc);
   1438         } else {
   1439           LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
   1440                                                 Idx.get(), RLoc);
   1441         }
   1442       } else {
   1443         (void)Actions.CorrectDelayedTyposInExpr(LHS);
   1444         (void)Actions.CorrectDelayedTyposInExpr(Idx);
   1445         (void)Actions.CorrectDelayedTyposInExpr(Length);
   1446         LHS = ExprError();
   1447         Idx = ExprError();
   1448       }
   1449 
   1450       // Match the ']'.
   1451       T.consumeClose();
   1452       break;
   1453     }
   1454 
   1455     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
   1456     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
   1457                                //   '(' argument-expression-list[opt] ')'
   1458       tok::TokenKind OpKind = Tok.getKind();
   1459       InMessageExpressionRAIIObject InMessage(*this, false);
   1460 
   1461       Expr *ExecConfig = nullptr;
   1462 
   1463       BalancedDelimiterTracker PT(*this, tok::l_paren);
   1464 
   1465       if (OpKind == tok::lesslessless) {
   1466         ExprVector ExecConfigExprs;
   1467         CommaLocsTy ExecConfigCommaLocs;
   1468         SourceLocation OpenLoc = ConsumeToken();
   1469 
   1470         if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
   1471           (void)Actions.CorrectDelayedTyposInExpr(LHS);
   1472           LHS = ExprError();
   1473         }
   1474 
   1475         SourceLocation CloseLoc;
   1476         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
   1477         } else if (LHS.isInvalid()) {
   1478           SkipUntil(tok::greatergreatergreater, StopAtSemi);
   1479         } else {
   1480           // There was an error closing the brackets
   1481           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
   1482           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
   1483           SkipUntil(tok::greatergreatergreater, StopAtSemi);
   1484           LHS = ExprError();
   1485         }
   1486 
   1487         if (!LHS.isInvalid()) {
   1488           if (ExpectAndConsume(tok::l_paren))
   1489             LHS = ExprError();
   1490           else
   1491             Loc = PrevTokLocation;
   1492         }
   1493 
   1494         if (!LHS.isInvalid()) {
   1495           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
   1496                                     OpenLoc,
   1497                                     ExecConfigExprs,
   1498                                     CloseLoc);
   1499           if (ECResult.isInvalid())
   1500             LHS = ExprError();
   1501           else
   1502             ExecConfig = ECResult.get();
   1503         }
   1504       } else {
   1505         PT.consumeOpen();
   1506         Loc = PT.getOpenLocation();
   1507       }
   1508 
   1509       ExprVector ArgExprs;
   1510       CommaLocsTy CommaLocs;
   1511 
   1512       if (Tok.is(tok::code_completion)) {
   1513         Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
   1514         cutOffParsing();
   1515         return ExprError();
   1516       }
   1517 
   1518       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
   1519         if (Tok.isNot(tok::r_paren)) {
   1520           if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
   1521                 Actions.CodeCompleteCall(getCurScope(), LHS.get(), ArgExprs);
   1522              })) {
   1523             (void)Actions.CorrectDelayedTyposInExpr(LHS);
   1524             LHS = ExprError();
   1525           } else if (LHS.isInvalid()) {
   1526             for (auto &E : ArgExprs)
   1527               Actions.CorrectDelayedTyposInExpr(E);
   1528           }
   1529         }
   1530       }
   1531 
   1532       // Match the ')'.
   1533       if (LHS.isInvalid()) {
   1534         SkipUntil(tok::r_paren, StopAtSemi);
   1535       } else if (Tok.isNot(tok::r_paren)) {
   1536         bool HadDelayedTypo = false;
   1537         if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
   1538           HadDelayedTypo = true;
   1539         for (auto &E : ArgExprs)
   1540           if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
   1541             HadDelayedTypo = true;
   1542         // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
   1543         // instead of PT.consumeClose() to avoid emitting extra diagnostics for
   1544         // the unmatched l_paren.
   1545         if (HadDelayedTypo)
   1546           SkipUntil(tok::r_paren, StopAtSemi);
   1547         else
   1548           PT.consumeClose();
   1549         LHS = ExprError();
   1550       } else {
   1551         assert((ArgExprs.size() == 0 ||
   1552                 ArgExprs.size()-1 == CommaLocs.size())&&
   1553                "Unexpected number of commas!");
   1554         LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
   1555                                     ArgExprs, Tok.getLocation(),
   1556                                     ExecConfig);
   1557         PT.consumeClose();
   1558       }
   1559 
   1560       break;
   1561     }
   1562     case tok::arrow:
   1563     case tok::period: {
   1564       // postfix-expression: p-e '->' template[opt] id-expression
   1565       // postfix-expression: p-e '.' template[opt] id-expression
   1566       tok::TokenKind OpKind = Tok.getKind();
   1567       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
   1568 
   1569       CXXScopeSpec SS;
   1570       ParsedType ObjectType;
   1571       bool MayBePseudoDestructor = false;
   1572       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
   1573         Expr *Base = LHS.get();
   1574         const Type* BaseType = Base->getType().getTypePtrOrNull();
   1575         if (BaseType && Tok.is(tok::l_paren) &&
   1576             (BaseType->isFunctionType() ||
   1577              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
   1578           Diag(OpLoc, diag::err_function_is_not_record)
   1579               << OpKind << Base->getSourceRange()
   1580               << FixItHint::CreateRemoval(OpLoc);
   1581           return ParsePostfixExpressionSuffix(Base);
   1582         }
   1583 
   1584         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
   1585                                                    OpLoc, OpKind, ObjectType,
   1586                                                    MayBePseudoDestructor);
   1587         if (LHS.isInvalid())
   1588           break;
   1589 
   1590         ParseOptionalCXXScopeSpecifier(SS, ObjectType,
   1591                                        /*EnteringContext=*/false,
   1592                                        &MayBePseudoDestructor);
   1593         if (SS.isNotEmpty())
   1594           ObjectType = ParsedType();
   1595       }
   1596 
   1597       if (Tok.is(tok::code_completion)) {
   1598         // Code completion for a member access expression.
   1599         Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
   1600                                                 OpLoc, OpKind == tok::arrow);
   1601 
   1602         cutOffParsing();
   1603         return ExprError();
   1604       }
   1605 
   1606       if (MayBePseudoDestructor && !LHS.isInvalid()) {
   1607         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
   1608                                        ObjectType);
   1609         break;
   1610       }
   1611 
   1612       // Either the action has told us that this cannot be a
   1613       // pseudo-destructor expression (based on the type of base
   1614       // expression), or we didn't see a '~' in the right place. We
   1615       // can still parse a destructor name here, but in that case it
   1616       // names a real destructor.
   1617       // Allow explicit constructor calls in Microsoft mode.
   1618       // FIXME: Add support for explicit call of template constructor.
   1619       SourceLocation TemplateKWLoc;
   1620       UnqualifiedId Name;
   1621       if (getLangOpts().ObjC2 && OpKind == tok::period &&
   1622           Tok.is(tok::kw_class)) {
   1623         // Objective-C++:
   1624         //   After a '.' in a member access expression, treat the keyword
   1625         //   'class' as if it were an identifier.
   1626         //
   1627         // This hack allows property access to the 'class' method because it is
   1628         // such a common method name. For other C++ keywords that are
   1629         // Objective-C method names, one must use the message send syntax.
   1630         IdentifierInfo *Id = Tok.getIdentifierInfo();
   1631         SourceLocation Loc = ConsumeToken();
   1632         Name.setIdentifier(Id, Loc);
   1633       } else if (ParseUnqualifiedId(SS,
   1634                                     /*EnteringContext=*/false,
   1635                                     /*AllowDestructorName=*/true,
   1636                                     /*AllowConstructorName=*/
   1637                                       getLangOpts().MicrosoftExt,
   1638                                     ObjectType, TemplateKWLoc, Name)) {
   1639         (void)Actions.CorrectDelayedTyposInExpr(LHS);
   1640         LHS = ExprError();
   1641       }
   1642 
   1643       if (!LHS.isInvalid())
   1644         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
   1645                                             OpKind, SS, TemplateKWLoc, Name,
   1646                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
   1647                                                    : nullptr);
   1648       break;
   1649     }
   1650     case tok::plusplus:    // postfix-expression: postfix-expression '++'
   1651     case tok::minusminus:  // postfix-expression: postfix-expression '--'
   1652       if (!LHS.isInvalid()) {
   1653         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
   1654                                           Tok.getKind(), LHS.get());
   1655       }
   1656       ConsumeToken();
   1657       break;
   1658     }
   1659   }
   1660 }
   1661 
   1662 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
   1663 /// vec_step and we are at the start of an expression or a parenthesized
   1664 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
   1665 /// expression (isCastExpr == false) or the type (isCastExpr == true).
   1666 ///
   1667 /// \verbatim
   1668 ///       unary-expression:  [C99 6.5.3]
   1669 ///         'sizeof' unary-expression
   1670 ///         'sizeof' '(' type-name ')'
   1671 /// [GNU]   '__alignof' unary-expression
   1672 /// [GNU]   '__alignof' '(' type-name ')'
   1673 /// [C11]   '_Alignof' '(' type-name ')'
   1674 /// [C++0x] 'alignof' '(' type-id ')'
   1675 ///
   1676 /// [GNU]   typeof-specifier:
   1677 ///           typeof ( expressions )
   1678 ///           typeof ( type-name )
   1679 /// [GNU/C++] typeof unary-expression
   1680 ///
   1681 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
   1682 ///           vec_step ( expressions )
   1683 ///           vec_step ( type-name )
   1684 /// \endverbatim
   1685 ExprResult
   1686 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
   1687                                            bool &isCastExpr,
   1688                                            ParsedType &CastTy,
   1689                                            SourceRange &CastRange) {
   1690 
   1691   assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
   1692                        tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
   1693                        tok::kw___builtin_omp_required_simd_align) &&
   1694          "Not a typeof/sizeof/alignof/vec_step expression!");
   1695 
   1696   ExprResult Operand;
   1697 
   1698   // If the operand doesn't start with an '(', it must be an expression.
   1699   if (Tok.isNot(tok::l_paren)) {
   1700     // If construct allows a form without parenthesis, user may forget to put
   1701     // pathenthesis around type name.
   1702     if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
   1703                       tok::kw__Alignof)) {
   1704       if (isTypeIdUnambiguously()) {
   1705         DeclSpec DS(AttrFactory);
   1706         ParseSpecifierQualifierList(DS);
   1707         Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   1708         ParseDeclarator(DeclaratorInfo);
   1709 
   1710         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
   1711         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
   1712         Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
   1713           << OpTok.getName()
   1714           << FixItHint::CreateInsertion(LParenLoc, "(")
   1715           << FixItHint::CreateInsertion(RParenLoc, ")");
   1716         isCastExpr = true;
   1717         return ExprEmpty();
   1718       }
   1719     }
   1720 
   1721     isCastExpr = false;
   1722     if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
   1723       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
   1724                                           << tok::l_paren;
   1725       return ExprError();
   1726     }
   1727 
   1728     Operand = ParseCastExpression(true/*isUnaryExpression*/);
   1729   } else {
   1730     // If it starts with a '(', we know that it is either a parenthesized
   1731     // type-name, or it is a unary-expression that starts with a compound
   1732     // literal, or starts with a primary-expression that is a parenthesized
   1733     // expression.
   1734     ParenParseOption ExprType = CastExpr;
   1735     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
   1736 
   1737     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
   1738                                    false, CastTy, RParenLoc);
   1739     CastRange = SourceRange(LParenLoc, RParenLoc);
   1740 
   1741     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
   1742     // a type.
   1743     if (ExprType == CastExpr) {
   1744       isCastExpr = true;
   1745       return ExprEmpty();
   1746     }
   1747 
   1748     if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
   1749       // GNU typeof in C requires the expression to be parenthesized. Not so for
   1750       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
   1751       // the start of a unary-expression, but doesn't include any postfix
   1752       // pieces. Parse these now if present.
   1753       if (!Operand.isInvalid())
   1754         Operand = ParsePostfixExpressionSuffix(Operand.get());
   1755     }
   1756   }
   1757 
   1758   // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
   1759   isCastExpr = false;
   1760   return Operand;
   1761 }
   1762 
   1763 
   1764 /// \brief Parse a sizeof or alignof expression.
   1765 ///
   1766 /// \verbatim
   1767 ///       unary-expression:  [C99 6.5.3]
   1768 ///         'sizeof' unary-expression
   1769 ///         'sizeof' '(' type-name ')'
   1770 /// [C++11] 'sizeof' '...' '(' identifier ')'
   1771 /// [GNU]   '__alignof' unary-expression
   1772 /// [GNU]   '__alignof' '(' type-name ')'
   1773 /// [C11]   '_Alignof' '(' type-name ')'
   1774 /// [C++11] 'alignof' '(' type-id ')'
   1775 /// \endverbatim
   1776 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
   1777   assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
   1778                      tok::kw__Alignof, tok::kw_vec_step,
   1779                      tok::kw___builtin_omp_required_simd_align) &&
   1780          "Not a sizeof/alignof/vec_step expression!");
   1781   Token OpTok = Tok;
   1782   ConsumeToken();
   1783 
   1784   // [C++11] 'sizeof' '...' '(' identifier ')'
   1785   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
   1786     SourceLocation EllipsisLoc = ConsumeToken();
   1787     SourceLocation LParenLoc, RParenLoc;
   1788     IdentifierInfo *Name = nullptr;
   1789     SourceLocation NameLoc;
   1790     if (Tok.is(tok::l_paren)) {
   1791       BalancedDelimiterTracker T(*this, tok::l_paren);
   1792       T.consumeOpen();
   1793       LParenLoc = T.getOpenLocation();
   1794       if (Tok.is(tok::identifier)) {
   1795         Name = Tok.getIdentifierInfo();
   1796         NameLoc = ConsumeToken();
   1797         T.consumeClose();
   1798         RParenLoc = T.getCloseLocation();
   1799         if (RParenLoc.isInvalid())
   1800           RParenLoc = PP.getLocForEndOfToken(NameLoc);
   1801       } else {
   1802         Diag(Tok, diag::err_expected_parameter_pack);
   1803         SkipUntil(tok::r_paren, StopAtSemi);
   1804       }
   1805     } else if (Tok.is(tok::identifier)) {
   1806       Name = Tok.getIdentifierInfo();
   1807       NameLoc = ConsumeToken();
   1808       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
   1809       RParenLoc = PP.getLocForEndOfToken(NameLoc);
   1810       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
   1811         << Name
   1812         << FixItHint::CreateInsertion(LParenLoc, "(")
   1813         << FixItHint::CreateInsertion(RParenLoc, ")");
   1814     } else {
   1815       Diag(Tok, diag::err_sizeof_parameter_pack);
   1816     }
   1817 
   1818     if (!Name)
   1819       return ExprError();
   1820 
   1821     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
   1822                                                  Sema::ReuseLambdaContextDecl);
   1823 
   1824     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
   1825                                                 OpTok.getLocation(),
   1826                                                 *Name, NameLoc,
   1827                                                 RParenLoc);
   1828   }
   1829 
   1830   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
   1831     Diag(OpTok, diag::warn_cxx98_compat_alignof);
   1832 
   1833   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
   1834                                                Sema::ReuseLambdaContextDecl);
   1835 
   1836   bool isCastExpr;
   1837   ParsedType CastTy;
   1838   SourceRange CastRange;
   1839   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
   1840                                                           isCastExpr,
   1841                                                           CastTy,
   1842                                                           CastRange);
   1843 
   1844   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
   1845   if (OpTok.isOneOf(tok::kw_alignof, tok::kw___alignof, tok::kw__Alignof))
   1846     ExprKind = UETT_AlignOf;
   1847   else if (OpTok.is(tok::kw_vec_step))
   1848     ExprKind = UETT_VecStep;
   1849   else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
   1850     ExprKind = UETT_OpenMPRequiredSimdAlign;
   1851 
   1852   if (isCastExpr)
   1853     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
   1854                                                  ExprKind,
   1855                                                  /*isType=*/true,
   1856                                                  CastTy.getAsOpaquePtr(),
   1857                                                  CastRange);
   1858 
   1859   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
   1860     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
   1861 
   1862   // If we get here, the operand to the sizeof/alignof was an expresion.
   1863   if (!Operand.isInvalid())
   1864     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
   1865                                                     ExprKind,
   1866                                                     /*isType=*/false,
   1867                                                     Operand.get(),
   1868                                                     CastRange);
   1869   return Operand;
   1870 }
   1871 
   1872 /// ParseBuiltinPrimaryExpression
   1873 ///
   1874 /// \verbatim
   1875 ///       primary-expression: [C99 6.5.1]
   1876 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
   1877 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
   1878 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
   1879 ///                                     assign-expr ')'
   1880 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
   1881 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
   1882 ///
   1883 /// [GNU] offsetof-member-designator:
   1884 /// [GNU]   identifier
   1885 /// [GNU]   offsetof-member-designator '.' identifier
   1886 /// [GNU]   offsetof-member-designator '[' expression ']'
   1887 /// \endverbatim
   1888 ExprResult Parser::ParseBuiltinPrimaryExpression() {
   1889   ExprResult Res;
   1890   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
   1891 
   1892   tok::TokenKind T = Tok.getKind();
   1893   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
   1894 
   1895   // All of these start with an open paren.
   1896   if (Tok.isNot(tok::l_paren))
   1897     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
   1898                                                          << tok::l_paren);
   1899 
   1900   BalancedDelimiterTracker PT(*this, tok::l_paren);
   1901   PT.consumeOpen();
   1902 
   1903   // TODO: Build AST.
   1904 
   1905   switch (T) {
   1906   default: llvm_unreachable("Not a builtin primary expression!");
   1907   case tok::kw___builtin_va_arg: {
   1908     ExprResult Expr(ParseAssignmentExpression());
   1909 
   1910     if (ExpectAndConsume(tok::comma)) {
   1911       SkipUntil(tok::r_paren, StopAtSemi);
   1912       Expr = ExprError();
   1913     }
   1914 
   1915     TypeResult Ty = ParseTypeName();
   1916 
   1917     if (Tok.isNot(tok::r_paren)) {
   1918       Diag(Tok, diag::err_expected) << tok::r_paren;
   1919       Expr = ExprError();
   1920     }
   1921 
   1922     if (Expr.isInvalid() || Ty.isInvalid())
   1923       Res = ExprError();
   1924     else
   1925       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
   1926     break;
   1927   }
   1928   case tok::kw___builtin_offsetof: {
   1929     SourceLocation TypeLoc = Tok.getLocation();
   1930     TypeResult Ty = ParseTypeName();
   1931     if (Ty.isInvalid()) {
   1932       SkipUntil(tok::r_paren, StopAtSemi);
   1933       return ExprError();
   1934     }
   1935 
   1936     if (ExpectAndConsume(tok::comma)) {
   1937       SkipUntil(tok::r_paren, StopAtSemi);
   1938       return ExprError();
   1939     }
   1940 
   1941     // We must have at least one identifier here.
   1942     if (Tok.isNot(tok::identifier)) {
   1943       Diag(Tok, diag::err_expected) << tok::identifier;
   1944       SkipUntil(tok::r_paren, StopAtSemi);
   1945       return ExprError();
   1946     }
   1947 
   1948     // Keep track of the various subcomponents we see.
   1949     SmallVector<Sema::OffsetOfComponent, 4> Comps;
   1950 
   1951     Comps.push_back(Sema::OffsetOfComponent());
   1952     Comps.back().isBrackets = false;
   1953     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
   1954     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
   1955 
   1956     // FIXME: This loop leaks the index expressions on error.
   1957     while (1) {
   1958       if (Tok.is(tok::period)) {
   1959         // offsetof-member-designator: offsetof-member-designator '.' identifier
   1960         Comps.push_back(Sema::OffsetOfComponent());
   1961         Comps.back().isBrackets = false;
   1962         Comps.back().LocStart = ConsumeToken();
   1963 
   1964         if (Tok.isNot(tok::identifier)) {
   1965           Diag(Tok, diag::err_expected) << tok::identifier;
   1966           SkipUntil(tok::r_paren, StopAtSemi);
   1967           return ExprError();
   1968         }
   1969         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
   1970         Comps.back().LocEnd = ConsumeToken();
   1971 
   1972       } else if (Tok.is(tok::l_square)) {
   1973         if (CheckProhibitedCXX11Attribute())
   1974           return ExprError();
   1975 
   1976         // offsetof-member-designator: offsetof-member-design '[' expression ']'
   1977         Comps.push_back(Sema::OffsetOfComponent());
   1978         Comps.back().isBrackets = true;
   1979         BalancedDelimiterTracker ST(*this, tok::l_square);
   1980         ST.consumeOpen();
   1981         Comps.back().LocStart = ST.getOpenLocation();
   1982         Res = ParseExpression();
   1983         if (Res.isInvalid()) {
   1984           SkipUntil(tok::r_paren, StopAtSemi);
   1985           return Res;
   1986         }
   1987         Comps.back().U.E = Res.get();
   1988 
   1989         ST.consumeClose();
   1990         Comps.back().LocEnd = ST.getCloseLocation();
   1991       } else {
   1992         if (Tok.isNot(tok::r_paren)) {
   1993           PT.consumeClose();
   1994           Res = ExprError();
   1995         } else if (Ty.isInvalid()) {
   1996           Res = ExprError();
   1997         } else {
   1998           PT.consumeClose();
   1999           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
   2000                                              Ty.get(), Comps,
   2001                                              PT.getCloseLocation());
   2002         }
   2003         break;
   2004       }
   2005     }
   2006     break;
   2007   }
   2008   case tok::kw___builtin_choose_expr: {
   2009     ExprResult Cond(ParseAssignmentExpression());
   2010     if (Cond.isInvalid()) {
   2011       SkipUntil(tok::r_paren, StopAtSemi);
   2012       return Cond;
   2013     }
   2014     if (ExpectAndConsume(tok::comma)) {
   2015       SkipUntil(tok::r_paren, StopAtSemi);
   2016       return ExprError();
   2017     }
   2018 
   2019     ExprResult Expr1(ParseAssignmentExpression());
   2020     if (Expr1.isInvalid()) {
   2021       SkipUntil(tok::r_paren, StopAtSemi);
   2022       return Expr1;
   2023     }
   2024     if (ExpectAndConsume(tok::comma)) {
   2025       SkipUntil(tok::r_paren, StopAtSemi);
   2026       return ExprError();
   2027     }
   2028 
   2029     ExprResult Expr2(ParseAssignmentExpression());
   2030     if (Expr2.isInvalid()) {
   2031       SkipUntil(tok::r_paren, StopAtSemi);
   2032       return Expr2;
   2033     }
   2034     if (Tok.isNot(tok::r_paren)) {
   2035       Diag(Tok, diag::err_expected) << tok::r_paren;
   2036       return ExprError();
   2037     }
   2038     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
   2039                                   Expr2.get(), ConsumeParen());
   2040     break;
   2041   }
   2042   case tok::kw___builtin_astype: {
   2043     // The first argument is an expression to be converted, followed by a comma.
   2044     ExprResult Expr(ParseAssignmentExpression());
   2045     if (Expr.isInvalid()) {
   2046       SkipUntil(tok::r_paren, StopAtSemi);
   2047       return ExprError();
   2048     }
   2049 
   2050     if (ExpectAndConsume(tok::comma)) {
   2051       SkipUntil(tok::r_paren, StopAtSemi);
   2052       return ExprError();
   2053     }
   2054 
   2055     // Second argument is the type to bitcast to.
   2056     TypeResult DestTy = ParseTypeName();
   2057     if (DestTy.isInvalid())
   2058       return ExprError();
   2059 
   2060     // Attempt to consume the r-paren.
   2061     if (Tok.isNot(tok::r_paren)) {
   2062       Diag(Tok, diag::err_expected) << tok::r_paren;
   2063       SkipUntil(tok::r_paren, StopAtSemi);
   2064       return ExprError();
   2065     }
   2066 
   2067     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
   2068                                   ConsumeParen());
   2069     break;
   2070   }
   2071   case tok::kw___builtin_convertvector: {
   2072     // The first argument is an expression to be converted, followed by a comma.
   2073     ExprResult Expr(ParseAssignmentExpression());
   2074     if (Expr.isInvalid()) {
   2075       SkipUntil(tok::r_paren, StopAtSemi);
   2076       return ExprError();
   2077     }
   2078 
   2079     if (ExpectAndConsume(tok::comma)) {
   2080       SkipUntil(tok::r_paren, StopAtSemi);
   2081       return ExprError();
   2082     }
   2083 
   2084     // Second argument is the type to bitcast to.
   2085     TypeResult DestTy = ParseTypeName();
   2086     if (DestTy.isInvalid())
   2087       return ExprError();
   2088 
   2089     // Attempt to consume the r-paren.
   2090     if (Tok.isNot(tok::r_paren)) {
   2091       Diag(Tok, diag::err_expected) << tok::r_paren;
   2092       SkipUntil(tok::r_paren, StopAtSemi);
   2093       return ExprError();
   2094     }
   2095 
   2096     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
   2097                                          ConsumeParen());
   2098     break;
   2099   }
   2100   }
   2101 
   2102   if (Res.isInvalid())
   2103     return ExprError();
   2104 
   2105   // These can be followed by postfix-expr pieces because they are
   2106   // primary-expressions.
   2107   return ParsePostfixExpressionSuffix(Res.get());
   2108 }
   2109 
   2110 /// ParseParenExpression - This parses the unit that starts with a '(' token,
   2111 /// based on what is allowed by ExprType.  The actual thing parsed is returned
   2112 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
   2113 /// not the parsed cast-expression.
   2114 ///
   2115 /// \verbatim
   2116 ///       primary-expression: [C99 6.5.1]
   2117 ///         '(' expression ')'
   2118 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
   2119 ///       postfix-expression: [C99 6.5.2]
   2120 ///         '(' type-name ')' '{' initializer-list '}'
   2121 ///         '(' type-name ')' '{' initializer-list ',' '}'
   2122 ///       cast-expression: [C99 6.5.4]
   2123 ///         '(' type-name ')' cast-expression
   2124 /// [ARC]   bridged-cast-expression
   2125 /// [ARC] bridged-cast-expression:
   2126 ///         (__bridge type-name) cast-expression
   2127 ///         (__bridge_transfer type-name) cast-expression
   2128 ///         (__bridge_retained type-name) cast-expression
   2129 ///       fold-expression: [C++1z]
   2130 ///         '(' cast-expression fold-operator '...' ')'
   2131 ///         '(' '...' fold-operator cast-expression ')'
   2132 ///         '(' cast-expression fold-operator '...'
   2133 ///                 fold-operator cast-expression ')'
   2134 /// \endverbatim
   2135 ExprResult
   2136 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
   2137                              bool isTypeCast, ParsedType &CastTy,
   2138                              SourceLocation &RParenLoc) {
   2139   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
   2140   ColonProtectionRAIIObject ColonProtection(*this, false);
   2141   BalancedDelimiterTracker T(*this, tok::l_paren);
   2142   if (T.consumeOpen())
   2143     return ExprError();
   2144   SourceLocation OpenLoc = T.getOpenLocation();
   2145 
   2146   ExprResult Result(true);
   2147   bool isAmbiguousTypeId;
   2148   CastTy = ParsedType();
   2149 
   2150   if (Tok.is(tok::code_completion)) {
   2151     Actions.CodeCompleteOrdinaryName(getCurScope(),
   2152                  ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
   2153                                             : Sema::PCC_Expression);
   2154     cutOffParsing();
   2155     return ExprError();
   2156   }
   2157 
   2158   // Diagnose use of bridge casts in non-arc mode.
   2159   bool BridgeCast = (getLangOpts().ObjC2 &&
   2160                      Tok.isOneOf(tok::kw___bridge,
   2161                                  tok::kw___bridge_transfer,
   2162                                  tok::kw___bridge_retained,
   2163                                  tok::kw___bridge_retain));
   2164   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
   2165     if (!TryConsumeToken(tok::kw___bridge)) {
   2166       StringRef BridgeCastName = Tok.getName();
   2167       SourceLocation BridgeKeywordLoc = ConsumeToken();
   2168       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
   2169         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
   2170           << BridgeCastName
   2171           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
   2172     }
   2173     BridgeCast = false;
   2174   }
   2175 
   2176   // None of these cases should fall through with an invalid Result
   2177   // unless they've already reported an error.
   2178   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
   2179     Diag(Tok, diag::ext_gnu_statement_expr);
   2180 
   2181     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
   2182       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
   2183     } else {
   2184       // Find the nearest non-record decl context. Variables declared in a
   2185       // statement expression behave as if they were declared in the enclosing
   2186       // function, block, or other code construct.
   2187       DeclContext *CodeDC = Actions.CurContext;
   2188       while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
   2189         CodeDC = CodeDC->getParent();
   2190         assert(CodeDC && !CodeDC->isFileContext() &&
   2191                "statement expr not in code context");
   2192       }
   2193       Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
   2194 
   2195       Actions.ActOnStartStmtExpr();
   2196 
   2197       StmtResult Stmt(ParseCompoundStatement(true));
   2198       ExprType = CompoundStmt;
   2199 
   2200       // If the substmt parsed correctly, build the AST node.
   2201       if (!Stmt.isInvalid()) {
   2202         Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
   2203       } else {
   2204         Actions.ActOnStmtExprError();
   2205       }
   2206     }
   2207   } else if (ExprType >= CompoundLiteral && BridgeCast) {
   2208     tok::TokenKind tokenKind = Tok.getKind();
   2209     SourceLocation BridgeKeywordLoc = ConsumeToken();
   2210 
   2211     // Parse an Objective-C ARC ownership cast expression.
   2212     ObjCBridgeCastKind Kind;
   2213     if (tokenKind == tok::kw___bridge)
   2214       Kind = OBC_Bridge;
   2215     else if (tokenKind == tok::kw___bridge_transfer)
   2216       Kind = OBC_BridgeTransfer;
   2217     else if (tokenKind == tok::kw___bridge_retained)
   2218       Kind = OBC_BridgeRetained;
   2219     else {
   2220       // As a hopefully temporary workaround, allow __bridge_retain as
   2221       // a synonym for __bridge_retained, but only in system headers.
   2222       assert(tokenKind == tok::kw___bridge_retain);
   2223       Kind = OBC_BridgeRetained;
   2224       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
   2225         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
   2226           << FixItHint::CreateReplacement(BridgeKeywordLoc,
   2227                                           "__bridge_retained");
   2228     }
   2229 
   2230     TypeResult Ty = ParseTypeName();
   2231     T.consumeClose();
   2232     ColonProtection.restore();
   2233     RParenLoc = T.getCloseLocation();
   2234     ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
   2235 
   2236     if (Ty.isInvalid() || SubExpr.isInvalid())
   2237       return ExprError();
   2238 
   2239     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
   2240                                         BridgeKeywordLoc, Ty.get(),
   2241                                         RParenLoc, SubExpr.get());
   2242   } else if (ExprType >= CompoundLiteral &&
   2243              isTypeIdInParens(isAmbiguousTypeId)) {
   2244 
   2245     // Otherwise, this is a compound literal expression or cast expression.
   2246 
   2247     // In C++, if the type-id is ambiguous we disambiguate based on context.
   2248     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
   2249     // in which case we should treat it as type-id.
   2250     // if stopIfCastExpr is false, we need to determine the context past the
   2251     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
   2252     if (isAmbiguousTypeId && !stopIfCastExpr) {
   2253       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
   2254                                                         ColonProtection);
   2255       RParenLoc = T.getCloseLocation();
   2256       return res;
   2257     }
   2258 
   2259     // Parse the type declarator.
   2260     DeclSpec DS(AttrFactory);
   2261     ParseSpecifierQualifierList(DS);
   2262     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   2263     ParseDeclarator(DeclaratorInfo);
   2264 
   2265     // If our type is followed by an identifier and either ':' or ']', then
   2266     // this is probably an Objective-C message send where the leading '[' is
   2267     // missing. Recover as if that were the case.
   2268     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
   2269         !InMessageExpression && getLangOpts().ObjC1 &&
   2270         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
   2271       TypeResult Ty;
   2272       {
   2273         InMessageExpressionRAIIObject InMessage(*this, false);
   2274         Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
   2275       }
   2276       Result = ParseObjCMessageExpressionBody(SourceLocation(),
   2277                                               SourceLocation(),
   2278                                               Ty.get(), nullptr);
   2279     } else {
   2280       // Match the ')'.
   2281       T.consumeClose();
   2282       ColonProtection.restore();
   2283       RParenLoc = T.getCloseLocation();
   2284       if (Tok.is(tok::l_brace)) {
   2285         ExprType = CompoundLiteral;
   2286         TypeResult Ty;
   2287         {
   2288           InMessageExpressionRAIIObject InMessage(*this, false);
   2289           Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
   2290         }
   2291         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
   2292       }
   2293 
   2294       if (ExprType == CastExpr) {
   2295         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
   2296 
   2297         if (DeclaratorInfo.isInvalidType())
   2298           return ExprError();
   2299 
   2300         // Note that this doesn't parse the subsequent cast-expression, it just
   2301         // returns the parsed type to the callee.
   2302         if (stopIfCastExpr) {
   2303           TypeResult Ty;
   2304           {
   2305             InMessageExpressionRAIIObject InMessage(*this, false);
   2306             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
   2307           }
   2308           CastTy = Ty.get();
   2309           return ExprResult();
   2310         }
   2311 
   2312         // Reject the cast of super idiom in ObjC.
   2313         if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
   2314             Tok.getIdentifierInfo() == Ident_super &&
   2315             getCurScope()->isInObjcMethodScope() &&
   2316             GetLookAheadToken(1).isNot(tok::period)) {
   2317           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
   2318             << SourceRange(OpenLoc, RParenLoc);
   2319           return ExprError();
   2320         }
   2321 
   2322         // Parse the cast-expression that follows it next.
   2323         // TODO: For cast expression with CastTy.
   2324         Result = ParseCastExpression(/*isUnaryExpression=*/false,
   2325                                      /*isAddressOfOperand=*/false,
   2326                                      /*isTypeCast=*/IsTypeCast);
   2327         if (!Result.isInvalid()) {
   2328           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
   2329                                          DeclaratorInfo, CastTy,
   2330                                          RParenLoc, Result.get());
   2331         }
   2332         return Result;
   2333       }
   2334 
   2335       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
   2336       return ExprError();
   2337     }
   2338   } else if (Tok.is(tok::ellipsis) &&
   2339              isFoldOperator(NextToken().getKind())) {
   2340     return ParseFoldExpression(ExprResult(), T);
   2341   } else if (isTypeCast) {
   2342     // Parse the expression-list.
   2343     InMessageExpressionRAIIObject InMessage(*this, false);
   2344 
   2345     ExprVector ArgExprs;
   2346     CommaLocsTy CommaLocs;
   2347 
   2348     if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
   2349       // FIXME: If we ever support comma expressions as operands to
   2350       // fold-expressions, we'll need to allow multiple ArgExprs here.
   2351       if (ArgExprs.size() == 1 && isFoldOperator(Tok.getKind()) &&
   2352           NextToken().is(tok::ellipsis))
   2353         return ParseFoldExpression(Result, T);
   2354 
   2355       ExprType = SimpleExpr;
   2356       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
   2357                                           ArgExprs);
   2358     }
   2359   } else {
   2360     InMessageExpressionRAIIObject InMessage(*this, false);
   2361 
   2362     Result = ParseExpression(MaybeTypeCast);
   2363     if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
   2364       // Correct typos in non-C++ code earlier so that implicit-cast-like
   2365       // expressions are parsed correctly.
   2366       Result = Actions.CorrectDelayedTyposInExpr(Result);
   2367     }
   2368     ExprType = SimpleExpr;
   2369 
   2370     if (isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis))
   2371       return ParseFoldExpression(Result, T);
   2372 
   2373     // Don't build a paren expression unless we actually match a ')'.
   2374     if (!Result.isInvalid() && Tok.is(tok::r_paren))
   2375       Result =
   2376           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
   2377   }
   2378 
   2379   // Match the ')'.
   2380   if (Result.isInvalid()) {
   2381     SkipUntil(tok::r_paren, StopAtSemi);
   2382     return ExprError();
   2383   }
   2384 
   2385   T.consumeClose();
   2386   RParenLoc = T.getCloseLocation();
   2387   return Result;
   2388 }
   2389 
   2390 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
   2391 /// and we are at the left brace.
   2392 ///
   2393 /// \verbatim
   2394 ///       postfix-expression: [C99 6.5.2]
   2395 ///         '(' type-name ')' '{' initializer-list '}'
   2396 ///         '(' type-name ')' '{' initializer-list ',' '}'
   2397 /// \endverbatim
   2398 ExprResult
   2399 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
   2400                                        SourceLocation LParenLoc,
   2401                                        SourceLocation RParenLoc) {
   2402   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
   2403   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
   2404     Diag(LParenLoc, diag::ext_c99_compound_literal);
   2405   ExprResult Result = ParseInitializer();
   2406   if (!Result.isInvalid() && Ty)
   2407     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
   2408   return Result;
   2409 }
   2410 
   2411 /// ParseStringLiteralExpression - This handles the various token types that
   2412 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
   2413 /// translation phase #6].
   2414 ///
   2415 /// \verbatim
   2416 ///       primary-expression: [C99 6.5.1]
   2417 ///         string-literal
   2418 /// \verbatim
   2419 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
   2420   assert(isTokenStringLiteral() && "Not a string literal!");
   2421 
   2422   // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
   2423   // considered to be strings for concatenation purposes.
   2424   SmallVector<Token, 4> StringToks;
   2425 
   2426   do {
   2427     StringToks.push_back(Tok);
   2428     ConsumeStringToken();
   2429   } while (isTokenStringLiteral());
   2430 
   2431   // Pass the set of string tokens, ready for concatenation, to the actions.
   2432   return Actions.ActOnStringLiteral(StringToks,
   2433                                     AllowUserDefinedLiteral ? getCurScope()
   2434                                                             : nullptr);
   2435 }
   2436 
   2437 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
   2438 /// [C11 6.5.1.1].
   2439 ///
   2440 /// \verbatim
   2441 ///    generic-selection:
   2442 ///           _Generic ( assignment-expression , generic-assoc-list )
   2443 ///    generic-assoc-list:
   2444 ///           generic-association
   2445 ///           generic-assoc-list , generic-association
   2446 ///    generic-association:
   2447 ///           type-name : assignment-expression
   2448 ///           default : assignment-expression
   2449 /// \endverbatim
   2450 ExprResult Parser::ParseGenericSelectionExpression() {
   2451   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
   2452   SourceLocation KeyLoc = ConsumeToken();
   2453 
   2454   if (!getLangOpts().C11)
   2455     Diag(KeyLoc, diag::ext_c11_generic_selection);
   2456 
   2457   BalancedDelimiterTracker T(*this, tok::l_paren);
   2458   if (T.expectAndConsume())
   2459     return ExprError();
   2460 
   2461   ExprResult ControllingExpr;
   2462   {
   2463     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
   2464     // not evaluated."
   2465     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
   2466     ControllingExpr =
   2467         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
   2468     if (ControllingExpr.isInvalid()) {
   2469       SkipUntil(tok::r_paren, StopAtSemi);
   2470       return ExprError();
   2471     }
   2472   }
   2473 
   2474   if (ExpectAndConsume(tok::comma)) {
   2475     SkipUntil(tok::r_paren, StopAtSemi);
   2476     return ExprError();
   2477   }
   2478 
   2479   SourceLocation DefaultLoc;
   2480   TypeVector Types;
   2481   ExprVector Exprs;
   2482   do {
   2483     ParsedType Ty;
   2484     if (Tok.is(tok::kw_default)) {
   2485       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
   2486       // generic association."
   2487       if (!DefaultLoc.isInvalid()) {
   2488         Diag(Tok, diag::err_duplicate_default_assoc);
   2489         Diag(DefaultLoc, diag::note_previous_default_assoc);
   2490         SkipUntil(tok::r_paren, StopAtSemi);
   2491         return ExprError();
   2492       }
   2493       DefaultLoc = ConsumeToken();
   2494       Ty = ParsedType();
   2495     } else {
   2496       ColonProtectionRAIIObject X(*this);
   2497       TypeResult TR = ParseTypeName();
   2498       if (TR.isInvalid()) {
   2499         SkipUntil(tok::r_paren, StopAtSemi);
   2500         return ExprError();
   2501       }
   2502       Ty = TR.get();
   2503     }
   2504     Types.push_back(Ty);
   2505 
   2506     if (ExpectAndConsume(tok::colon)) {
   2507       SkipUntil(tok::r_paren, StopAtSemi);
   2508       return ExprError();
   2509     }
   2510 
   2511     // FIXME: These expressions should be parsed in a potentially potentially
   2512     // evaluated context.
   2513     ExprResult ER(
   2514         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
   2515     if (ER.isInvalid()) {
   2516       SkipUntil(tok::r_paren, StopAtSemi);
   2517       return ExprError();
   2518     }
   2519     Exprs.push_back(ER.get());
   2520   } while (TryConsumeToken(tok::comma));
   2521 
   2522   T.consumeClose();
   2523   if (T.getCloseLocation().isInvalid())
   2524     return ExprError();
   2525 
   2526   return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
   2527                                            T.getCloseLocation(),
   2528                                            ControllingExpr.get(),
   2529                                            Types, Exprs);
   2530 }
   2531 
   2532 /// \brief Parse A C++1z fold-expression after the opening paren and optional
   2533 /// left-hand-side expression.
   2534 ///
   2535 /// \verbatim
   2536 ///   fold-expression:
   2537 ///       ( cast-expression fold-operator ... )
   2538 ///       ( ... fold-operator cast-expression )
   2539 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
   2540 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
   2541                                        BalancedDelimiterTracker &T) {
   2542   if (LHS.isInvalid()) {
   2543     T.skipToEnd();
   2544     return true;
   2545   }
   2546 
   2547   tok::TokenKind Kind = tok::unknown;
   2548   SourceLocation FirstOpLoc;
   2549   if (LHS.isUsable()) {
   2550     Kind = Tok.getKind();
   2551     assert(isFoldOperator(Kind) && "missing fold-operator");
   2552     FirstOpLoc = ConsumeToken();
   2553   }
   2554 
   2555   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
   2556   SourceLocation EllipsisLoc = ConsumeToken();
   2557 
   2558   ExprResult RHS;
   2559   if (Tok.isNot(tok::r_paren)) {
   2560     if (!isFoldOperator(Tok.getKind()))
   2561       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
   2562 
   2563     if (Kind != tok::unknown && Tok.getKind() != Kind)
   2564       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
   2565         << SourceRange(FirstOpLoc);
   2566     Kind = Tok.getKind();
   2567     ConsumeToken();
   2568 
   2569     RHS = ParseExpression();
   2570     if (RHS.isInvalid()) {
   2571       T.skipToEnd();
   2572       return true;
   2573     }
   2574   }
   2575 
   2576   Diag(EllipsisLoc, getLangOpts().CPlusPlus1z
   2577                         ? diag::warn_cxx14_compat_fold_expression
   2578                         : diag::ext_fold_expression);
   2579 
   2580   T.consumeClose();
   2581   return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
   2582                                   EllipsisLoc, RHS.get(), T.getCloseLocation());
   2583 }
   2584 
   2585 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
   2586 ///
   2587 /// \verbatim
   2588 ///       argument-expression-list:
   2589 ///         assignment-expression
   2590 ///         argument-expression-list , assignment-expression
   2591 ///
   2592 /// [C++] expression-list:
   2593 /// [C++]   assignment-expression
   2594 /// [C++]   expression-list , assignment-expression
   2595 ///
   2596 /// [C++0x] expression-list:
   2597 /// [C++0x]   initializer-list
   2598 ///
   2599 /// [C++0x] initializer-list
   2600 /// [C++0x]   initializer-clause ...[opt]
   2601 /// [C++0x]   initializer-list , initializer-clause ...[opt]
   2602 ///
   2603 /// [C++0x] initializer-clause:
   2604 /// [C++0x]   assignment-expression
   2605 /// [C++0x]   braced-init-list
   2606 /// \endverbatim
   2607 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
   2608                                  SmallVectorImpl<SourceLocation> &CommaLocs,
   2609                                  std::function<void()> Completer) {
   2610   bool SawError = false;
   2611   while (1) {
   2612     if (Tok.is(tok::code_completion)) {
   2613       if (Completer)
   2614         Completer();
   2615       else
   2616         Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
   2617       cutOffParsing();
   2618       return true;
   2619     }
   2620 
   2621     ExprResult Expr;
   2622     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
   2623       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   2624       Expr = ParseBraceInitializer();
   2625     } else
   2626       Expr = ParseAssignmentExpression();
   2627 
   2628     if (Tok.is(tok::ellipsis))
   2629       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
   2630     if (Expr.isInvalid()) {
   2631       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
   2632       SawError = true;
   2633     } else {
   2634       Exprs.push_back(Expr.get());
   2635     }
   2636 
   2637     if (Tok.isNot(tok::comma))
   2638       break;
   2639     // Move to the next argument, remember where the comma was.
   2640     CommaLocs.push_back(ConsumeToken());
   2641   }
   2642   if (SawError) {
   2643     // Ensure typos get diagnosed when errors were encountered while parsing the
   2644     // expression list.
   2645     for (auto &E : Exprs) {
   2646       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
   2647       if (Expr.isUsable()) E = Expr.get();
   2648     }
   2649   }
   2650   return SawError;
   2651 }
   2652 
   2653 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
   2654 /// used for misc language extensions.
   2655 ///
   2656 /// \verbatim
   2657 ///       simple-expression-list:
   2658 ///         assignment-expression
   2659 ///         simple-expression-list , assignment-expression
   2660 /// \endverbatim
   2661 bool
   2662 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
   2663                                   SmallVectorImpl<SourceLocation> &CommaLocs) {
   2664   while (1) {
   2665     ExprResult Expr = ParseAssignmentExpression();
   2666     if (Expr.isInvalid())
   2667       return true;
   2668 
   2669     Exprs.push_back(Expr.get());
   2670 
   2671     if (Tok.isNot(tok::comma))
   2672       return false;
   2673 
   2674     // Move to the next argument, remember where the comma was.
   2675     CommaLocs.push_back(ConsumeToken());
   2676   }
   2677 }
   2678 
   2679 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
   2680 ///
   2681 /// \verbatim
   2682 /// [clang] block-id:
   2683 /// [clang]   specifier-qualifier-list block-declarator
   2684 /// \endverbatim
   2685 void Parser::ParseBlockId(SourceLocation CaretLoc) {
   2686   if (Tok.is(tok::code_completion)) {
   2687     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
   2688     return cutOffParsing();
   2689   }
   2690 
   2691   // Parse the specifier-qualifier-list piece.
   2692   DeclSpec DS(AttrFactory);
   2693   ParseSpecifierQualifierList(DS);
   2694 
   2695   // Parse the block-declarator.
   2696   Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
   2697   ParseDeclarator(DeclaratorInfo);
   2698 
   2699   MaybeParseGNUAttributes(DeclaratorInfo);
   2700 
   2701   // Inform sema that we are starting a block.
   2702   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
   2703 }
   2704 
   2705 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
   2706 /// like ^(int x){ return x+1; }
   2707 ///
   2708 /// \verbatim
   2709 ///         block-literal:
   2710 /// [clang]   '^' block-args[opt] compound-statement
   2711 /// [clang]   '^' block-id compound-statement
   2712 /// [clang] block-args:
   2713 /// [clang]   '(' parameter-list ')'
   2714 /// \endverbatim
   2715 ExprResult Parser::ParseBlockLiteralExpression() {
   2716   assert(Tok.is(tok::caret) && "block literal starts with ^");
   2717   SourceLocation CaretLoc = ConsumeToken();
   2718 
   2719   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
   2720                                 "block literal parsing");
   2721 
   2722   // Enter a scope to hold everything within the block.  This includes the
   2723   // argument decls, decls within the compound expression, etc.  This also
   2724   // allows determining whether a variable reference inside the block is
   2725   // within or outside of the block.
   2726   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
   2727                               Scope::DeclScope);
   2728 
   2729   // Inform sema that we are starting a block.
   2730   Actions.ActOnBlockStart(CaretLoc, getCurScope());
   2731 
   2732   // Parse the return type if present.
   2733   DeclSpec DS(AttrFactory);
   2734   Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
   2735   // FIXME: Since the return type isn't actually parsed, it can't be used to
   2736   // fill ParamInfo with an initial valid range, so do it manually.
   2737   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
   2738 
   2739   // If this block has arguments, parse them.  There is no ambiguity here with
   2740   // the expression case, because the expression case requires a parameter list.
   2741   if (Tok.is(tok::l_paren)) {
   2742     ParseParenDeclarator(ParamInfo);
   2743     // Parse the pieces after the identifier as if we had "int(...)".
   2744     // SetIdentifier sets the source range end, but in this case we're past
   2745     // that location.
   2746     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
   2747     ParamInfo.SetIdentifier(nullptr, CaretLoc);
   2748     ParamInfo.SetRangeEnd(Tmp);
   2749     if (ParamInfo.isInvalidType()) {
   2750       // If there was an error parsing the arguments, they may have
   2751       // tried to use ^(x+y) which requires an argument list.  Just
   2752       // skip the whole block literal.
   2753       Actions.ActOnBlockError(CaretLoc, getCurScope());
   2754       return ExprError();
   2755     }
   2756 
   2757     MaybeParseGNUAttributes(ParamInfo);
   2758 
   2759     // Inform sema that we are starting a block.
   2760     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
   2761   } else if (!Tok.is(tok::l_brace)) {
   2762     ParseBlockId(CaretLoc);
   2763   } else {
   2764     // Otherwise, pretend we saw (void).
   2765     ParsedAttributes attrs(AttrFactory);
   2766     SourceLocation NoLoc;
   2767     ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
   2768                                              /*IsAmbiguous=*/false,
   2769                                              /*RParenLoc=*/NoLoc,
   2770                                              /*ArgInfo=*/nullptr,
   2771                                              /*NumArgs=*/0,
   2772                                              /*EllipsisLoc=*/NoLoc,
   2773                                              /*RParenLoc=*/NoLoc,
   2774                                              /*TypeQuals=*/0,
   2775                                              /*RefQualifierIsLvalueRef=*/true,
   2776                                              /*RefQualifierLoc=*/NoLoc,
   2777                                              /*ConstQualifierLoc=*/NoLoc,
   2778                                              /*VolatileQualifierLoc=*/NoLoc,
   2779                                              /*RestrictQualifierLoc=*/NoLoc,
   2780                                              /*MutableLoc=*/NoLoc,
   2781                                              EST_None,
   2782                                              /*ESpecRange=*/SourceRange(),
   2783                                              /*Exceptions=*/nullptr,
   2784                                              /*ExceptionRanges=*/nullptr,
   2785                                              /*NumExceptions=*/0,
   2786                                              /*NoexceptExpr=*/nullptr,
   2787                                              /*ExceptionSpecTokens=*/nullptr,
   2788                                              CaretLoc, CaretLoc,
   2789                                              ParamInfo),
   2790                           attrs, CaretLoc);
   2791 
   2792     MaybeParseGNUAttributes(ParamInfo);
   2793 
   2794     // Inform sema that we are starting a block.
   2795     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
   2796   }
   2797 
   2798 
   2799   ExprResult Result(true);
   2800   if (!Tok.is(tok::l_brace)) {
   2801     // Saw something like: ^expr
   2802     Diag(Tok, diag::err_expected_expression);
   2803     Actions.ActOnBlockError(CaretLoc, getCurScope());
   2804     return ExprError();
   2805   }
   2806 
   2807   StmtResult Stmt(ParseCompoundStatementBody());
   2808   BlockScope.Exit();
   2809   if (!Stmt.isInvalid())
   2810     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
   2811   else
   2812     Actions.ActOnBlockError(CaretLoc, getCurScope());
   2813   return Result;
   2814 }
   2815 
   2816 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
   2817 ///
   2818 ///         '__objc_yes'
   2819 ///         '__objc_no'
   2820 ExprResult Parser::ParseObjCBoolLiteral() {
   2821   tok::TokenKind Kind = Tok.getKind();
   2822   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
   2823 }
   2824