Home | History | Annotate | Download | only in Parse
      1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements the Declaration portions of the Parser interfaces.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Parse/Parser.h"
     15 #include "RAIIObjectsForParser.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/DeclTemplate.h"
     18 #include "clang/Basic/AddressSpaces.h"
     19 #include "clang/Basic/Attributes.h"
     20 #include "clang/Basic/CharInfo.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "clang/Parse/ParseDiagnostic.h"
     23 #include "clang/Sema/Lookup.h"
     24 #include "clang/Sema/ParsedTemplate.h"
     25 #include "clang/Sema/PrettyDeclStackTrace.h"
     26 #include "clang/Sema/Scope.h"
     27 #include "clang/Sema/SemaDiagnostic.h"
     28 #include "llvm/ADT/SmallSet.h"
     29 #include "llvm/ADT/SmallString.h"
     30 #include "llvm/ADT/StringSwitch.h"
     31 
     32 using namespace clang;
     33 
     34 //===----------------------------------------------------------------------===//
     35 // C99 6.7: Declarations.
     36 //===----------------------------------------------------------------------===//
     37 
     38 /// ParseTypeName
     39 ///       type-name: [C99 6.7.6]
     40 ///         specifier-qualifier-list abstract-declarator[opt]
     41 ///
     42 /// Called type-id in C++.
     43 TypeResult Parser::ParseTypeName(SourceRange *Range,
     44                                  Declarator::TheContext Context,
     45                                  AccessSpecifier AS,
     46                                  Decl **OwnedType,
     47                                  ParsedAttributes *Attrs) {
     48   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
     49   if (DSC == DSC_normal)
     50     DSC = DSC_type_specifier;
     51 
     52   // Parse the common declaration-specifiers piece.
     53   DeclSpec DS(AttrFactory);
     54   if (Attrs)
     55     DS.addAttributes(Attrs->getList());
     56   ParseSpecifierQualifierList(DS, AS, DSC);
     57   if (OwnedType)
     58     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
     59 
     60   // Parse the abstract-declarator, if present.
     61   Declarator DeclaratorInfo(DS, Context);
     62   ParseDeclarator(DeclaratorInfo);
     63   if (Range)
     64     *Range = DeclaratorInfo.getSourceRange();
     65 
     66   if (DeclaratorInfo.isInvalidType())
     67     return true;
     68 
     69   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
     70 }
     71 
     72 /// isAttributeLateParsed - Return true if the attribute has arguments that
     73 /// require late parsing.
     74 static bool isAttributeLateParsed(const IdentifierInfo &II) {
     75 #define CLANG_ATTR_LATE_PARSED_LIST
     76     return llvm::StringSwitch<bool>(II.getName())
     77 #include "clang/Parse/AttrParserStringSwitches.inc"
     78         .Default(false);
     79 #undef CLANG_ATTR_LATE_PARSED_LIST
     80 }
     81 
     82 /// ParseGNUAttributes - Parse a non-empty attributes list.
     83 ///
     84 /// [GNU] attributes:
     85 ///         attribute
     86 ///         attributes attribute
     87 ///
     88 /// [GNU]  attribute:
     89 ///          '__attribute__' '(' '(' attribute-list ')' ')'
     90 ///
     91 /// [GNU]  attribute-list:
     92 ///          attrib
     93 ///          attribute_list ',' attrib
     94 ///
     95 /// [GNU]  attrib:
     96 ///          empty
     97 ///          attrib-name
     98 ///          attrib-name '(' identifier ')'
     99 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
    100 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
    101 ///
    102 /// [GNU]  attrib-name:
    103 ///          identifier
    104 ///          typespec
    105 ///          typequal
    106 ///          storageclass
    107 ///
    108 /// Whether an attribute takes an 'identifier' is determined by the
    109 /// attrib-name. GCC's behavior here is not worth imitating:
    110 ///
    111 ///  * In C mode, if the attribute argument list starts with an identifier
    112 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
    113 ///    a type, it is parsed as an identifier. If the attribute actually
    114 ///    wanted an expression, it's out of luck (but it turns out that no
    115 ///    attributes work that way, because C constant expressions are very
    116 ///    limited).
    117 ///  * In C++ mode, if the attribute argument list starts with an identifier,
    118 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
    119 ///    At block scope, any additional tokens between the identifier and the
    120 ///    ',' or ')' are ignored, otherwise they produce a parse error.
    121 ///
    122 /// We follow the C++ model, but don't allow junk after the identifier.
    123 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
    124                                 SourceLocation *endLoc,
    125                                 LateParsedAttrList *LateAttrs,
    126                                 Declarator *D) {
    127   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
    128 
    129   while (Tok.is(tok::kw___attribute)) {
    130     ConsumeToken();
    131     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
    132                          "attribute")) {
    133       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
    134       return;
    135     }
    136     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
    137       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
    138       return;
    139     }
    140     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
    141     while (true) {
    142       // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
    143       if (TryConsumeToken(tok::comma))
    144         continue;
    145 
    146       // Expect an identifier or declaration specifier (const, int, etc.)
    147       if (Tok.isAnnotation())
    148         break;
    149       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    150       if (!AttrName)
    151         break;
    152 
    153       SourceLocation AttrNameLoc = ConsumeToken();
    154 
    155       if (Tok.isNot(tok::l_paren)) {
    156         attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    157                      AttributeList::AS_GNU);
    158         continue;
    159       }
    160 
    161       // Handle "parameterized" attributes
    162       if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
    163         ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
    164                               SourceLocation(), AttributeList::AS_GNU, D);
    165         continue;
    166       }
    167 
    168       // Handle attributes with arguments that require late parsing.
    169       LateParsedAttribute *LA =
    170           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
    171       LateAttrs->push_back(LA);
    172 
    173       // Attributes in a class are parsed at the end of the class, along
    174       // with other late-parsed declarations.
    175       if (!ClassStack.empty() && !LateAttrs->parseSoon())
    176         getCurrentClass().LateParsedDeclarations.push_back(LA);
    177 
    178       // consume everything up to and including the matching right parens
    179       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
    180 
    181       Token Eof;
    182       Eof.startToken();
    183       Eof.setLocation(Tok.getLocation());
    184       LA->Toks.push_back(Eof);
    185     }
    186 
    187     if (ExpectAndConsume(tok::r_paren))
    188       SkipUntil(tok::r_paren, StopAtSemi);
    189     SourceLocation Loc = Tok.getLocation();
    190     if (ExpectAndConsume(tok::r_paren))
    191       SkipUntil(tok::r_paren, StopAtSemi);
    192     if (endLoc)
    193       *endLoc = Loc;
    194   }
    195 }
    196 
    197 /// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
    198 static StringRef normalizeAttrName(StringRef Name) {
    199   if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
    200     Name = Name.drop_front(2).drop_back(2);
    201   return Name;
    202 }
    203 
    204 /// \brief Determine whether the given attribute has an identifier argument.
    205 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
    206 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
    207   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
    208 #include "clang/Parse/AttrParserStringSwitches.inc"
    209            .Default(false);
    210 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
    211 }
    212 
    213 /// \brief Determine whether the given attribute parses a type argument.
    214 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
    215 #define CLANG_ATTR_TYPE_ARG_LIST
    216   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
    217 #include "clang/Parse/AttrParserStringSwitches.inc"
    218            .Default(false);
    219 #undef CLANG_ATTR_TYPE_ARG_LIST
    220 }
    221 
    222 /// \brief Determine whether the given attribute requires parsing its arguments
    223 /// in an unevaluated context or not.
    224 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
    225 #define CLANG_ATTR_ARG_CONTEXT_LIST
    226   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
    227 #include "clang/Parse/AttrParserStringSwitches.inc"
    228            .Default(false);
    229 #undef CLANG_ATTR_ARG_CONTEXT_LIST
    230 }
    231 
    232 IdentifierLoc *Parser::ParseIdentifierLoc() {
    233   assert(Tok.is(tok::identifier) && "expected an identifier");
    234   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
    235                                             Tok.getLocation(),
    236                                             Tok.getIdentifierInfo());
    237   ConsumeToken();
    238   return IL;
    239 }
    240 
    241 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
    242                                        SourceLocation AttrNameLoc,
    243                                        ParsedAttributes &Attrs,
    244                                        SourceLocation *EndLoc,
    245                                        IdentifierInfo *ScopeName,
    246                                        SourceLocation ScopeLoc,
    247                                        AttributeList::Syntax Syntax) {
    248   BalancedDelimiterTracker Parens(*this, tok::l_paren);
    249   Parens.consumeOpen();
    250 
    251   TypeResult T;
    252   if (Tok.isNot(tok::r_paren))
    253     T = ParseTypeName();
    254 
    255   if (Parens.consumeClose())
    256     return;
    257 
    258   if (T.isInvalid())
    259     return;
    260 
    261   if (T.isUsable())
    262     Attrs.addNewTypeAttr(&AttrName,
    263                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
    264                          ScopeName, ScopeLoc, T.get(), Syntax);
    265   else
    266     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
    267                  ScopeName, ScopeLoc, nullptr, 0, Syntax);
    268 }
    269 
    270 unsigned Parser::ParseAttributeArgsCommon(
    271     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
    272     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
    273     SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
    274   // Ignore the left paren location for now.
    275   ConsumeParen();
    276 
    277   ArgsVector ArgExprs;
    278   if (Tok.is(tok::identifier)) {
    279     // If this attribute wants an 'identifier' argument, make it so.
    280     bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
    281     AttributeList::Kind AttrKind =
    282         AttributeList::getKind(AttrName, ScopeName, Syntax);
    283 
    284     // If we don't know how to parse this attribute, but this is the only
    285     // token in this argument, assume it's meant to be an identifier.
    286     if (AttrKind == AttributeList::UnknownAttribute ||
    287         AttrKind == AttributeList::IgnoredAttribute) {
    288       const Token &Next = NextToken();
    289       IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
    290     }
    291 
    292     if (IsIdentifierArg)
    293       ArgExprs.push_back(ParseIdentifierLoc());
    294   }
    295 
    296   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
    297     // Eat the comma.
    298     if (!ArgExprs.empty())
    299       ConsumeToken();
    300 
    301     // Parse the non-empty comma-separated list of expressions.
    302     do {
    303       std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
    304       if (attributeParsedArgsUnevaluated(*AttrName))
    305         Unevaluated.reset(
    306             new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
    307 
    308       ExprResult ArgExpr(
    309           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
    310       if (ArgExpr.isInvalid()) {
    311         SkipUntil(tok::r_paren, StopAtSemi);
    312         return 0;
    313       }
    314       ArgExprs.push_back(ArgExpr.get());
    315       // Eat the comma, move to the next argument
    316     } while (TryConsumeToken(tok::comma));
    317   }
    318 
    319   SourceLocation RParen = Tok.getLocation();
    320   if (!ExpectAndConsume(tok::r_paren)) {
    321     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
    322     Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
    323                  ArgExprs.data(), ArgExprs.size(), Syntax);
    324   }
    325 
    326   if (EndLoc)
    327     *EndLoc = RParen;
    328 
    329   return static_cast<unsigned>(ArgExprs.size());
    330 }
    331 
    332 /// Parse the arguments to a parameterized GNU attribute or
    333 /// a C++11 attribute in "gnu" namespace.
    334 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
    335                                    SourceLocation AttrNameLoc,
    336                                    ParsedAttributes &Attrs,
    337                                    SourceLocation *EndLoc,
    338                                    IdentifierInfo *ScopeName,
    339                                    SourceLocation ScopeLoc,
    340                                    AttributeList::Syntax Syntax,
    341                                    Declarator *D) {
    342 
    343   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
    344 
    345   AttributeList::Kind AttrKind =
    346       AttributeList::getKind(AttrName, ScopeName, Syntax);
    347 
    348   if (AttrKind == AttributeList::AT_Availability) {
    349     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
    350                                ScopeLoc, Syntax);
    351     return;
    352   } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
    353     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
    354                                     ScopeName, ScopeLoc, Syntax);
    355     return;
    356   } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
    357     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
    358                                      ScopeName, ScopeLoc, Syntax);
    359     return;
    360   } else if (attributeIsTypeArgAttr(*AttrName)) {
    361     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
    362                               ScopeLoc, Syntax);
    363     return;
    364   }
    365 
    366   // These may refer to the function arguments, but need to be parsed early to
    367   // participate in determining whether it's a redeclaration.
    368   std::unique_ptr<ParseScope> PrototypeScope;
    369   if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
    370       D && D->isFunctionDeclarator()) {
    371     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
    372     PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
    373                                         Scope::FunctionDeclarationScope |
    374                                         Scope::DeclScope));
    375     for (unsigned i = 0; i != FTI.NumParams; ++i) {
    376       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
    377       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
    378     }
    379   }
    380 
    381   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
    382                            ScopeLoc, Syntax);
    383 }
    384 
    385 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
    386                                         SourceLocation AttrNameLoc,
    387                                         ParsedAttributes &Attrs) {
    388   // If the attribute isn't known, we will not attempt to parse any
    389   // arguments.
    390   if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
    391                     getTargetInfo(), getLangOpts())) {
    392     // Eat the left paren, then skip to the ending right paren.
    393     ConsumeParen();
    394     SkipUntil(tok::r_paren);
    395     return false;
    396   }
    397 
    398   SourceLocation OpenParenLoc = Tok.getLocation();
    399 
    400   if (AttrName->getName() == "property") {
    401     // The property declspec is more complex in that it can take one or two
    402     // assignment expressions as a parameter, but the lhs of the assignment
    403     // must be named get or put.
    404 
    405     BalancedDelimiterTracker T(*this, tok::l_paren);
    406     T.expectAndConsume(diag::err_expected_lparen_after,
    407                        AttrName->getNameStart(), tok::r_paren);
    408 
    409     enum AccessorKind {
    410       AK_Invalid = -1,
    411       AK_Put = 0,
    412       AK_Get = 1 // indices into AccessorNames
    413     };
    414     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
    415     bool HasInvalidAccessor = false;
    416 
    417     // Parse the accessor specifications.
    418     while (true) {
    419       // Stop if this doesn't look like an accessor spec.
    420       if (!Tok.is(tok::identifier)) {
    421         // If the user wrote a completely empty list, use a special diagnostic.
    422         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
    423             AccessorNames[AK_Put] == nullptr &&
    424             AccessorNames[AK_Get] == nullptr) {
    425           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
    426           break;
    427         }
    428 
    429         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
    430         break;
    431       }
    432 
    433       AccessorKind Kind;
    434       SourceLocation KindLoc = Tok.getLocation();
    435       StringRef KindStr = Tok.getIdentifierInfo()->getName();
    436       if (KindStr == "get") {
    437         Kind = AK_Get;
    438       } else if (KindStr == "put") {
    439         Kind = AK_Put;
    440 
    441         // Recover from the common mistake of using 'set' instead of 'put'.
    442       } else if (KindStr == "set") {
    443         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
    444             << FixItHint::CreateReplacement(KindLoc, "put");
    445         Kind = AK_Put;
    446 
    447         // Handle the mistake of forgetting the accessor kind by skipping
    448         // this accessor.
    449       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
    450         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
    451         ConsumeToken();
    452         HasInvalidAccessor = true;
    453         goto next_property_accessor;
    454 
    455         // Otherwise, complain about the unknown accessor kind.
    456       } else {
    457         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
    458         HasInvalidAccessor = true;
    459         Kind = AK_Invalid;
    460 
    461         // Try to keep parsing unless it doesn't look like an accessor spec.
    462         if (!NextToken().is(tok::equal))
    463           break;
    464       }
    465 
    466       // Consume the identifier.
    467       ConsumeToken();
    468 
    469       // Consume the '='.
    470       if (!TryConsumeToken(tok::equal)) {
    471         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
    472             << KindStr;
    473         break;
    474       }
    475 
    476       // Expect the method name.
    477       if (!Tok.is(tok::identifier)) {
    478         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
    479         break;
    480       }
    481 
    482       if (Kind == AK_Invalid) {
    483         // Just drop invalid accessors.
    484       } else if (AccessorNames[Kind] != nullptr) {
    485         // Complain about the repeated accessor, ignore it, and keep parsing.
    486         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
    487       } else {
    488         AccessorNames[Kind] = Tok.getIdentifierInfo();
    489       }
    490       ConsumeToken();
    491 
    492     next_property_accessor:
    493       // Keep processing accessors until we run out.
    494       if (TryConsumeToken(tok::comma))
    495         continue;
    496 
    497       // If we run into the ')', stop without consuming it.
    498       if (Tok.is(tok::r_paren))
    499         break;
    500 
    501       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
    502       break;
    503     }
    504 
    505     // Only add the property attribute if it was well-formed.
    506     if (!HasInvalidAccessor)
    507       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
    508                                AccessorNames[AK_Get], AccessorNames[AK_Put],
    509                                AttributeList::AS_Declspec);
    510     T.skipToEnd();
    511     return !HasInvalidAccessor;
    512   }
    513 
    514   unsigned NumArgs =
    515       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
    516                                SourceLocation(), AttributeList::AS_Declspec);
    517 
    518   // If this attribute's args were parsed, and it was expected to have
    519   // arguments but none were provided, emit a diagnostic.
    520   const AttributeList *Attr = Attrs.getList();
    521   if (Attr && Attr->getMaxArgs() && !NumArgs) {
    522     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
    523     return false;
    524   }
    525   return true;
    526 }
    527 
    528 /// [MS] decl-specifier:
    529 ///             __declspec ( extended-decl-modifier-seq )
    530 ///
    531 /// [MS] extended-decl-modifier-seq:
    532 ///             extended-decl-modifier[opt]
    533 ///             extended-decl-modifier extended-decl-modifier-seq
    534 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
    535                                      SourceLocation *End) {
    536   assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
    537   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
    538 
    539   while (Tok.is(tok::kw___declspec)) {
    540     ConsumeToken();
    541     BalancedDelimiterTracker T(*this, tok::l_paren);
    542     if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
    543                            tok::r_paren))
    544       return;
    545 
    546     // An empty declspec is perfectly legal and should not warn.  Additionally,
    547     // you can specify multiple attributes per declspec.
    548     while (Tok.isNot(tok::r_paren)) {
    549       // Attribute not present.
    550       if (TryConsumeToken(tok::comma))
    551         continue;
    552 
    553       // We expect either a well-known identifier or a generic string.  Anything
    554       // else is a malformed declspec.
    555       bool IsString = Tok.getKind() == tok::string_literal;
    556       if (!IsString && Tok.getKind() != tok::identifier &&
    557           Tok.getKind() != tok::kw_restrict) {
    558         Diag(Tok, diag::err_ms_declspec_type);
    559         T.skipToEnd();
    560         return;
    561       }
    562 
    563       IdentifierInfo *AttrName;
    564       SourceLocation AttrNameLoc;
    565       if (IsString) {
    566         SmallString<8> StrBuffer;
    567         bool Invalid = false;
    568         StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
    569         if (Invalid) {
    570           T.skipToEnd();
    571           return;
    572         }
    573         AttrName = PP.getIdentifierInfo(Str);
    574         AttrNameLoc = ConsumeStringToken();
    575       } else {
    576         AttrName = Tok.getIdentifierInfo();
    577         AttrNameLoc = ConsumeToken();
    578       }
    579 
    580       bool AttrHandled = false;
    581 
    582       // Parse attribute arguments.
    583       if (Tok.is(tok::l_paren))
    584         AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
    585       else if (AttrName->getName() == "property")
    586         // The property attribute must have an argument list.
    587         Diag(Tok.getLocation(), diag::err_expected_lparen_after)
    588             << AttrName->getName();
    589 
    590       if (!AttrHandled)
    591         Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    592                      AttributeList::AS_Declspec);
    593     }
    594     T.consumeClose();
    595     if (End)
    596       *End = T.getCloseLocation();
    597   }
    598 }
    599 
    600 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
    601   // Treat these like attributes
    602   while (true) {
    603     switch (Tok.getKind()) {
    604     case tok::kw___fastcall:
    605     case tok::kw___stdcall:
    606     case tok::kw___thiscall:
    607     case tok::kw___cdecl:
    608     case tok::kw___vectorcall:
    609     case tok::kw___ptr64:
    610     case tok::kw___w64:
    611     case tok::kw___ptr32:
    612     case tok::kw___unaligned:
    613     case tok::kw___sptr:
    614     case tok::kw___uptr: {
    615       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    616       SourceLocation AttrNameLoc = ConsumeToken();
    617       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    618                    AttributeList::AS_Keyword);
    619       break;
    620     }
    621     default:
    622       return;
    623     }
    624   }
    625 }
    626 
    627 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
    628   SourceLocation StartLoc = Tok.getLocation();
    629   SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
    630 
    631   if (EndLoc.isValid()) {
    632     SourceRange Range(StartLoc, EndLoc);
    633     Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
    634   }
    635 }
    636 
    637 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
    638   SourceLocation EndLoc;
    639 
    640   while (true) {
    641     switch (Tok.getKind()) {
    642     case tok::kw_const:
    643     case tok::kw_volatile:
    644     case tok::kw___fastcall:
    645     case tok::kw___stdcall:
    646     case tok::kw___thiscall:
    647     case tok::kw___cdecl:
    648     case tok::kw___vectorcall:
    649     case tok::kw___ptr32:
    650     case tok::kw___ptr64:
    651     case tok::kw___w64:
    652     case tok::kw___unaligned:
    653     case tok::kw___sptr:
    654     case tok::kw___uptr:
    655       EndLoc = ConsumeToken();
    656       break;
    657     default:
    658       return EndLoc;
    659     }
    660   }
    661 }
    662 
    663 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
    664   // Treat these like attributes
    665   while (Tok.is(tok::kw___pascal)) {
    666     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    667     SourceLocation AttrNameLoc = ConsumeToken();
    668     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    669                  AttributeList::AS_Keyword);
    670   }
    671 }
    672 
    673 void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
    674   // Treat these like attributes
    675   while (Tok.is(tok::kw___kernel)) {
    676     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    677     SourceLocation AttrNameLoc = ConsumeToken();
    678     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    679                  AttributeList::AS_Keyword);
    680   }
    681 }
    682 
    683 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
    684   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    685   SourceLocation AttrNameLoc = Tok.getLocation();
    686   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    687                AttributeList::AS_Keyword);
    688 }
    689 
    690 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
    691   // Treat these like attributes, even though they're type specifiers.
    692   while (true) {
    693     switch (Tok.getKind()) {
    694     case tok::kw__Nonnull:
    695     case tok::kw__Nullable:
    696     case tok::kw__Null_unspecified: {
    697       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    698       SourceLocation AttrNameLoc = ConsumeToken();
    699       if (!getLangOpts().ObjC1)
    700         Diag(AttrNameLoc, diag::ext_nullability)
    701           << AttrName;
    702       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    703                    AttributeList::AS_Keyword);
    704       break;
    705     }
    706     default:
    707       return;
    708     }
    709   }
    710 }
    711 
    712 static bool VersionNumberSeparator(const char Separator) {
    713   return (Separator == '.' || Separator == '_');
    714 }
    715 
    716 /// \brief Parse a version number.
    717 ///
    718 /// version:
    719 ///   simple-integer
    720 ///   simple-integer ',' simple-integer
    721 ///   simple-integer ',' simple-integer ',' simple-integer
    722 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
    723   Range = Tok.getLocation();
    724 
    725   if (!Tok.is(tok::numeric_constant)) {
    726     Diag(Tok, diag::err_expected_version);
    727     SkipUntil(tok::comma, tok::r_paren,
    728               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
    729     return VersionTuple();
    730   }
    731 
    732   // Parse the major (and possibly minor and subminor) versions, which
    733   // are stored in the numeric constant. We utilize a quirk of the
    734   // lexer, which is that it handles something like 1.2.3 as a single
    735   // numeric constant, rather than two separate tokens.
    736   SmallString<512> Buffer;
    737   Buffer.resize(Tok.getLength()+1);
    738   const char *ThisTokBegin = &Buffer[0];
    739 
    740   // Get the spelling of the token, which eliminates trigraphs, etc.
    741   bool Invalid = false;
    742   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
    743   if (Invalid)
    744     return VersionTuple();
    745 
    746   // Parse the major version.
    747   unsigned AfterMajor = 0;
    748   unsigned Major = 0;
    749   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
    750     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
    751     ++AfterMajor;
    752   }
    753 
    754   if (AfterMajor == 0) {
    755     Diag(Tok, diag::err_expected_version);
    756     SkipUntil(tok::comma, tok::r_paren,
    757               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
    758     return VersionTuple();
    759   }
    760 
    761   if (AfterMajor == ActualLength) {
    762     ConsumeToken();
    763 
    764     // We only had a single version component.
    765     if (Major == 0) {
    766       Diag(Tok, diag::err_zero_version);
    767       return VersionTuple();
    768     }
    769 
    770     return VersionTuple(Major);
    771   }
    772 
    773   const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
    774   if (!VersionNumberSeparator(AfterMajorSeparator)
    775       || (AfterMajor + 1 == ActualLength)) {
    776     Diag(Tok, diag::err_expected_version);
    777     SkipUntil(tok::comma, tok::r_paren,
    778               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
    779     return VersionTuple();
    780   }
    781 
    782   // Parse the minor version.
    783   unsigned AfterMinor = AfterMajor + 1;
    784   unsigned Minor = 0;
    785   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
    786     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
    787     ++AfterMinor;
    788   }
    789 
    790   if (AfterMinor == ActualLength) {
    791     ConsumeToken();
    792 
    793     // We had major.minor.
    794     if (Major == 0 && Minor == 0) {
    795       Diag(Tok, diag::err_zero_version);
    796       return VersionTuple();
    797     }
    798 
    799     return VersionTuple(Major, Minor, (AfterMajorSeparator == '_'));
    800   }
    801 
    802   const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
    803   // If what follows is not a '.' or '_', we have a problem.
    804   if (!VersionNumberSeparator(AfterMinorSeparator)) {
    805     Diag(Tok, diag::err_expected_version);
    806     SkipUntil(tok::comma, tok::r_paren,
    807               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
    808     return VersionTuple();
    809   }
    810 
    811   // Warn if separators, be it '.' or '_', do not match.
    812   if (AfterMajorSeparator != AfterMinorSeparator)
    813     Diag(Tok, diag::warn_expected_consistent_version_separator);
    814 
    815   // Parse the subminor version.
    816   unsigned AfterSubminor = AfterMinor + 1;
    817   unsigned Subminor = 0;
    818   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
    819     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
    820     ++AfterSubminor;
    821   }
    822 
    823   if (AfterSubminor != ActualLength) {
    824     Diag(Tok, diag::err_expected_version);
    825     SkipUntil(tok::comma, tok::r_paren,
    826               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
    827     return VersionTuple();
    828   }
    829   ConsumeToken();
    830   return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_'));
    831 }
    832 
    833 /// \brief Parse the contents of the "availability" attribute.
    834 ///
    835 /// availability-attribute:
    836 ///   'availability' '(' platform ',' version-arg-list, opt-message')'
    837 ///
    838 /// platform:
    839 ///   identifier
    840 ///
    841 /// version-arg-list:
    842 ///   version-arg
    843 ///   version-arg ',' version-arg-list
    844 ///
    845 /// version-arg:
    846 ///   'introduced' '=' version
    847 ///   'deprecated' '=' version
    848 ///   'obsoleted' = version
    849 ///   'unavailable'
    850 /// opt-message:
    851 ///   'message' '=' <string>
    852 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
    853                                         SourceLocation AvailabilityLoc,
    854                                         ParsedAttributes &attrs,
    855                                         SourceLocation *endLoc,
    856                                         IdentifierInfo *ScopeName,
    857                                         SourceLocation ScopeLoc,
    858                                         AttributeList::Syntax Syntax) {
    859   enum { Introduced, Deprecated, Obsoleted, Unknown };
    860   AvailabilityChange Changes[Unknown];
    861   ExprResult MessageExpr;
    862 
    863   // Opening '('.
    864   BalancedDelimiterTracker T(*this, tok::l_paren);
    865   if (T.consumeOpen()) {
    866     Diag(Tok, diag::err_expected) << tok::l_paren;
    867     return;
    868   }
    869 
    870   // Parse the platform name,
    871   if (Tok.isNot(tok::identifier)) {
    872     Diag(Tok, diag::err_availability_expected_platform);
    873     SkipUntil(tok::r_paren, StopAtSemi);
    874     return;
    875   }
    876   IdentifierLoc *Platform = ParseIdentifierLoc();
    877 
    878   // Parse the ',' following the platform name.
    879   if (ExpectAndConsume(tok::comma)) {
    880     SkipUntil(tok::r_paren, StopAtSemi);
    881     return;
    882   }
    883 
    884   // If we haven't grabbed the pointers for the identifiers
    885   // "introduced", "deprecated", and "obsoleted", do so now.
    886   if (!Ident_introduced) {
    887     Ident_introduced = PP.getIdentifierInfo("introduced");
    888     Ident_deprecated = PP.getIdentifierInfo("deprecated");
    889     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
    890     Ident_unavailable = PP.getIdentifierInfo("unavailable");
    891     Ident_message = PP.getIdentifierInfo("message");
    892   }
    893 
    894   // Parse the set of introductions/deprecations/removals.
    895   SourceLocation UnavailableLoc;
    896   do {
    897     if (Tok.isNot(tok::identifier)) {
    898       Diag(Tok, diag::err_availability_expected_change);
    899       SkipUntil(tok::r_paren, StopAtSemi);
    900       return;
    901     }
    902     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
    903     SourceLocation KeywordLoc = ConsumeToken();
    904 
    905     if (Keyword == Ident_unavailable) {
    906       if (UnavailableLoc.isValid()) {
    907         Diag(KeywordLoc, diag::err_availability_redundant)
    908           << Keyword << SourceRange(UnavailableLoc);
    909       }
    910       UnavailableLoc = KeywordLoc;
    911       continue;
    912     }
    913 
    914     if (Tok.isNot(tok::equal)) {
    915       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
    916       SkipUntil(tok::r_paren, StopAtSemi);
    917       return;
    918     }
    919     ConsumeToken();
    920     if (Keyword == Ident_message) {
    921       if (Tok.isNot(tok::string_literal)) {
    922         Diag(Tok, diag::err_expected_string_literal)
    923           << /*Source='availability attribute'*/2;
    924         SkipUntil(tok::r_paren, StopAtSemi);
    925         return;
    926       }
    927       MessageExpr = ParseStringLiteralExpression();
    928       // Also reject wide string literals.
    929       if (StringLiteral *MessageStringLiteral =
    930               cast_or_null<StringLiteral>(MessageExpr.get())) {
    931         if (MessageStringLiteral->getCharByteWidth() != 1) {
    932           Diag(MessageStringLiteral->getSourceRange().getBegin(),
    933                diag::err_expected_string_literal)
    934             << /*Source='availability attribute'*/ 2;
    935           SkipUntil(tok::r_paren, StopAtSemi);
    936           return;
    937         }
    938       }
    939       break;
    940     }
    941 
    942     // Special handling of 'NA' only when applied to introduced or
    943     // deprecated.
    944     if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
    945         Tok.is(tok::identifier)) {
    946       IdentifierInfo *NA = Tok.getIdentifierInfo();
    947       if (NA->getName() == "NA") {
    948         ConsumeToken();
    949         if (Keyword == Ident_introduced)
    950           UnavailableLoc = KeywordLoc;
    951         continue;
    952       }
    953     }
    954 
    955     SourceRange VersionRange;
    956     VersionTuple Version = ParseVersionTuple(VersionRange);
    957 
    958     if (Version.empty()) {
    959       SkipUntil(tok::r_paren, StopAtSemi);
    960       return;
    961     }
    962 
    963     unsigned Index;
    964     if (Keyword == Ident_introduced)
    965       Index = Introduced;
    966     else if (Keyword == Ident_deprecated)
    967       Index = Deprecated;
    968     else if (Keyword == Ident_obsoleted)
    969       Index = Obsoleted;
    970     else
    971       Index = Unknown;
    972 
    973     if (Index < Unknown) {
    974       if (!Changes[Index].KeywordLoc.isInvalid()) {
    975         Diag(KeywordLoc, diag::err_availability_redundant)
    976           << Keyword
    977           << SourceRange(Changes[Index].KeywordLoc,
    978                          Changes[Index].VersionRange.getEnd());
    979       }
    980 
    981       Changes[Index].KeywordLoc = KeywordLoc;
    982       Changes[Index].Version = Version;
    983       Changes[Index].VersionRange = VersionRange;
    984     } else {
    985       Diag(KeywordLoc, diag::err_availability_unknown_change)
    986         << Keyword << VersionRange;
    987     }
    988 
    989   } while (TryConsumeToken(tok::comma));
    990 
    991   // Closing ')'.
    992   if (T.consumeClose())
    993     return;
    994 
    995   if (endLoc)
    996     *endLoc = T.getCloseLocation();
    997 
    998   // The 'unavailable' availability cannot be combined with any other
    999   // availability changes. Make sure that hasn't happened.
   1000   if (UnavailableLoc.isValid()) {
   1001     bool Complained = false;
   1002     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
   1003       if (Changes[Index].KeywordLoc.isValid()) {
   1004         if (!Complained) {
   1005           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
   1006             << SourceRange(Changes[Index].KeywordLoc,
   1007                            Changes[Index].VersionRange.getEnd());
   1008           Complained = true;
   1009         }
   1010 
   1011         // Clear out the availability.
   1012         Changes[Index] = AvailabilityChange();
   1013       }
   1014     }
   1015   }
   1016 
   1017   // Record this attribute
   1018   attrs.addNew(&Availability,
   1019                SourceRange(AvailabilityLoc, T.getCloseLocation()),
   1020                ScopeName, ScopeLoc,
   1021                Platform,
   1022                Changes[Introduced],
   1023                Changes[Deprecated],
   1024                Changes[Obsoleted],
   1025                UnavailableLoc, MessageExpr.get(),
   1026                Syntax);
   1027 }
   1028 
   1029 /// \brief Parse the contents of the "objc_bridge_related" attribute.
   1030 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
   1031 /// related_class:
   1032 ///     Identifier
   1033 ///
   1034 /// opt-class_method:
   1035 ///     Identifier: | <empty>
   1036 ///
   1037 /// opt-instance_method:
   1038 ///     Identifier | <empty>
   1039 ///
   1040 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
   1041                                 SourceLocation ObjCBridgeRelatedLoc,
   1042                                 ParsedAttributes &attrs,
   1043                                 SourceLocation *endLoc,
   1044                                 IdentifierInfo *ScopeName,
   1045                                 SourceLocation ScopeLoc,
   1046                                 AttributeList::Syntax Syntax) {
   1047   // Opening '('.
   1048   BalancedDelimiterTracker T(*this, tok::l_paren);
   1049   if (T.consumeOpen()) {
   1050     Diag(Tok, diag::err_expected) << tok::l_paren;
   1051     return;
   1052   }
   1053 
   1054   // Parse the related class name.
   1055   if (Tok.isNot(tok::identifier)) {
   1056     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
   1057     SkipUntil(tok::r_paren, StopAtSemi);
   1058     return;
   1059   }
   1060   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
   1061   if (ExpectAndConsume(tok::comma)) {
   1062     SkipUntil(tok::r_paren, StopAtSemi);
   1063     return;
   1064   }
   1065 
   1066   // Parse optional class method name.
   1067   IdentifierLoc *ClassMethod = nullptr;
   1068   if (Tok.is(tok::identifier)) {
   1069     ClassMethod = ParseIdentifierLoc();
   1070     if (!TryConsumeToken(tok::colon)) {
   1071       Diag(Tok, diag::err_objcbridge_related_selector_name);
   1072       SkipUntil(tok::r_paren, StopAtSemi);
   1073       return;
   1074     }
   1075   }
   1076   if (!TryConsumeToken(tok::comma)) {
   1077     if (Tok.is(tok::colon))
   1078       Diag(Tok, diag::err_objcbridge_related_selector_name);
   1079     else
   1080       Diag(Tok, diag::err_expected) << tok::comma;
   1081     SkipUntil(tok::r_paren, StopAtSemi);
   1082     return;
   1083   }
   1084 
   1085   // Parse optional instance method name.
   1086   IdentifierLoc *InstanceMethod = nullptr;
   1087   if (Tok.is(tok::identifier))
   1088     InstanceMethod = ParseIdentifierLoc();
   1089   else if (Tok.isNot(tok::r_paren)) {
   1090     Diag(Tok, diag::err_expected) << tok::r_paren;
   1091     SkipUntil(tok::r_paren, StopAtSemi);
   1092     return;
   1093   }
   1094 
   1095   // Closing ')'.
   1096   if (T.consumeClose())
   1097     return;
   1098 
   1099   if (endLoc)
   1100     *endLoc = T.getCloseLocation();
   1101 
   1102   // Record this attribute
   1103   attrs.addNew(&ObjCBridgeRelated,
   1104                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
   1105                ScopeName, ScopeLoc,
   1106                RelatedClass,
   1107                ClassMethod,
   1108                InstanceMethod,
   1109                Syntax);
   1110 }
   1111 
   1112 // Late Parsed Attributes:
   1113 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
   1114 
   1115 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
   1116 
   1117 void Parser::LateParsedClass::ParseLexedAttributes() {
   1118   Self->ParseLexedAttributes(*Class);
   1119 }
   1120 
   1121 void Parser::LateParsedAttribute::ParseLexedAttributes() {
   1122   Self->ParseLexedAttribute(*this, true, false);
   1123 }
   1124 
   1125 /// Wrapper class which calls ParseLexedAttribute, after setting up the
   1126 /// scope appropriately.
   1127 void Parser::ParseLexedAttributes(ParsingClass &Class) {
   1128   // Deal with templates
   1129   // FIXME: Test cases to make sure this does the right thing for templates.
   1130   bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
   1131   ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
   1132                                 HasTemplateScope);
   1133   if (HasTemplateScope)
   1134     Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
   1135 
   1136   // Set or update the scope flags.
   1137   bool AlreadyHasClassScope = Class.TopLevelClass;
   1138   unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
   1139   ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
   1140   ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
   1141 
   1142   // Enter the scope of nested classes
   1143   if (!AlreadyHasClassScope)
   1144     Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
   1145                                                 Class.TagOrTemplate);
   1146   if (!Class.LateParsedDeclarations.empty()) {
   1147     for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
   1148       Class.LateParsedDeclarations[i]->ParseLexedAttributes();
   1149     }
   1150   }
   1151 
   1152   if (!AlreadyHasClassScope)
   1153     Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
   1154                                                  Class.TagOrTemplate);
   1155 }
   1156 
   1157 /// \brief Parse all attributes in LAs, and attach them to Decl D.
   1158 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
   1159                                      bool EnterScope, bool OnDefinition) {
   1160   assert(LAs.parseSoon() &&
   1161          "Attribute list should be marked for immediate parsing.");
   1162   for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
   1163     if (D)
   1164       LAs[i]->addDecl(D);
   1165     ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
   1166     delete LAs[i];
   1167   }
   1168   LAs.clear();
   1169 }
   1170 
   1171 /// \brief Finish parsing an attribute for which parsing was delayed.
   1172 /// This will be called at the end of parsing a class declaration
   1173 /// for each LateParsedAttribute. We consume the saved tokens and
   1174 /// create an attribute with the arguments filled in. We add this
   1175 /// to the Attribute list for the decl.
   1176 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
   1177                                  bool EnterScope, bool OnDefinition) {
   1178   // Create a fake EOF so that attribute parsing won't go off the end of the
   1179   // attribute.
   1180   Token AttrEnd;
   1181   AttrEnd.startToken();
   1182   AttrEnd.setKind(tok::eof);
   1183   AttrEnd.setLocation(Tok.getLocation());
   1184   AttrEnd.setEofData(LA.Toks.data());
   1185   LA.Toks.push_back(AttrEnd);
   1186 
   1187   // Append the current token at the end of the new token stream so that it
   1188   // doesn't get lost.
   1189   LA.Toks.push_back(Tok);
   1190   PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
   1191   // Consume the previously pushed token.
   1192   ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
   1193 
   1194   ParsedAttributes Attrs(AttrFactory);
   1195   SourceLocation endLoc;
   1196 
   1197   if (LA.Decls.size() > 0) {
   1198     Decl *D = LA.Decls[0];
   1199     NamedDecl *ND  = dyn_cast<NamedDecl>(D);
   1200     RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
   1201 
   1202     // Allow 'this' within late-parsed attributes.
   1203     Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
   1204                                      ND && ND->isCXXInstanceMember());
   1205 
   1206     if (LA.Decls.size() == 1) {
   1207       // If the Decl is templatized, add template parameters to scope.
   1208       bool HasTemplateScope = EnterScope && D->isTemplateDecl();
   1209       ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
   1210       if (HasTemplateScope)
   1211         Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
   1212 
   1213       // If the Decl is on a function, add function parameters to the scope.
   1214       bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
   1215       ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
   1216       if (HasFunScope)
   1217         Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
   1218 
   1219       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
   1220                             nullptr, SourceLocation(), AttributeList::AS_GNU,
   1221                             nullptr);
   1222 
   1223       if (HasFunScope) {
   1224         Actions.ActOnExitFunctionContext();
   1225         FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
   1226       }
   1227       if (HasTemplateScope) {
   1228         TempScope.Exit();
   1229       }
   1230     } else {
   1231       // If there are multiple decls, then the decl cannot be within the
   1232       // function scope.
   1233       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
   1234                             nullptr, SourceLocation(), AttributeList::AS_GNU,
   1235                             nullptr);
   1236     }
   1237   } else {
   1238     Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
   1239   }
   1240 
   1241   const AttributeList *AL = Attrs.getList();
   1242   if (OnDefinition && AL && !AL->isCXX11Attribute() &&
   1243       AL->isKnownToGCC())
   1244     Diag(Tok, diag::warn_attribute_on_function_definition)
   1245       << &LA.AttrName;
   1246 
   1247   for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
   1248     Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
   1249 
   1250   // Due to a parsing error, we either went over the cached tokens or
   1251   // there are still cached tokens left, so we skip the leftover tokens.
   1252   while (Tok.isNot(tok::eof))
   1253     ConsumeAnyToken();
   1254 
   1255   if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
   1256     ConsumeAnyToken();
   1257 }
   1258 
   1259 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
   1260                                               SourceLocation AttrNameLoc,
   1261                                               ParsedAttributes &Attrs,
   1262                                               SourceLocation *EndLoc,
   1263                                               IdentifierInfo *ScopeName,
   1264                                               SourceLocation ScopeLoc,
   1265                                               AttributeList::Syntax Syntax) {
   1266   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
   1267 
   1268   BalancedDelimiterTracker T(*this, tok::l_paren);
   1269   T.consumeOpen();
   1270 
   1271   if (Tok.isNot(tok::identifier)) {
   1272     Diag(Tok, diag::err_expected) << tok::identifier;
   1273     T.skipToEnd();
   1274     return;
   1275   }
   1276   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
   1277 
   1278   if (ExpectAndConsume(tok::comma)) {
   1279     T.skipToEnd();
   1280     return;
   1281   }
   1282 
   1283   SourceRange MatchingCTypeRange;
   1284   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
   1285   if (MatchingCType.isInvalid()) {
   1286     T.skipToEnd();
   1287     return;
   1288   }
   1289 
   1290   bool LayoutCompatible = false;
   1291   bool MustBeNull = false;
   1292   while (TryConsumeToken(tok::comma)) {
   1293     if (Tok.isNot(tok::identifier)) {
   1294       Diag(Tok, diag::err_expected) << tok::identifier;
   1295       T.skipToEnd();
   1296       return;
   1297     }
   1298     IdentifierInfo *Flag = Tok.getIdentifierInfo();
   1299     if (Flag->isStr("layout_compatible"))
   1300       LayoutCompatible = true;
   1301     else if (Flag->isStr("must_be_null"))
   1302       MustBeNull = true;
   1303     else {
   1304       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
   1305       T.skipToEnd();
   1306       return;
   1307     }
   1308     ConsumeToken(); // consume flag
   1309   }
   1310 
   1311   if (!T.consumeClose()) {
   1312     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
   1313                                    ArgumentKind, MatchingCType.get(),
   1314                                    LayoutCompatible, MustBeNull, Syntax);
   1315   }
   1316 
   1317   if (EndLoc)
   1318     *EndLoc = T.getCloseLocation();
   1319 }
   1320 
   1321 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
   1322 /// of a C++11 attribute-specifier in a location where an attribute is not
   1323 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
   1324 /// situation.
   1325 ///
   1326 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
   1327 /// this doesn't appear to actually be an attribute-specifier, and the caller
   1328 /// should try to parse it.
   1329 bool Parser::DiagnoseProhibitedCXX11Attribute() {
   1330   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
   1331 
   1332   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
   1333   case CAK_NotAttributeSpecifier:
   1334     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
   1335     return false;
   1336 
   1337   case CAK_InvalidAttributeSpecifier:
   1338     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
   1339     return false;
   1340 
   1341   case CAK_AttributeSpecifier:
   1342     // Parse and discard the attributes.
   1343     SourceLocation BeginLoc = ConsumeBracket();
   1344     ConsumeBracket();
   1345     SkipUntil(tok::r_square);
   1346     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
   1347     SourceLocation EndLoc = ConsumeBracket();
   1348     Diag(BeginLoc, diag::err_attributes_not_allowed)
   1349       << SourceRange(BeginLoc, EndLoc);
   1350     return true;
   1351   }
   1352   llvm_unreachable("All cases handled above.");
   1353 }
   1354 
   1355 /// \brief We have found the opening square brackets of a C++11
   1356 /// attribute-specifier in a location where an attribute is not permitted, but
   1357 /// we know where the attributes ought to be written. Parse them anyway, and
   1358 /// provide a fixit moving them to the right place.
   1359 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
   1360                                              SourceLocation CorrectLocation) {
   1361   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
   1362          Tok.is(tok::kw_alignas));
   1363 
   1364   // Consume the attributes.
   1365   SourceLocation Loc = Tok.getLocation();
   1366   ParseCXX11Attributes(Attrs);
   1367   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
   1368 
   1369   Diag(Loc, diag::err_attributes_not_allowed)
   1370     << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
   1371     << FixItHint::CreateRemoval(AttrRange);
   1372 }
   1373 
   1374 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
   1375   Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
   1376     << attrs.Range;
   1377 }
   1378 
   1379 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
   1380   AttributeList *AttrList = attrs.getList();
   1381   while (AttrList) {
   1382     if (AttrList->isCXX11Attribute()) {
   1383       Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
   1384         << AttrList->getName();
   1385       AttrList->setInvalid();
   1386     }
   1387     AttrList = AttrList->getNext();
   1388   }
   1389 }
   1390 
   1391 // As an exception to the rule, __declspec(align(...)) before the
   1392 // class-key affects the type instead of the variable.
   1393 void Parser::handleDeclspecAlignBeforeClassKey(ParsedAttributesWithRange &Attrs,
   1394                                                DeclSpec &DS,
   1395                                                Sema::TagUseKind TUK) {
   1396   if (TUK == Sema::TUK_Reference)
   1397     return;
   1398 
   1399   ParsedAttributes &PA = DS.getAttributes();
   1400   AttributeList *AL = PA.getList();
   1401   AttributeList *Prev = nullptr;
   1402   while (AL) {
   1403     AttributeList *Next = AL->getNext();
   1404 
   1405     // We only consider attributes using the appropriate '__declspec' spelling,
   1406     // this behavior doesn't extend to any other spellings.
   1407     if (AL->getKind() == AttributeList::AT_Aligned &&
   1408         AL->isDeclspecAttribute()) {
   1409       // Stitch the attribute into the tag's attribute list.
   1410       AL->setNext(nullptr);
   1411       Attrs.add(AL);
   1412 
   1413       // Remove the attribute from the variable's attribute list.
   1414       if (Prev) {
   1415         // Set the last variable attribute's next attribute to be the attribute
   1416         // after the current one.
   1417         Prev->setNext(Next);
   1418       } else {
   1419         // Removing the head of the list requires us to reset the head to the
   1420         // next attribute.
   1421         PA.set(Next);
   1422       }
   1423     } else {
   1424       Prev = AL;
   1425     }
   1426 
   1427     AL = Next;
   1428   }
   1429 }
   1430 
   1431 /// ParseDeclaration - Parse a full 'declaration', which consists of
   1432 /// declaration-specifiers, some number of declarators, and a semicolon.
   1433 /// 'Context' should be a Declarator::TheContext value.  This returns the
   1434 /// location of the semicolon in DeclEnd.
   1435 ///
   1436 ///       declaration: [C99 6.7]
   1437 ///         block-declaration ->
   1438 ///           simple-declaration
   1439 ///           others                   [FIXME]
   1440 /// [C++]   template-declaration
   1441 /// [C++]   namespace-definition
   1442 /// [C++]   using-directive
   1443 /// [C++]   using-declaration
   1444 /// [C++11/C11] static_assert-declaration
   1445 ///         others... [FIXME]
   1446 ///
   1447 Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
   1448                                                 SourceLocation &DeclEnd,
   1449                                           ParsedAttributesWithRange &attrs) {
   1450   ParenBraceBracketBalancer BalancerRAIIObj(*this);
   1451   // Must temporarily exit the objective-c container scope for
   1452   // parsing c none objective-c decls.
   1453   ObjCDeclContextSwitch ObjCDC(*this);
   1454 
   1455   Decl *SingleDecl = nullptr;
   1456   Decl *OwnedType = nullptr;
   1457   switch (Tok.getKind()) {
   1458   case tok::kw_template:
   1459   case tok::kw_export:
   1460     ProhibitAttributes(attrs);
   1461     SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
   1462     break;
   1463   case tok::kw_inline:
   1464     // Could be the start of an inline namespace. Allowed as an ext in C++03.
   1465     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
   1466       ProhibitAttributes(attrs);
   1467       SourceLocation InlineLoc = ConsumeToken();
   1468       return ParseNamespace(Context, DeclEnd, InlineLoc);
   1469     }
   1470     return ParseSimpleDeclaration(Context, DeclEnd, attrs,
   1471                                   true);
   1472   case tok::kw_namespace:
   1473     ProhibitAttributes(attrs);
   1474     return ParseNamespace(Context, DeclEnd);
   1475   case tok::kw_using:
   1476     SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
   1477                                                   DeclEnd, attrs, &OwnedType);
   1478     break;
   1479   case tok::kw_static_assert:
   1480   case tok::kw__Static_assert:
   1481     ProhibitAttributes(attrs);
   1482     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
   1483     break;
   1484   default:
   1485     return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
   1486   }
   1487 
   1488   // This routine returns a DeclGroup, if the thing we parsed only contains a
   1489   // single decl, convert it now. Alias declarations can also declare a type;
   1490   // include that too if it is present.
   1491   return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
   1492 }
   1493 
   1494 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
   1495 ///         declaration-specifiers init-declarator-list[opt] ';'
   1496 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
   1497 ///             init-declarator-list ';'
   1498 ///[C90/C++]init-declarator-list ';'                             [TODO]
   1499 /// [OMP]   threadprivate-directive                              [TODO]
   1500 ///
   1501 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
   1502 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
   1503 ///
   1504 /// If RequireSemi is false, this does not check for a ';' at the end of the
   1505 /// declaration.  If it is true, it checks for and eats it.
   1506 ///
   1507 /// If FRI is non-null, we might be parsing a for-range-declaration instead
   1508 /// of a simple-declaration. If we find that we are, we also parse the
   1509 /// for-range-initializer, and place it here.
   1510 Parser::DeclGroupPtrTy
   1511 Parser::ParseSimpleDeclaration(unsigned Context,
   1512                                SourceLocation &DeclEnd,
   1513                                ParsedAttributesWithRange &Attrs,
   1514                                bool RequireSemi, ForRangeInit *FRI) {
   1515   // Parse the common declaration-specifiers piece.
   1516   ParsingDeclSpec DS(*this);
   1517 
   1518   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
   1519   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
   1520 
   1521   // If we had a free-standing type definition with a missing semicolon, we
   1522   // may get this far before the problem becomes obvious.
   1523   if (DS.hasTagDefinition() &&
   1524       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
   1525     return DeclGroupPtrTy();
   1526 
   1527   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
   1528   // declaration-specifiers init-declarator-list[opt] ';'
   1529   if (Tok.is(tok::semi)) {
   1530     ProhibitAttributes(Attrs);
   1531     DeclEnd = Tok.getLocation();
   1532     if (RequireSemi) ConsumeToken();
   1533     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
   1534                                                        DS);
   1535     DS.complete(TheDecl);
   1536     return Actions.ConvertDeclToDeclGroup(TheDecl);
   1537   }
   1538 
   1539   DS.takeAttributesFrom(Attrs);
   1540   return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
   1541 }
   1542 
   1543 /// Returns true if this might be the start of a declarator, or a common typo
   1544 /// for a declarator.
   1545 bool Parser::MightBeDeclarator(unsigned Context) {
   1546   switch (Tok.getKind()) {
   1547   case tok::annot_cxxscope:
   1548   case tok::annot_template_id:
   1549   case tok::caret:
   1550   case tok::code_completion:
   1551   case tok::coloncolon:
   1552   case tok::ellipsis:
   1553   case tok::kw___attribute:
   1554   case tok::kw_operator:
   1555   case tok::l_paren:
   1556   case tok::star:
   1557     return true;
   1558 
   1559   case tok::amp:
   1560   case tok::ampamp:
   1561     return getLangOpts().CPlusPlus;
   1562 
   1563   case tok::l_square: // Might be an attribute on an unnamed bit-field.
   1564     return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
   1565            NextToken().is(tok::l_square);
   1566 
   1567   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
   1568     return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
   1569 
   1570   case tok::identifier:
   1571     switch (NextToken().getKind()) {
   1572     case tok::code_completion:
   1573     case tok::coloncolon:
   1574     case tok::comma:
   1575     case tok::equal:
   1576     case tok::equalequal: // Might be a typo for '='.
   1577     case tok::kw_alignas:
   1578     case tok::kw_asm:
   1579     case tok::kw___attribute:
   1580     case tok::l_brace:
   1581     case tok::l_paren:
   1582     case tok::l_square:
   1583     case tok::less:
   1584     case tok::r_brace:
   1585     case tok::r_paren:
   1586     case tok::r_square:
   1587     case tok::semi:
   1588       return true;
   1589 
   1590     case tok::colon:
   1591       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
   1592       // and in block scope it's probably a label. Inside a class definition,
   1593       // this is a bit-field.
   1594       return Context == Declarator::MemberContext ||
   1595              (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
   1596 
   1597     case tok::identifier: // Possible virt-specifier.
   1598       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
   1599 
   1600     default:
   1601       return false;
   1602     }
   1603 
   1604   default:
   1605     return false;
   1606   }
   1607 }
   1608 
   1609 /// Skip until we reach something which seems like a sensible place to pick
   1610 /// up parsing after a malformed declaration. This will sometimes stop sooner
   1611 /// than SkipUntil(tok::r_brace) would, but will never stop later.
   1612 void Parser::SkipMalformedDecl() {
   1613   while (true) {
   1614     switch (Tok.getKind()) {
   1615     case tok::l_brace:
   1616       // Skip until matching }, then stop. We've probably skipped over
   1617       // a malformed class or function definition or similar.
   1618       ConsumeBrace();
   1619       SkipUntil(tok::r_brace);
   1620       if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
   1621         // This declaration isn't over yet. Keep skipping.
   1622         continue;
   1623       }
   1624       TryConsumeToken(tok::semi);
   1625       return;
   1626 
   1627     case tok::l_square:
   1628       ConsumeBracket();
   1629       SkipUntil(tok::r_square);
   1630       continue;
   1631 
   1632     case tok::l_paren:
   1633       ConsumeParen();
   1634       SkipUntil(tok::r_paren);
   1635       continue;
   1636 
   1637     case tok::r_brace:
   1638       return;
   1639 
   1640     case tok::semi:
   1641       ConsumeToken();
   1642       return;
   1643 
   1644     case tok::kw_inline:
   1645       // 'inline namespace' at the start of a line is almost certainly
   1646       // a good place to pick back up parsing, except in an Objective-C
   1647       // @interface context.
   1648       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
   1649           (!ParsingInObjCContainer || CurParsedObjCImpl))
   1650         return;
   1651       break;
   1652 
   1653     case tok::kw_namespace:
   1654       // 'namespace' at the start of a line is almost certainly a good
   1655       // place to pick back up parsing, except in an Objective-C
   1656       // @interface context.
   1657       if (Tok.isAtStartOfLine() &&
   1658           (!ParsingInObjCContainer || CurParsedObjCImpl))
   1659         return;
   1660       break;
   1661 
   1662     case tok::at:
   1663       // @end is very much like } in Objective-C contexts.
   1664       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
   1665           ParsingInObjCContainer)
   1666         return;
   1667       break;
   1668 
   1669     case tok::minus:
   1670     case tok::plus:
   1671       // - and + probably start new method declarations in Objective-C contexts.
   1672       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
   1673         return;
   1674       break;
   1675 
   1676     case tok::eof:
   1677     case tok::annot_module_begin:
   1678     case tok::annot_module_end:
   1679     case tok::annot_module_include:
   1680       return;
   1681 
   1682     default:
   1683       break;
   1684     }
   1685 
   1686     ConsumeAnyToken();
   1687   }
   1688 }
   1689 
   1690 /// ParseDeclGroup - Having concluded that this is either a function
   1691 /// definition or a group of object declarations, actually parse the
   1692 /// result.
   1693 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
   1694                                               unsigned Context,
   1695                                               SourceLocation *DeclEnd,
   1696                                               ForRangeInit *FRI) {
   1697   // Parse the first declarator.
   1698   ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
   1699   ParseDeclarator(D);
   1700 
   1701   // Bail out if the first declarator didn't seem well-formed.
   1702   if (!D.hasName() && !D.mayOmitIdentifier()) {
   1703     SkipMalformedDecl();
   1704     return DeclGroupPtrTy();
   1705   }
   1706 
   1707   // Save late-parsed attributes for now; they need to be parsed in the
   1708   // appropriate function scope after the function Decl has been constructed.
   1709   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
   1710   LateParsedAttrList LateParsedAttrs(true);
   1711   if (D.isFunctionDeclarator()) {
   1712     MaybeParseGNUAttributes(D, &LateParsedAttrs);
   1713 
   1714     // The _Noreturn keyword can't appear here, unlike the GNU noreturn
   1715     // attribute. If we find the keyword here, tell the user to put it
   1716     // at the start instead.
   1717     if (Tok.is(tok::kw__Noreturn)) {
   1718       SourceLocation Loc = ConsumeToken();
   1719       const char *PrevSpec;
   1720       unsigned DiagID;
   1721 
   1722       // We can offer a fixit if it's valid to mark this function as _Noreturn
   1723       // and we don't have any other declarators in this declaration.
   1724       bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
   1725       MaybeParseGNUAttributes(D, &LateParsedAttrs);
   1726       Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
   1727 
   1728       Diag(Loc, diag::err_c11_noreturn_misplaced)
   1729           << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
   1730           << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
   1731                     : FixItHint());
   1732     }
   1733   }
   1734 
   1735   // Check to see if we have a function *definition* which must have a body.
   1736   if (D.isFunctionDeclarator() &&
   1737       // Look at the next token to make sure that this isn't a function
   1738       // declaration.  We have to check this because __attribute__ might be the
   1739       // start of a function definition in GCC-extended K&R C.
   1740       !isDeclarationAfterDeclarator()) {
   1741 
   1742     // Function definitions are only allowed at file scope and in C++ classes.
   1743     // The C++ inline method definition case is handled elsewhere, so we only
   1744     // need to handle the file scope definition case.
   1745     if (Context == Declarator::FileContext) {
   1746       if (isStartOfFunctionDefinition(D)) {
   1747         if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
   1748           Diag(Tok, diag::err_function_declared_typedef);
   1749 
   1750           // Recover by treating the 'typedef' as spurious.
   1751           DS.ClearStorageClassSpecs();
   1752         }
   1753 
   1754         Decl *TheDecl =
   1755           ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
   1756         return Actions.ConvertDeclToDeclGroup(TheDecl);
   1757       }
   1758 
   1759       if (isDeclarationSpecifier()) {
   1760         // If there is an invalid declaration specifier right after the
   1761         // function prototype, then we must be in a missing semicolon case
   1762         // where this isn't actually a body.  Just fall through into the code
   1763         // that handles it as a prototype, and let the top-level code handle
   1764         // the erroneous declspec where it would otherwise expect a comma or
   1765         // semicolon.
   1766       } else {
   1767         Diag(Tok, diag::err_expected_fn_body);
   1768         SkipUntil(tok::semi);
   1769         return DeclGroupPtrTy();
   1770       }
   1771     } else {
   1772       if (Tok.is(tok::l_brace)) {
   1773         Diag(Tok, diag::err_function_definition_not_allowed);
   1774         SkipMalformedDecl();
   1775         return DeclGroupPtrTy();
   1776       }
   1777     }
   1778   }
   1779 
   1780   if (ParseAsmAttributesAfterDeclarator(D))
   1781     return DeclGroupPtrTy();
   1782 
   1783   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
   1784   // must parse and analyze the for-range-initializer before the declaration is
   1785   // analyzed.
   1786   //
   1787   // Handle the Objective-C for-in loop variable similarly, although we
   1788   // don't need to parse the container in advance.
   1789   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
   1790     bool IsForRangeLoop = false;
   1791     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
   1792       IsForRangeLoop = true;
   1793       if (Tok.is(tok::l_brace))
   1794         FRI->RangeExpr = ParseBraceInitializer();
   1795       else
   1796         FRI->RangeExpr = ParseExpression();
   1797     }
   1798 
   1799     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
   1800     if (IsForRangeLoop)
   1801       Actions.ActOnCXXForRangeDecl(ThisDecl);
   1802     Actions.FinalizeDeclaration(ThisDecl);
   1803     D.complete(ThisDecl);
   1804     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
   1805   }
   1806 
   1807   SmallVector<Decl *, 8> DeclsInGroup;
   1808   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
   1809       D, ParsedTemplateInfo(), FRI);
   1810   if (LateParsedAttrs.size() > 0)
   1811     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
   1812   D.complete(FirstDecl);
   1813   if (FirstDecl)
   1814     DeclsInGroup.push_back(FirstDecl);
   1815 
   1816   bool ExpectSemi = Context != Declarator::ForContext;
   1817 
   1818   // If we don't have a comma, it is either the end of the list (a ';') or an
   1819   // error, bail out.
   1820   SourceLocation CommaLoc;
   1821   while (TryConsumeToken(tok::comma, CommaLoc)) {
   1822     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
   1823       // This comma was followed by a line-break and something which can't be
   1824       // the start of a declarator. The comma was probably a typo for a
   1825       // semicolon.
   1826       Diag(CommaLoc, diag::err_expected_semi_declaration)
   1827         << FixItHint::CreateReplacement(CommaLoc, ";");
   1828       ExpectSemi = false;
   1829       break;
   1830     }
   1831 
   1832     // Parse the next declarator.
   1833     D.clear();
   1834     D.setCommaLoc(CommaLoc);
   1835 
   1836     // Accept attributes in an init-declarator.  In the first declarator in a
   1837     // declaration, these would be part of the declspec.  In subsequent
   1838     // declarators, they become part of the declarator itself, so that they
   1839     // don't apply to declarators after *this* one.  Examples:
   1840     //    short __attribute__((common)) var;    -> declspec
   1841     //    short var __attribute__((common));    -> declarator
   1842     //    short x, __attribute__((common)) var;    -> declarator
   1843     MaybeParseGNUAttributes(D);
   1844 
   1845     // MSVC parses but ignores qualifiers after the comma as an extension.
   1846     if (getLangOpts().MicrosoftExt)
   1847       DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
   1848 
   1849     ParseDeclarator(D);
   1850     if (!D.isInvalidType()) {
   1851       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
   1852       D.complete(ThisDecl);
   1853       if (ThisDecl)
   1854         DeclsInGroup.push_back(ThisDecl);
   1855     }
   1856   }
   1857 
   1858   if (DeclEnd)
   1859     *DeclEnd = Tok.getLocation();
   1860 
   1861   if (ExpectSemi &&
   1862       ExpectAndConsumeSemi(Context == Declarator::FileContext
   1863                            ? diag::err_invalid_token_after_toplevel_declarator
   1864                            : diag::err_expected_semi_declaration)) {
   1865     // Okay, there was no semicolon and one was expected.  If we see a
   1866     // declaration specifier, just assume it was missing and continue parsing.
   1867     // Otherwise things are very confused and we skip to recover.
   1868     if (!isDeclarationSpecifier()) {
   1869       SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
   1870       TryConsumeToken(tok::semi);
   1871     }
   1872   }
   1873 
   1874   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
   1875 }
   1876 
   1877 /// Parse an optional simple-asm-expr and attributes, and attach them to a
   1878 /// declarator. Returns true on an error.
   1879 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
   1880   // If a simple-asm-expr is present, parse it.
   1881   if (Tok.is(tok::kw_asm)) {
   1882     SourceLocation Loc;
   1883     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
   1884     if (AsmLabel.isInvalid()) {
   1885       SkipUntil(tok::semi, StopBeforeMatch);
   1886       return true;
   1887     }
   1888 
   1889     D.setAsmLabel(AsmLabel.get());
   1890     D.SetRangeEnd(Loc);
   1891   }
   1892 
   1893   MaybeParseGNUAttributes(D);
   1894   return false;
   1895 }
   1896 
   1897 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
   1898 /// declarator'. This method parses the remainder of the declaration
   1899 /// (including any attributes or initializer, among other things) and
   1900 /// finalizes the declaration.
   1901 ///
   1902 ///       init-declarator: [C99 6.7]
   1903 ///         declarator
   1904 ///         declarator '=' initializer
   1905 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
   1906 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
   1907 /// [C++]   declarator initializer[opt]
   1908 ///
   1909 /// [C++] initializer:
   1910 /// [C++]   '=' initializer-clause
   1911 /// [C++]   '(' expression-list ')'
   1912 /// [C++0x] '=' 'default'                                                [TODO]
   1913 /// [C++0x] '=' 'delete'
   1914 /// [C++0x] braced-init-list
   1915 ///
   1916 /// According to the standard grammar, =default and =delete are function
   1917 /// definitions, but that definitely doesn't fit with the parser here.
   1918 ///
   1919 Decl *Parser::ParseDeclarationAfterDeclarator(
   1920     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
   1921   if (ParseAsmAttributesAfterDeclarator(D))
   1922     return nullptr;
   1923 
   1924   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
   1925 }
   1926 
   1927 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
   1928     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
   1929   // Inform the current actions module that we just parsed this declarator.
   1930   Decl *ThisDecl = nullptr;
   1931   switch (TemplateInfo.Kind) {
   1932   case ParsedTemplateInfo::NonTemplate:
   1933     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
   1934     break;
   1935 
   1936   case ParsedTemplateInfo::Template:
   1937   case ParsedTemplateInfo::ExplicitSpecialization: {
   1938     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
   1939                                                *TemplateInfo.TemplateParams,
   1940                                                D);
   1941     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
   1942       // Re-direct this decl to refer to the templated decl so that we can
   1943       // initialize it.
   1944       ThisDecl = VT->getTemplatedDecl();
   1945     break;
   1946   }
   1947   case ParsedTemplateInfo::ExplicitInstantiation: {
   1948     if (Tok.is(tok::semi)) {
   1949       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
   1950           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
   1951       if (ThisRes.isInvalid()) {
   1952         SkipUntil(tok::semi, StopBeforeMatch);
   1953         return nullptr;
   1954       }
   1955       ThisDecl = ThisRes.get();
   1956     } else {
   1957       // FIXME: This check should be for a variable template instantiation only.
   1958 
   1959       // Check that this is a valid instantiation
   1960       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   1961         // If the declarator-id is not a template-id, issue a diagnostic and
   1962         // recover by ignoring the 'template' keyword.
   1963         Diag(Tok, diag::err_template_defn_explicit_instantiation)
   1964             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
   1965         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
   1966       } else {
   1967         SourceLocation LAngleLoc =
   1968             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
   1969         Diag(D.getIdentifierLoc(),
   1970              diag::err_explicit_instantiation_with_definition)
   1971             << SourceRange(TemplateInfo.TemplateLoc)
   1972             << FixItHint::CreateInsertion(LAngleLoc, "<>");
   1973 
   1974         // Recover as if it were an explicit specialization.
   1975         TemplateParameterLists FakedParamLists;
   1976         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
   1977             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
   1978             0, LAngleLoc));
   1979 
   1980         ThisDecl =
   1981             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
   1982       }
   1983     }
   1984     break;
   1985     }
   1986   }
   1987 
   1988   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
   1989 
   1990   // Parse declarator '=' initializer.
   1991   // If a '==' or '+=' is found, suggest a fixit to '='.
   1992   if (isTokenEqualOrEqualTypo()) {
   1993     SourceLocation EqualLoc = ConsumeToken();
   1994 
   1995     if (Tok.is(tok::kw_delete)) {
   1996       if (D.isFunctionDeclarator())
   1997         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
   1998           << 1 /* delete */;
   1999       else
   2000         Diag(ConsumeToken(), diag::err_deleted_non_function);
   2001     } else if (Tok.is(tok::kw_default)) {
   2002       if (D.isFunctionDeclarator())
   2003         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
   2004           << 0 /* default */;
   2005       else
   2006         Diag(ConsumeToken(), diag::err_default_special_members);
   2007     } else {
   2008       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   2009         EnterScope(0);
   2010         Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
   2011       }
   2012 
   2013       if (Tok.is(tok::code_completion)) {
   2014         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
   2015         Actions.FinalizeDeclaration(ThisDecl);
   2016         cutOffParsing();
   2017         return nullptr;
   2018       }
   2019 
   2020       ExprResult Init(ParseInitializer());
   2021 
   2022       // If this is the only decl in (possibly) range based for statement,
   2023       // our best guess is that the user meant ':' instead of '='.
   2024       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
   2025         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
   2026             << FixItHint::CreateReplacement(EqualLoc, ":");
   2027         // We are trying to stop parser from looking for ';' in this for
   2028         // statement, therefore preventing spurious errors to be issued.
   2029         FRI->ColonLoc = EqualLoc;
   2030         Init = ExprError();
   2031         FRI->RangeExpr = Init;
   2032       }
   2033 
   2034       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   2035         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   2036         ExitScope();
   2037       }
   2038 
   2039       if (Init.isInvalid()) {
   2040         SmallVector<tok::TokenKind, 2> StopTokens;
   2041         StopTokens.push_back(tok::comma);
   2042         if (D.getContext() == Declarator::ForContext)
   2043           StopTokens.push_back(tok::r_paren);
   2044         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
   2045         Actions.ActOnInitializerError(ThisDecl);
   2046       } else
   2047         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
   2048                                      /*DirectInit=*/false, TypeContainsAuto);
   2049     }
   2050   } else if (Tok.is(tok::l_paren)) {
   2051     // Parse C++ direct initializer: '(' expression-list ')'
   2052     BalancedDelimiterTracker T(*this, tok::l_paren);
   2053     T.consumeOpen();
   2054 
   2055     ExprVector Exprs;
   2056     CommaLocsTy CommaLocs;
   2057 
   2058     if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   2059       EnterScope(0);
   2060       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
   2061     }
   2062 
   2063     if (ParseExpressionList(Exprs, CommaLocs, [&] {
   2064           Actions.CodeCompleteConstructor(getCurScope(),
   2065                  cast<VarDecl>(ThisDecl)->getType()->getCanonicalTypeInternal(),
   2066                                           ThisDecl->getLocation(), Exprs);
   2067        })) {
   2068       Actions.ActOnInitializerError(ThisDecl);
   2069       SkipUntil(tok::r_paren, StopAtSemi);
   2070 
   2071       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   2072         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   2073         ExitScope();
   2074       }
   2075     } else {
   2076       // Match the ')'.
   2077       T.consumeClose();
   2078 
   2079       assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
   2080              "Unexpected number of commas!");
   2081 
   2082       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   2083         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   2084         ExitScope();
   2085       }
   2086 
   2087       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
   2088                                                           T.getCloseLocation(),
   2089                                                           Exprs);
   2090       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
   2091                                    /*DirectInit=*/true, TypeContainsAuto);
   2092     }
   2093   } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
   2094              (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
   2095     // Parse C++0x braced-init-list.
   2096     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   2097 
   2098     if (D.getCXXScopeSpec().isSet()) {
   2099       EnterScope(0);
   2100       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
   2101     }
   2102 
   2103     ExprResult Init(ParseBraceInitializer());
   2104 
   2105     if (D.getCXXScopeSpec().isSet()) {
   2106       Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   2107       ExitScope();
   2108     }
   2109 
   2110     if (Init.isInvalid()) {
   2111       Actions.ActOnInitializerError(ThisDecl);
   2112     } else
   2113       Actions.AddInitializerToDecl(ThisDecl, Init.get(),
   2114                                    /*DirectInit=*/true, TypeContainsAuto);
   2115 
   2116   } else {
   2117     Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
   2118   }
   2119 
   2120   Actions.FinalizeDeclaration(ThisDecl);
   2121 
   2122   return ThisDecl;
   2123 }
   2124 
   2125 /// ParseSpecifierQualifierList
   2126 ///        specifier-qualifier-list:
   2127 ///          type-specifier specifier-qualifier-list[opt]
   2128 ///          type-qualifier specifier-qualifier-list[opt]
   2129 /// [GNU]    attributes     specifier-qualifier-list[opt]
   2130 ///
   2131 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
   2132                                          DeclSpecContext DSC) {
   2133   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
   2134   /// parse declaration-specifiers and complain about extra stuff.
   2135   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
   2136   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
   2137 
   2138   // Validate declspec for type-name.
   2139   unsigned Specs = DS.getParsedSpecifiers();
   2140   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
   2141     Diag(Tok, diag::err_expected_type);
   2142     DS.SetTypeSpecError();
   2143   } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
   2144     Diag(Tok, diag::err_typename_requires_specqual);
   2145     if (!DS.hasTypeSpecifier())
   2146       DS.SetTypeSpecError();
   2147   }
   2148 
   2149   // Issue diagnostic and remove storage class if present.
   2150   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
   2151     if (DS.getStorageClassSpecLoc().isValid())
   2152       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
   2153     else
   2154       Diag(DS.getThreadStorageClassSpecLoc(),
   2155            diag::err_typename_invalid_storageclass);
   2156     DS.ClearStorageClassSpecs();
   2157   }
   2158 
   2159   // Issue diagnostic and remove function specifier if present.
   2160   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
   2161     if (DS.isInlineSpecified())
   2162       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
   2163     if (DS.isVirtualSpecified())
   2164       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
   2165     if (DS.isExplicitSpecified())
   2166       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
   2167     DS.ClearFunctionSpecs();
   2168   }
   2169 
   2170   // Issue diagnostic and remove constexpr specfier if present.
   2171   if (DS.isConstexprSpecified() && DSC != DSC_condition) {
   2172     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
   2173     DS.ClearConstexprSpec();
   2174   }
   2175 }
   2176 
   2177 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
   2178 /// specified token is valid after the identifier in a declarator which
   2179 /// immediately follows the declspec.  For example, these things are valid:
   2180 ///
   2181 ///      int x   [             4];         // direct-declarator
   2182 ///      int x   (             int y);     // direct-declarator
   2183 ///  int(int x   )                         // direct-declarator
   2184 ///      int x   ;                         // simple-declaration
   2185 ///      int x   =             17;         // init-declarator-list
   2186 ///      int x   ,             y;          // init-declarator-list
   2187 ///      int x   __asm__       ("foo");    // init-declarator-list
   2188 ///      int x   :             4;          // struct-declarator
   2189 ///      int x   {             5};         // C++'0x unified initializers
   2190 ///
   2191 /// This is not, because 'x' does not immediately follow the declspec (though
   2192 /// ')' happens to be valid anyway).
   2193 ///    int (x)
   2194 ///
   2195 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
   2196   return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
   2197                    tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
   2198                    tok::colon);
   2199 }
   2200 
   2201 /// ParseImplicitInt - This method is called when we have an non-typename
   2202 /// identifier in a declspec (which normally terminates the decl spec) when
   2203 /// the declspec has no type specifier.  In this case, the declspec is either
   2204 /// malformed or is "implicit int" (in K&R and C89).
   2205 ///
   2206 /// This method handles diagnosing this prettily and returns false if the
   2207 /// declspec is done being processed.  If it recovers and thinks there may be
   2208 /// other pieces of declspec after it, it returns true.
   2209 ///
   2210 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
   2211                               const ParsedTemplateInfo &TemplateInfo,
   2212                               AccessSpecifier AS, DeclSpecContext DSC,
   2213                               ParsedAttributesWithRange &Attrs) {
   2214   assert(Tok.is(tok::identifier) && "should have identifier");
   2215 
   2216   SourceLocation Loc = Tok.getLocation();
   2217   // If we see an identifier that is not a type name, we normally would
   2218   // parse it as the identifer being declared.  However, when a typename
   2219   // is typo'd or the definition is not included, this will incorrectly
   2220   // parse the typename as the identifier name and fall over misparsing
   2221   // later parts of the diagnostic.
   2222   //
   2223   // As such, we try to do some look-ahead in cases where this would
   2224   // otherwise be an "implicit-int" case to see if this is invalid.  For
   2225   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
   2226   // an identifier with implicit int, we'd get a parse error because the
   2227   // next token is obviously invalid for a type.  Parse these as a case
   2228   // with an invalid type specifier.
   2229   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
   2230 
   2231   // Since we know that this either implicit int (which is rare) or an
   2232   // error, do lookahead to try to do better recovery. This never applies
   2233   // within a type specifier. Outside of C++, we allow this even if the
   2234   // language doesn't "officially" support implicit int -- we support
   2235   // implicit int as an extension in C99 and C11.
   2236   if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
   2237       isValidAfterIdentifierInDeclarator(NextToken())) {
   2238     // If this token is valid for implicit int, e.g. "static x = 4", then
   2239     // we just avoid eating the identifier, so it will be parsed as the
   2240     // identifier in the declarator.
   2241     return false;
   2242   }
   2243 
   2244   if (getLangOpts().CPlusPlus &&
   2245       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
   2246     // Don't require a type specifier if we have the 'auto' storage class
   2247     // specifier in C++98 -- we'll promote it to a type specifier.
   2248     if (SS)
   2249       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
   2250     return false;
   2251   }
   2252 
   2253   // Otherwise, if we don't consume this token, we are going to emit an
   2254   // error anyway.  Try to recover from various common problems.  Check
   2255   // to see if this was a reference to a tag name without a tag specified.
   2256   // This is a common problem in C (saying 'foo' instead of 'struct foo').
   2257   //
   2258   // C++ doesn't need this, and isTagName doesn't take SS.
   2259   if (SS == nullptr) {
   2260     const char *TagName = nullptr, *FixitTagName = nullptr;
   2261     tok::TokenKind TagKind = tok::unknown;
   2262 
   2263     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
   2264       default: break;
   2265       case DeclSpec::TST_enum:
   2266         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
   2267       case DeclSpec::TST_union:
   2268         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
   2269       case DeclSpec::TST_struct:
   2270         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
   2271       case DeclSpec::TST_interface:
   2272         TagName="__interface"; FixitTagName = "__interface ";
   2273         TagKind=tok::kw___interface;break;
   2274       case DeclSpec::TST_class:
   2275         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
   2276     }
   2277 
   2278     if (TagName) {
   2279       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
   2280       LookupResult R(Actions, TokenName, SourceLocation(),
   2281                      Sema::LookupOrdinaryName);
   2282 
   2283       Diag(Loc, diag::err_use_of_tag_name_without_tag)
   2284         << TokenName << TagName << getLangOpts().CPlusPlus
   2285         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
   2286 
   2287       if (Actions.LookupParsedName(R, getCurScope(), SS)) {
   2288         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
   2289              I != IEnd; ++I)
   2290           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
   2291             << TokenName << TagName;
   2292       }
   2293 
   2294       // Parse this as a tag as if the missing tag were present.
   2295       if (TagKind == tok::kw_enum)
   2296         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
   2297       else
   2298         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
   2299                             /*EnteringContext*/ false, DSC_normal, Attrs);
   2300       return true;
   2301     }
   2302   }
   2303 
   2304   // Determine whether this identifier could plausibly be the name of something
   2305   // being declared (with a missing type).
   2306   if (!isTypeSpecifier(DSC) &&
   2307       (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
   2308     // Look ahead to the next token to try to figure out what this declaration
   2309     // was supposed to be.
   2310     switch (NextToken().getKind()) {
   2311     case tok::l_paren: {
   2312       // static x(4); // 'x' is not a type
   2313       // x(int n);    // 'x' is not a type
   2314       // x (*p)[];    // 'x' is a type
   2315       //
   2316       // Since we're in an error case, we can afford to perform a tentative
   2317       // parse to determine which case we're in.
   2318       TentativeParsingAction PA(*this);
   2319       ConsumeToken();
   2320       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
   2321       PA.Revert();
   2322 
   2323       if (TPR != TPResult::False) {
   2324         // The identifier is followed by a parenthesized declarator.
   2325         // It's supposed to be a type.
   2326         break;
   2327       }
   2328 
   2329       // If we're in a context where we could be declaring a constructor,
   2330       // check whether this is a constructor declaration with a bogus name.
   2331       if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
   2332         IdentifierInfo *II = Tok.getIdentifierInfo();
   2333         if (Actions.isCurrentClassNameTypo(II, SS)) {
   2334           Diag(Loc, diag::err_constructor_bad_name)
   2335             << Tok.getIdentifierInfo() << II
   2336             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
   2337           Tok.setIdentifierInfo(II);
   2338         }
   2339       }
   2340       // Fall through.
   2341     }
   2342     case tok::comma:
   2343     case tok::equal:
   2344     case tok::kw_asm:
   2345     case tok::l_brace:
   2346     case tok::l_square:
   2347     case tok::semi:
   2348       // This looks like a variable or function declaration. The type is
   2349       // probably missing. We're done parsing decl-specifiers.
   2350       if (SS)
   2351         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
   2352       return false;
   2353 
   2354     default:
   2355       // This is probably supposed to be a type. This includes cases like:
   2356       //   int f(itn);
   2357       //   struct S { unsinged : 4; };
   2358       break;
   2359     }
   2360   }
   2361 
   2362   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
   2363   // and attempt to recover.
   2364   ParsedType T;
   2365   IdentifierInfo *II = Tok.getIdentifierInfo();
   2366   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
   2367                                   getLangOpts().CPlusPlus &&
   2368                                       NextToken().is(tok::less));
   2369   if (T) {
   2370     // The action has suggested that the type T could be used. Set that as
   2371     // the type in the declaration specifiers, consume the would-be type
   2372     // name token, and we're done.
   2373     const char *PrevSpec;
   2374     unsigned DiagID;
   2375     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
   2376                        Actions.getASTContext().getPrintingPolicy());
   2377     DS.SetRangeEnd(Tok.getLocation());
   2378     ConsumeToken();
   2379     // There may be other declaration specifiers after this.
   2380     return true;
   2381   } else if (II != Tok.getIdentifierInfo()) {
   2382     // If no type was suggested, the correction is to a keyword
   2383     Tok.setKind(II->getTokenID());
   2384     // There may be other declaration specifiers after this.
   2385     return true;
   2386   }
   2387 
   2388   // Otherwise, the action had no suggestion for us.  Mark this as an error.
   2389   DS.SetTypeSpecError();
   2390   DS.SetRangeEnd(Tok.getLocation());
   2391   ConsumeToken();
   2392 
   2393   // TODO: Could inject an invalid typedef decl in an enclosing scope to
   2394   // avoid rippling error messages on subsequent uses of the same type,
   2395   // could be useful if #include was forgotten.
   2396   return false;
   2397 }
   2398 
   2399 /// \brief Determine the declaration specifier context from the declarator
   2400 /// context.
   2401 ///
   2402 /// \param Context the declarator context, which is one of the
   2403 /// Declarator::TheContext enumerator values.
   2404 Parser::DeclSpecContext
   2405 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
   2406   if (Context == Declarator::MemberContext)
   2407     return DSC_class;
   2408   if (Context == Declarator::FileContext)
   2409     return DSC_top_level;
   2410   if (Context == Declarator::TemplateTypeArgContext)
   2411     return DSC_template_type_arg;
   2412   if (Context == Declarator::TrailingReturnContext)
   2413     return DSC_trailing;
   2414   if (Context == Declarator::AliasDeclContext ||
   2415       Context == Declarator::AliasTemplateContext)
   2416     return DSC_alias_declaration;
   2417   return DSC_normal;
   2418 }
   2419 
   2420 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
   2421 ///
   2422 /// FIXME: Simply returns an alignof() expression if the argument is a
   2423 /// type. Ideally, the type should be propagated directly into Sema.
   2424 ///
   2425 /// [C11]   type-id
   2426 /// [C11]   constant-expression
   2427 /// [C++0x] type-id ...[opt]
   2428 /// [C++0x] assignment-expression ...[opt]
   2429 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
   2430                                       SourceLocation &EllipsisLoc) {
   2431   ExprResult ER;
   2432   if (isTypeIdInParens()) {
   2433     SourceLocation TypeLoc = Tok.getLocation();
   2434     ParsedType Ty = ParseTypeName().get();
   2435     SourceRange TypeRange(Start, Tok.getLocation());
   2436     ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
   2437                                                Ty.getAsOpaquePtr(), TypeRange);
   2438   } else
   2439     ER = ParseConstantExpression();
   2440 
   2441   if (getLangOpts().CPlusPlus11)
   2442     TryConsumeToken(tok::ellipsis, EllipsisLoc);
   2443 
   2444   return ER;
   2445 }
   2446 
   2447 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
   2448 /// attribute to Attrs.
   2449 ///
   2450 /// alignment-specifier:
   2451 /// [C11]   '_Alignas' '(' type-id ')'
   2452 /// [C11]   '_Alignas' '(' constant-expression ')'
   2453 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
   2454 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
   2455 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
   2456                                      SourceLocation *EndLoc) {
   2457   assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
   2458          "Not an alignment-specifier!");
   2459 
   2460   IdentifierInfo *KWName = Tok.getIdentifierInfo();
   2461   SourceLocation KWLoc = ConsumeToken();
   2462 
   2463   BalancedDelimiterTracker T(*this, tok::l_paren);
   2464   if (T.expectAndConsume())
   2465     return;
   2466 
   2467   SourceLocation EllipsisLoc;
   2468   ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
   2469   if (ArgExpr.isInvalid()) {
   2470     T.skipToEnd();
   2471     return;
   2472   }
   2473 
   2474   T.consumeClose();
   2475   if (EndLoc)
   2476     *EndLoc = T.getCloseLocation();
   2477 
   2478   ArgsVector ArgExprs;
   2479   ArgExprs.push_back(ArgExpr.get());
   2480   Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
   2481                AttributeList::AS_Keyword, EllipsisLoc);
   2482 }
   2483 
   2484 /// Determine whether we're looking at something that might be a declarator
   2485 /// in a simple-declaration. If it can't possibly be a declarator, maybe
   2486 /// diagnose a missing semicolon after a prior tag definition in the decl
   2487 /// specifier.
   2488 ///
   2489 /// \return \c true if an error occurred and this can't be any kind of
   2490 /// declaration.
   2491 bool
   2492 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
   2493                                               DeclSpecContext DSContext,
   2494                                               LateParsedAttrList *LateAttrs) {
   2495   assert(DS.hasTagDefinition() && "shouldn't call this");
   2496 
   2497   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
   2498 
   2499   if (getLangOpts().CPlusPlus &&
   2500       Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
   2501                   tok::annot_template_id) &&
   2502       TryAnnotateCXXScopeToken(EnteringContext)) {
   2503     SkipMalformedDecl();
   2504     return true;
   2505   }
   2506 
   2507   bool HasScope = Tok.is(tok::annot_cxxscope);
   2508   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
   2509   Token AfterScope = HasScope ? NextToken() : Tok;
   2510 
   2511   // Determine whether the following tokens could possibly be a
   2512   // declarator.
   2513   bool MightBeDeclarator = true;
   2514   if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
   2515     // A declarator-id can't start with 'typename'.
   2516     MightBeDeclarator = false;
   2517   } else if (AfterScope.is(tok::annot_template_id)) {
   2518     // If we have a type expressed as a template-id, this cannot be a
   2519     // declarator-id (such a type cannot be redeclared in a simple-declaration).
   2520     TemplateIdAnnotation *Annot =
   2521         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
   2522     if (Annot->Kind == TNK_Type_template)
   2523       MightBeDeclarator = false;
   2524   } else if (AfterScope.is(tok::identifier)) {
   2525     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
   2526 
   2527     // These tokens cannot come after the declarator-id in a
   2528     // simple-declaration, and are likely to come after a type-specifier.
   2529     if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
   2530                      tok::annot_cxxscope, tok::coloncolon)) {
   2531       // Missing a semicolon.
   2532       MightBeDeclarator = false;
   2533     } else if (HasScope) {
   2534       // If the declarator-id has a scope specifier, it must redeclare a
   2535       // previously-declared entity. If that's a type (and this is not a
   2536       // typedef), that's an error.
   2537       CXXScopeSpec SS;
   2538       Actions.RestoreNestedNameSpecifierAnnotation(
   2539           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
   2540       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
   2541       Sema::NameClassification Classification = Actions.ClassifyName(
   2542           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
   2543           /*IsAddressOfOperand*/false);
   2544       switch (Classification.getKind()) {
   2545       case Sema::NC_Error:
   2546         SkipMalformedDecl();
   2547         return true;
   2548 
   2549       case Sema::NC_Keyword:
   2550       case Sema::NC_NestedNameSpecifier:
   2551         llvm_unreachable("typo correction and nested name specifiers not "
   2552                          "possible here");
   2553 
   2554       case Sema::NC_Type:
   2555       case Sema::NC_TypeTemplate:
   2556         // Not a previously-declared non-type entity.
   2557         MightBeDeclarator = false;
   2558         break;
   2559 
   2560       case Sema::NC_Unknown:
   2561       case Sema::NC_Expression:
   2562       case Sema::NC_VarTemplate:
   2563       case Sema::NC_FunctionTemplate:
   2564         // Might be a redeclaration of a prior entity.
   2565         break;
   2566       }
   2567     }
   2568   }
   2569 
   2570   if (MightBeDeclarator)
   2571     return false;
   2572 
   2573   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
   2574   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
   2575        diag::err_expected_after)
   2576       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
   2577 
   2578   // Try to recover from the typo, by dropping the tag definition and parsing
   2579   // the problematic tokens as a type.
   2580   //
   2581   // FIXME: Split the DeclSpec into pieces for the standalone
   2582   // declaration and pieces for the following declaration, instead
   2583   // of assuming that all the other pieces attach to new declaration,
   2584   // and call ParsedFreeStandingDeclSpec as appropriate.
   2585   DS.ClearTypeSpecType();
   2586   ParsedTemplateInfo NotATemplate;
   2587   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
   2588   return false;
   2589 }
   2590 
   2591 /// ParseDeclarationSpecifiers
   2592 ///       declaration-specifiers: [C99 6.7]
   2593 ///         storage-class-specifier declaration-specifiers[opt]
   2594 ///         type-specifier declaration-specifiers[opt]
   2595 /// [C99]   function-specifier declaration-specifiers[opt]
   2596 /// [C11]   alignment-specifier declaration-specifiers[opt]
   2597 /// [GNU]   attributes declaration-specifiers[opt]
   2598 /// [Clang] '__module_private__' declaration-specifiers[opt]
   2599 /// [ObjC1] '__kindof' declaration-specifiers[opt]
   2600 ///
   2601 ///       storage-class-specifier: [C99 6.7.1]
   2602 ///         'typedef'
   2603 ///         'extern'
   2604 ///         'static'
   2605 ///         'auto'
   2606 ///         'register'
   2607 /// [C++]   'mutable'
   2608 /// [C++11] 'thread_local'
   2609 /// [C11]   '_Thread_local'
   2610 /// [GNU]   '__thread'
   2611 ///       function-specifier: [C99 6.7.4]
   2612 /// [C99]   'inline'
   2613 /// [C++]   'virtual'
   2614 /// [C++]   'explicit'
   2615 /// [OpenCL] '__kernel'
   2616 ///       'friend': [C++ dcl.friend]
   2617 ///       'constexpr': [C++0x dcl.constexpr]
   2618 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
   2619                                         const ParsedTemplateInfo &TemplateInfo,
   2620                                         AccessSpecifier AS,
   2621                                         DeclSpecContext DSContext,
   2622                                         LateParsedAttrList *LateAttrs) {
   2623   if (DS.getSourceRange().isInvalid()) {
   2624     // Start the range at the current token but make the end of the range
   2625     // invalid.  This will make the entire range invalid unless we successfully
   2626     // consume a token.
   2627     DS.SetRangeStart(Tok.getLocation());
   2628     DS.SetRangeEnd(SourceLocation());
   2629   }
   2630 
   2631   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
   2632   bool AttrsLastTime = false;
   2633   ParsedAttributesWithRange attrs(AttrFactory);
   2634   // We use Sema's policy to get bool macros right.
   2635   const PrintingPolicy &Policy = Actions.getPrintingPolicy();
   2636   while (1) {
   2637     bool isInvalid = false;
   2638     bool isStorageClass = false;
   2639     const char *PrevSpec = nullptr;
   2640     unsigned DiagID = 0;
   2641 
   2642     // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
   2643     // implementation for VS2013 uses _Atomic as an identifier for one of the
   2644     // classes in <atomic>.
   2645     //
   2646     // A typedef declaration containing _Atomic<...> is among the places where
   2647     // the class is used.  If we are currently parsing such a declaration, treat
   2648     // the token as an identifier.
   2649     if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
   2650         DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
   2651         !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
   2652       Tok.setKind(tok::identifier);
   2653 
   2654     SourceLocation Loc = Tok.getLocation();
   2655 
   2656     switch (Tok.getKind()) {
   2657     default:
   2658     DoneWithDeclSpec:
   2659       if (!AttrsLastTime)
   2660         ProhibitAttributes(attrs);
   2661       else {
   2662         // Reject C++11 attributes that appertain to decl specifiers as
   2663         // we don't support any C++11 attributes that appertain to decl
   2664         // specifiers. This also conforms to what g++ 4.8 is doing.
   2665         ProhibitCXX11Attributes(attrs);
   2666 
   2667         DS.takeAttributesFrom(attrs);
   2668       }
   2669 
   2670       // If this is not a declaration specifier token, we're done reading decl
   2671       // specifiers.  First verify that DeclSpec's are consistent.
   2672       DS.Finish(Actions, Policy);
   2673       return;
   2674 
   2675     case tok::l_square:
   2676     case tok::kw_alignas:
   2677       if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
   2678         goto DoneWithDeclSpec;
   2679 
   2680       ProhibitAttributes(attrs);
   2681       // FIXME: It would be good to recover by accepting the attributes,
   2682       //        but attempting to do that now would cause serious
   2683       //        madness in terms of diagnostics.
   2684       attrs.clear();
   2685       attrs.Range = SourceRange();
   2686 
   2687       ParseCXX11Attributes(attrs);
   2688       AttrsLastTime = true;
   2689       continue;
   2690 
   2691     case tok::code_completion: {
   2692       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
   2693       if (DS.hasTypeSpecifier()) {
   2694         bool AllowNonIdentifiers
   2695           = (getCurScope()->getFlags() & (Scope::ControlScope |
   2696                                           Scope::BlockScope |
   2697                                           Scope::TemplateParamScope |
   2698                                           Scope::FunctionPrototypeScope |
   2699                                           Scope::AtCatchScope)) == 0;
   2700         bool AllowNestedNameSpecifiers
   2701           = DSContext == DSC_top_level ||
   2702             (DSContext == DSC_class && DS.isFriendSpecified());
   2703 
   2704         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
   2705                                      AllowNonIdentifiers,
   2706                                      AllowNestedNameSpecifiers);
   2707         return cutOffParsing();
   2708       }
   2709 
   2710       if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
   2711         CCC = Sema::PCC_LocalDeclarationSpecifiers;
   2712       else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
   2713         CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
   2714                                     : Sema::PCC_Template;
   2715       else if (DSContext == DSC_class)
   2716         CCC = Sema::PCC_Class;
   2717       else if (CurParsedObjCImpl)
   2718         CCC = Sema::PCC_ObjCImplementation;
   2719 
   2720       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
   2721       return cutOffParsing();
   2722     }
   2723 
   2724     case tok::coloncolon: // ::foo::bar
   2725       // C++ scope specifier.  Annotate and loop, or bail out on error.
   2726       if (TryAnnotateCXXScopeToken(EnteringContext)) {
   2727         if (!DS.hasTypeSpecifier())
   2728           DS.SetTypeSpecError();
   2729         goto DoneWithDeclSpec;
   2730       }
   2731       if (Tok.is(tok::coloncolon)) // ::new or ::delete
   2732         goto DoneWithDeclSpec;
   2733       continue;
   2734 
   2735     case tok::annot_cxxscope: {
   2736       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
   2737         goto DoneWithDeclSpec;
   2738 
   2739       CXXScopeSpec SS;
   2740       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
   2741                                                    Tok.getAnnotationRange(),
   2742                                                    SS);
   2743 
   2744       // We are looking for a qualified typename.
   2745       Token Next = NextToken();
   2746       if (Next.is(tok::annot_template_id) &&
   2747           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
   2748             ->Kind == TNK_Type_template) {
   2749         // We have a qualified template-id, e.g., N::A<int>
   2750 
   2751         // C++ [class.qual]p2:
   2752         //   In a lookup in which the constructor is an acceptable lookup
   2753         //   result and the nested-name-specifier nominates a class C:
   2754         //
   2755         //     - if the name specified after the
   2756         //       nested-name-specifier, when looked up in C, is the
   2757         //       injected-class-name of C (Clause 9), or
   2758         //
   2759         //     - if the name specified after the nested-name-specifier
   2760         //       is the same as the identifier or the
   2761         //       simple-template-id's template-name in the last
   2762         //       component of the nested-name-specifier,
   2763         //
   2764         //   the name is instead considered to name the constructor of
   2765         //   class C.
   2766         //
   2767         // Thus, if the template-name is actually the constructor
   2768         // name, then the code is ill-formed; this interpretation is
   2769         // reinforced by the NAD status of core issue 635.
   2770         TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
   2771         if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
   2772             TemplateId->Name &&
   2773             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
   2774           if (isConstructorDeclarator(/*Unqualified*/false)) {
   2775             // The user meant this to be an out-of-line constructor
   2776             // definition, but template arguments are not allowed
   2777             // there.  Just allow this as a constructor; we'll
   2778             // complain about it later.
   2779             goto DoneWithDeclSpec;
   2780           }
   2781 
   2782           // The user meant this to name a type, but it actually names
   2783           // a constructor with some extraneous template
   2784           // arguments. Complain, then parse it as a type as the user
   2785           // intended.
   2786           Diag(TemplateId->TemplateNameLoc,
   2787                diag::err_out_of_line_template_id_type_names_constructor)
   2788             << TemplateId->Name << 0 /* template name */;
   2789         }
   2790 
   2791         DS.getTypeSpecScope() = SS;
   2792         ConsumeToken(); // The C++ scope.
   2793         assert(Tok.is(tok::annot_template_id) &&
   2794                "ParseOptionalCXXScopeSpecifier not working");
   2795         AnnotateTemplateIdTokenAsType();
   2796         continue;
   2797       }
   2798 
   2799       if (Next.is(tok::annot_typename)) {
   2800         DS.getTypeSpecScope() = SS;
   2801         ConsumeToken(); // The C++ scope.
   2802         if (Tok.getAnnotationValue()) {
   2803           ParsedType T = getTypeAnnotation(Tok);
   2804           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
   2805                                          Tok.getAnnotationEndLoc(),
   2806                                          PrevSpec, DiagID, T, Policy);
   2807           if (isInvalid)
   2808             break;
   2809         }
   2810         else
   2811           DS.SetTypeSpecError();
   2812         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
   2813         ConsumeToken(); // The typename
   2814       }
   2815 
   2816       if (Next.isNot(tok::identifier))
   2817         goto DoneWithDeclSpec;
   2818 
   2819       // If we're in a context where the identifier could be a class name,
   2820       // check whether this is a constructor declaration.
   2821       if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
   2822           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
   2823                                      &SS)) {
   2824         if (isConstructorDeclarator(/*Unqualified*/false))
   2825           goto DoneWithDeclSpec;
   2826 
   2827         // As noted in C++ [class.qual]p2 (cited above), when the name
   2828         // of the class is qualified in a context where it could name
   2829         // a constructor, its a constructor name. However, we've
   2830         // looked at the declarator, and the user probably meant this
   2831         // to be a type. Complain that it isn't supposed to be treated
   2832         // as a type, then proceed to parse it as a type.
   2833         Diag(Next.getLocation(),
   2834              diag::err_out_of_line_template_id_type_names_constructor)
   2835           << Next.getIdentifierInfo() << 1 /* type */;
   2836       }
   2837 
   2838       ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
   2839                                                Next.getLocation(),
   2840                                                getCurScope(), &SS,
   2841                                                false, false, ParsedType(),
   2842                                                /*IsCtorOrDtorName=*/false,
   2843                                                /*NonTrivialSourceInfo=*/true);
   2844 
   2845       // If the referenced identifier is not a type, then this declspec is
   2846       // erroneous: We already checked about that it has no type specifier, and
   2847       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
   2848       // typename.
   2849       if (!TypeRep) {
   2850         ConsumeToken();   // Eat the scope spec so the identifier is current.
   2851         ParsedAttributesWithRange Attrs(AttrFactory);
   2852         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
   2853           if (!Attrs.empty()) {
   2854             AttrsLastTime = true;
   2855             attrs.takeAllFrom(Attrs);
   2856           }
   2857           continue;
   2858         }
   2859         goto DoneWithDeclSpec;
   2860       }
   2861 
   2862       DS.getTypeSpecScope() = SS;
   2863       ConsumeToken(); // The C++ scope.
   2864 
   2865       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   2866                                      DiagID, TypeRep, Policy);
   2867       if (isInvalid)
   2868         break;
   2869 
   2870       DS.SetRangeEnd(Tok.getLocation());
   2871       ConsumeToken(); // The typename.
   2872 
   2873       continue;
   2874     }
   2875 
   2876     case tok::annot_typename: {
   2877       // If we've previously seen a tag definition, we were almost surely
   2878       // missing a semicolon after it.
   2879       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
   2880         goto DoneWithDeclSpec;
   2881 
   2882       if (Tok.getAnnotationValue()) {
   2883         ParsedType T = getTypeAnnotation(Tok);
   2884         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   2885                                        DiagID, T, Policy);
   2886       } else
   2887         DS.SetTypeSpecError();
   2888 
   2889       if (isInvalid)
   2890         break;
   2891 
   2892       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
   2893       ConsumeToken(); // The typename
   2894 
   2895       continue;
   2896     }
   2897 
   2898     case tok::kw___is_signed:
   2899       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
   2900       // typically treats it as a trait. If we see __is_signed as it appears
   2901       // in libstdc++, e.g.,
   2902       //
   2903       //   static const bool __is_signed;
   2904       //
   2905       // then treat __is_signed as an identifier rather than as a keyword.
   2906       if (DS.getTypeSpecType() == TST_bool &&
   2907           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
   2908           DS.getStorageClassSpec() == DeclSpec::SCS_static)
   2909         TryKeywordIdentFallback(true);
   2910 
   2911       // We're done with the declaration-specifiers.
   2912       goto DoneWithDeclSpec;
   2913 
   2914       // typedef-name
   2915     case tok::kw___super:
   2916     case tok::kw_decltype:
   2917     case tok::identifier: {
   2918       // This identifier can only be a typedef name if we haven't already seen
   2919       // a type-specifier.  Without this check we misparse:
   2920       //  typedef int X; struct Y { short X; };  as 'short int'.
   2921       if (DS.hasTypeSpecifier())
   2922         goto DoneWithDeclSpec;
   2923 
   2924       // In C++, check to see if this is a scope specifier like foo::bar::, if
   2925       // so handle it as such.  This is important for ctor parsing.
   2926       if (getLangOpts().CPlusPlus) {
   2927         if (TryAnnotateCXXScopeToken(EnteringContext)) {
   2928           DS.SetTypeSpecError();
   2929           goto DoneWithDeclSpec;
   2930         }
   2931         if (!Tok.is(tok::identifier))
   2932           continue;
   2933       }
   2934 
   2935       // Check for need to substitute AltiVec keyword tokens.
   2936       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
   2937         break;
   2938 
   2939       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
   2940       //                allow the use of a typedef name as a type specifier.
   2941       if (DS.isTypeAltiVecVector())
   2942         goto DoneWithDeclSpec;
   2943 
   2944       if (DSContext == DSC_objc_method_result && isObjCInstancetype()) {
   2945         ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
   2946         assert(TypeRep);
   2947         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   2948                                        DiagID, TypeRep, Policy);
   2949         if (isInvalid)
   2950           break;
   2951 
   2952         DS.SetRangeEnd(Loc);
   2953         ConsumeToken();
   2954         continue;
   2955       }
   2956 
   2957       ParsedType TypeRep =
   2958         Actions.getTypeName(*Tok.getIdentifierInfo(),
   2959                             Tok.getLocation(), getCurScope());
   2960 
   2961       // MSVC: If we weren't able to parse a default template argument, and it's
   2962       // just a simple identifier, create a DependentNameType.  This will allow
   2963       // us to defer the name lookup to template instantiation time, as long we
   2964       // forge a NestedNameSpecifier for the current context.
   2965       if (!TypeRep && DSContext == DSC_template_type_arg &&
   2966           getLangOpts().MSVCCompat && getCurScope()->isTemplateParamScope()) {
   2967         TypeRep = Actions.ActOnDelayedDefaultTemplateArg(
   2968             *Tok.getIdentifierInfo(), Tok.getLocation());
   2969       }
   2970 
   2971       // If this is not a typedef name, don't parse it as part of the declspec,
   2972       // it must be an implicit int or an error.
   2973       if (!TypeRep) {
   2974         ParsedAttributesWithRange Attrs(AttrFactory);
   2975         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
   2976           if (!Attrs.empty()) {
   2977             AttrsLastTime = true;
   2978             attrs.takeAllFrom(Attrs);
   2979           }
   2980           continue;
   2981         }
   2982         goto DoneWithDeclSpec;
   2983       }
   2984 
   2985       // If we're in a context where the identifier could be a class name,
   2986       // check whether this is a constructor declaration.
   2987       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
   2988           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
   2989           isConstructorDeclarator(/*Unqualified*/true))
   2990         goto DoneWithDeclSpec;
   2991 
   2992       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   2993                                      DiagID, TypeRep, Policy);
   2994       if (isInvalid)
   2995         break;
   2996 
   2997       DS.SetRangeEnd(Tok.getLocation());
   2998       ConsumeToken(); // The identifier
   2999 
   3000       // Objective-C supports type arguments and protocol references
   3001       // following an Objective-C object or object pointer
   3002       // type. Handle either one of them.
   3003       if (Tok.is(tok::less) && getLangOpts().ObjC1) {
   3004         SourceLocation NewEndLoc;
   3005         TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
   3006                                   Loc, TypeRep, /*consumeLastToken=*/true,
   3007                                   NewEndLoc);
   3008         if (NewTypeRep.isUsable()) {
   3009           DS.UpdateTypeRep(NewTypeRep.get());
   3010           DS.SetRangeEnd(NewEndLoc);
   3011         }
   3012       }
   3013 
   3014       // Need to support trailing type qualifiers (e.g. "id<p> const").
   3015       // If a type specifier follows, it will be diagnosed elsewhere.
   3016       continue;
   3017     }
   3018 
   3019       // type-name
   3020     case tok::annot_template_id: {
   3021       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
   3022       if (TemplateId->Kind != TNK_Type_template) {
   3023         // This template-id does not refer to a type name, so we're
   3024         // done with the type-specifiers.
   3025         goto DoneWithDeclSpec;
   3026       }
   3027 
   3028       // If we're in a context where the template-id could be a
   3029       // constructor name or specialization, check whether this is a
   3030       // constructor declaration.
   3031       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
   3032           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
   3033           isConstructorDeclarator(TemplateId->SS.isEmpty()))
   3034         goto DoneWithDeclSpec;
   3035 
   3036       // Turn the template-id annotation token into a type annotation
   3037       // token, then try again to parse it as a type-specifier.
   3038       AnnotateTemplateIdTokenAsType();
   3039       continue;
   3040     }
   3041 
   3042     // GNU attributes support.
   3043     case tok::kw___attribute:
   3044       ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
   3045       continue;
   3046 
   3047     // Microsoft declspec support.
   3048     case tok::kw___declspec:
   3049       ParseMicrosoftDeclSpecs(DS.getAttributes());
   3050       continue;
   3051 
   3052     // Microsoft single token adornments.
   3053     case tok::kw___forceinline: {
   3054       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
   3055       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
   3056       SourceLocation AttrNameLoc = Tok.getLocation();
   3057       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
   3058                                 nullptr, 0, AttributeList::AS_Keyword);
   3059       break;
   3060     }
   3061 
   3062     case tok::kw___sptr:
   3063     case tok::kw___uptr:
   3064     case tok::kw___ptr64:
   3065     case tok::kw___ptr32:
   3066     case tok::kw___w64:
   3067     case tok::kw___cdecl:
   3068     case tok::kw___stdcall:
   3069     case tok::kw___fastcall:
   3070     case tok::kw___thiscall:
   3071     case tok::kw___vectorcall:
   3072     case tok::kw___unaligned:
   3073       ParseMicrosoftTypeAttributes(DS.getAttributes());
   3074       continue;
   3075 
   3076     // Borland single token adornments.
   3077     case tok::kw___pascal:
   3078       ParseBorlandTypeAttributes(DS.getAttributes());
   3079       continue;
   3080 
   3081     // OpenCL single token adornments.
   3082     case tok::kw___kernel:
   3083       ParseOpenCLAttributes(DS.getAttributes());
   3084       continue;
   3085 
   3086     // Nullability type specifiers.
   3087     case tok::kw__Nonnull:
   3088     case tok::kw__Nullable:
   3089     case tok::kw__Null_unspecified:
   3090       ParseNullabilityTypeSpecifiers(DS.getAttributes());
   3091       continue;
   3092 
   3093     // Objective-C 'kindof' types.
   3094     case tok::kw___kindof:
   3095       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
   3096                                 nullptr, 0, AttributeList::AS_Keyword);
   3097       (void)ConsumeToken();
   3098       continue;
   3099 
   3100     // storage-class-specifier
   3101     case tok::kw_typedef:
   3102       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
   3103                                          PrevSpec, DiagID, Policy);
   3104       isStorageClass = true;
   3105       break;
   3106     case tok::kw_extern:
   3107       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
   3108         Diag(Tok, diag::ext_thread_before) << "extern";
   3109       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
   3110                                          PrevSpec, DiagID, Policy);
   3111       isStorageClass = true;
   3112       break;
   3113     case tok::kw___private_extern__:
   3114       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
   3115                                          Loc, PrevSpec, DiagID, Policy);
   3116       isStorageClass = true;
   3117       break;
   3118     case tok::kw_static:
   3119       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
   3120         Diag(Tok, diag::ext_thread_before) << "static";
   3121       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
   3122                                          PrevSpec, DiagID, Policy);
   3123       isStorageClass = true;
   3124       break;
   3125     case tok::kw_auto:
   3126       if (getLangOpts().CPlusPlus11) {
   3127         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
   3128           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
   3129                                              PrevSpec, DiagID, Policy);
   3130           if (!isInvalid)
   3131             Diag(Tok, diag::ext_auto_storage_class)
   3132               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   3133         } else
   3134           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
   3135                                          DiagID, Policy);
   3136       } else
   3137         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
   3138                                            PrevSpec, DiagID, Policy);
   3139       isStorageClass = true;
   3140       break;
   3141     case tok::kw___auto_type:
   3142       Diag(Tok, diag::ext_auto_type);
   3143       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
   3144                                      DiagID, Policy);
   3145       break;
   3146     case tok::kw_register:
   3147       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
   3148                                          PrevSpec, DiagID, Policy);
   3149       isStorageClass = true;
   3150       break;
   3151     case tok::kw_mutable:
   3152       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
   3153                                          PrevSpec, DiagID, Policy);
   3154       isStorageClass = true;
   3155       break;
   3156     case tok::kw___thread:
   3157       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
   3158                                                PrevSpec, DiagID);
   3159       isStorageClass = true;
   3160       break;
   3161     case tok::kw_thread_local:
   3162       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
   3163                                                PrevSpec, DiagID);
   3164       break;
   3165     case tok::kw__Thread_local:
   3166       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
   3167                                                Loc, PrevSpec, DiagID);
   3168       isStorageClass = true;
   3169       break;
   3170 
   3171     // function-specifier
   3172     case tok::kw_inline:
   3173       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
   3174       break;
   3175     case tok::kw_virtual:
   3176       isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
   3177       break;
   3178     case tok::kw_explicit:
   3179       isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
   3180       break;
   3181     case tok::kw__Noreturn:
   3182       if (!getLangOpts().C11)
   3183         Diag(Loc, diag::ext_c11_noreturn);
   3184       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
   3185       break;
   3186 
   3187     // alignment-specifier
   3188     case tok::kw__Alignas:
   3189       if (!getLangOpts().C11)
   3190         Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
   3191       ParseAlignmentSpecifier(DS.getAttributes());
   3192       continue;
   3193 
   3194     // friend
   3195     case tok::kw_friend:
   3196       if (DSContext == DSC_class)
   3197         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
   3198       else {
   3199         PrevSpec = ""; // not actually used by the diagnostic
   3200         DiagID = diag::err_friend_invalid_in_context;
   3201         isInvalid = true;
   3202       }
   3203       break;
   3204 
   3205     // Modules
   3206     case tok::kw___module_private__:
   3207       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
   3208       break;
   3209 
   3210     // constexpr
   3211     case tok::kw_constexpr:
   3212       isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
   3213       break;
   3214 
   3215     // concept
   3216     case tok::kw_concept:
   3217       isInvalid = DS.SetConceptSpec(Loc, PrevSpec, DiagID);
   3218       break;
   3219 
   3220     // type-specifier
   3221     case tok::kw_short:
   3222       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
   3223                                       DiagID, Policy);
   3224       break;
   3225     case tok::kw_long:
   3226       if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
   3227         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
   3228                                         DiagID, Policy);
   3229       else
   3230         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
   3231                                         DiagID, Policy);
   3232       break;
   3233     case tok::kw___int64:
   3234         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
   3235                                         DiagID, Policy);
   3236       break;
   3237     case tok::kw_signed:
   3238       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
   3239                                      DiagID);
   3240       break;
   3241     case tok::kw_unsigned:
   3242       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
   3243                                      DiagID);
   3244       break;
   3245     case tok::kw__Complex:
   3246       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
   3247                                         DiagID);
   3248       break;
   3249     case tok::kw__Imaginary:
   3250       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
   3251                                         DiagID);
   3252       break;
   3253     case tok::kw_void:
   3254       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
   3255                                      DiagID, Policy);
   3256       break;
   3257     case tok::kw_char:
   3258       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
   3259                                      DiagID, Policy);
   3260       break;
   3261     case tok::kw_int:
   3262       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
   3263                                      DiagID, Policy);
   3264       break;
   3265     case tok::kw___int128:
   3266       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
   3267                                      DiagID, Policy);
   3268       break;
   3269     case tok::kw_half:
   3270       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
   3271                                      DiagID, Policy);
   3272       break;
   3273     case tok::kw_float:
   3274       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
   3275                                      DiagID, Policy);
   3276       break;
   3277     case tok::kw_double:
   3278       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
   3279                                      DiagID, Policy);
   3280       break;
   3281     case tok::kw_wchar_t:
   3282       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
   3283                                      DiagID, Policy);
   3284       break;
   3285     case tok::kw_char16_t:
   3286       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
   3287                                      DiagID, Policy);
   3288       break;
   3289     case tok::kw_char32_t:
   3290       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
   3291                                      DiagID, Policy);
   3292       break;
   3293     case tok::kw_bool:
   3294     case tok::kw__Bool:
   3295       if (Tok.is(tok::kw_bool) &&
   3296           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
   3297           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
   3298         PrevSpec = ""; // Not used by the diagnostic.
   3299         DiagID = diag::err_bool_redeclaration;
   3300         // For better error recovery.
   3301         Tok.setKind(tok::identifier);
   3302         isInvalid = true;
   3303       } else {
   3304         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
   3305                                        DiagID, Policy);
   3306       }
   3307       break;
   3308     case tok::kw__Decimal32:
   3309       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
   3310                                      DiagID, Policy);
   3311       break;
   3312     case tok::kw__Decimal64:
   3313       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
   3314                                      DiagID, Policy);
   3315       break;
   3316     case tok::kw__Decimal128:
   3317       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
   3318                                      DiagID, Policy);
   3319       break;
   3320     case tok::kw___vector:
   3321       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
   3322       break;
   3323     case tok::kw___pixel:
   3324       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
   3325       break;
   3326     case tok::kw___bool:
   3327       isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
   3328       break;
   3329     case tok::kw___unknown_anytype:
   3330       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
   3331                                      PrevSpec, DiagID, Policy);
   3332       break;
   3333 
   3334     // class-specifier:
   3335     case tok::kw_class:
   3336     case tok::kw_struct:
   3337     case tok::kw___interface:
   3338     case tok::kw_union: {
   3339       tok::TokenKind Kind = Tok.getKind();
   3340       ConsumeToken();
   3341 
   3342       // These are attributes following class specifiers.
   3343       // To produce better diagnostic, we parse them when
   3344       // parsing class specifier.
   3345       ParsedAttributesWithRange Attributes(AttrFactory);
   3346       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
   3347                           EnteringContext, DSContext, Attributes);
   3348 
   3349       // If there are attributes following class specifier,
   3350       // take them over and handle them here.
   3351       if (!Attributes.empty()) {
   3352         AttrsLastTime = true;
   3353         attrs.takeAllFrom(Attributes);
   3354       }
   3355       continue;
   3356     }
   3357 
   3358     // enum-specifier:
   3359     case tok::kw_enum:
   3360       ConsumeToken();
   3361       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
   3362       continue;
   3363 
   3364     // cv-qualifier:
   3365     case tok::kw_const:
   3366       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
   3367                                  getLangOpts());
   3368       break;
   3369     case tok::kw_volatile:
   3370       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
   3371                                  getLangOpts());
   3372       break;
   3373     case tok::kw_restrict:
   3374       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
   3375                                  getLangOpts());
   3376       break;
   3377 
   3378     // C++ typename-specifier:
   3379     case tok::kw_typename:
   3380       if (TryAnnotateTypeOrScopeToken()) {
   3381         DS.SetTypeSpecError();
   3382         goto DoneWithDeclSpec;
   3383       }
   3384       if (!Tok.is(tok::kw_typename))
   3385         continue;
   3386       break;
   3387 
   3388     // GNU typeof support.
   3389     case tok::kw_typeof:
   3390       ParseTypeofSpecifier(DS);
   3391       continue;
   3392 
   3393     case tok::annot_decltype:
   3394       ParseDecltypeSpecifier(DS);
   3395       continue;
   3396 
   3397     case tok::kw___underlying_type:
   3398       ParseUnderlyingTypeSpecifier(DS);
   3399       continue;
   3400 
   3401     case tok::kw__Atomic:
   3402       // C11 6.7.2.4/4:
   3403       //   If the _Atomic keyword is immediately followed by a left parenthesis,
   3404       //   it is interpreted as a type specifier (with a type name), not as a
   3405       //   type qualifier.
   3406       if (NextToken().is(tok::l_paren)) {
   3407         ParseAtomicSpecifier(DS);
   3408         continue;
   3409       }
   3410       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
   3411                                  getLangOpts());
   3412       break;
   3413 
   3414     // OpenCL qualifiers:
   3415     case tok::kw___generic:
   3416       // generic address space is introduced only in OpenCL v2.0
   3417       // see OpenCL C Spec v2.0 s6.5.5
   3418       if (Actions.getLangOpts().OpenCLVersion < 200) {
   3419         DiagID = diag::err_opencl_unknown_type_specifier;
   3420         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
   3421         isInvalid = true;
   3422         break;
   3423       };
   3424     case tok::kw___private:
   3425     case tok::kw___global:
   3426     case tok::kw___local:
   3427     case tok::kw___constant:
   3428     case tok::kw___read_only:
   3429     case tok::kw___write_only:
   3430     case tok::kw___read_write:
   3431       ParseOpenCLQualifiers(DS.getAttributes());
   3432       break;
   3433 
   3434     case tok::less:
   3435       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
   3436       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
   3437       // but we support it.
   3438       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
   3439         goto DoneWithDeclSpec;
   3440 
   3441       SourceLocation StartLoc = Tok.getLocation();
   3442       SourceLocation EndLoc;
   3443       TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
   3444       if (Type.isUsable()) {
   3445         if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
   3446                                PrevSpec, DiagID, Type.get(),
   3447                                Actions.getASTContext().getPrintingPolicy()))
   3448           Diag(StartLoc, DiagID) << PrevSpec;
   3449 
   3450         DS.SetRangeEnd(EndLoc);
   3451       } else {
   3452         DS.SetTypeSpecError();
   3453       }
   3454 
   3455       // Need to support trailing type qualifiers (e.g. "id<p> const").
   3456       // If a type specifier follows, it will be diagnosed elsewhere.
   3457       continue;
   3458     }
   3459     // If the specifier wasn't legal, issue a diagnostic.
   3460     if (isInvalid) {
   3461       assert(PrevSpec && "Method did not return previous specifier!");
   3462       assert(DiagID);
   3463 
   3464       if (DiagID == diag::ext_duplicate_declspec)
   3465         Diag(Tok, DiagID)
   3466           << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
   3467       else if (DiagID == diag::err_opencl_unknown_type_specifier)
   3468         Diag(Tok, DiagID) << PrevSpec << isStorageClass;
   3469       else
   3470         Diag(Tok, DiagID) << PrevSpec;
   3471     }
   3472 
   3473     DS.SetRangeEnd(Tok.getLocation());
   3474     if (DiagID != diag::err_bool_redeclaration)
   3475       ConsumeToken();
   3476 
   3477     AttrsLastTime = false;
   3478   }
   3479 }
   3480 
   3481 /// ParseStructDeclaration - Parse a struct declaration without the terminating
   3482 /// semicolon.
   3483 ///
   3484 ///       struct-declaration:
   3485 ///         specifier-qualifier-list struct-declarator-list
   3486 /// [GNU]   __extension__ struct-declaration
   3487 /// [GNU]   specifier-qualifier-list
   3488 ///       struct-declarator-list:
   3489 ///         struct-declarator
   3490 ///         struct-declarator-list ',' struct-declarator
   3491 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
   3492 ///       struct-declarator:
   3493 ///         declarator
   3494 /// [GNU]   declarator attributes[opt]
   3495 ///         declarator[opt] ':' constant-expression
   3496 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
   3497 ///
   3498 void Parser::ParseStructDeclaration(
   3499     ParsingDeclSpec &DS,
   3500     llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
   3501 
   3502   if (Tok.is(tok::kw___extension__)) {
   3503     // __extension__ silences extension warnings in the subexpression.
   3504     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
   3505     ConsumeToken();
   3506     return ParseStructDeclaration(DS, FieldsCallback);
   3507   }
   3508 
   3509   // Parse the common specifier-qualifiers-list piece.
   3510   ParseSpecifierQualifierList(DS);
   3511 
   3512   // If there are no declarators, this is a free-standing declaration
   3513   // specifier. Let the actions module cope with it.
   3514   if (Tok.is(tok::semi)) {
   3515     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
   3516                                                        DS);
   3517     DS.complete(TheDecl);
   3518     return;
   3519   }
   3520 
   3521   // Read struct-declarators until we find the semicolon.
   3522   bool FirstDeclarator = true;
   3523   SourceLocation CommaLoc;
   3524   while (1) {
   3525     ParsingFieldDeclarator DeclaratorInfo(*this, DS);
   3526     DeclaratorInfo.D.setCommaLoc(CommaLoc);
   3527 
   3528     // Attributes are only allowed here on successive declarators.
   3529     if (!FirstDeclarator)
   3530       MaybeParseGNUAttributes(DeclaratorInfo.D);
   3531 
   3532     /// struct-declarator: declarator
   3533     /// struct-declarator: declarator[opt] ':' constant-expression
   3534     if (Tok.isNot(tok::colon)) {
   3535       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
   3536       ColonProtectionRAIIObject X(*this);
   3537       ParseDeclarator(DeclaratorInfo.D);
   3538     } else
   3539       DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
   3540 
   3541     if (TryConsumeToken(tok::colon)) {
   3542       ExprResult Res(ParseConstantExpression());
   3543       if (Res.isInvalid())
   3544         SkipUntil(tok::semi, StopBeforeMatch);
   3545       else
   3546         DeclaratorInfo.BitfieldSize = Res.get();
   3547     }
   3548 
   3549     // If attributes exist after the declarator, parse them.
   3550     MaybeParseGNUAttributes(DeclaratorInfo.D);
   3551 
   3552     // We're done with this declarator;  invoke the callback.
   3553     FieldsCallback(DeclaratorInfo);
   3554 
   3555     // If we don't have a comma, it is either the end of the list (a ';')
   3556     // or an error, bail out.
   3557     if (!TryConsumeToken(tok::comma, CommaLoc))
   3558       return;
   3559 
   3560     FirstDeclarator = false;
   3561   }
   3562 }
   3563 
   3564 /// ParseStructUnionBody
   3565 ///       struct-contents:
   3566 ///         struct-declaration-list
   3567 /// [EXT]   empty
   3568 /// [GNU]   "struct-declaration-list" without terminatoring ';'
   3569 ///       struct-declaration-list:
   3570 ///         struct-declaration
   3571 ///         struct-declaration-list struct-declaration
   3572 /// [OBC]   '@' 'defs' '(' class-name ')'
   3573 ///
   3574 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
   3575                                   unsigned TagType, Decl *TagDecl) {
   3576   PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
   3577                                       "parsing struct/union body");
   3578   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
   3579 
   3580   BalancedDelimiterTracker T(*this, tok::l_brace);
   3581   if (T.consumeOpen())
   3582     return;
   3583 
   3584   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
   3585   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
   3586 
   3587   SmallVector<Decl *, 32> FieldDecls;
   3588 
   3589   // While we still have something to read, read the declarations in the struct.
   3590   while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
   3591          Tok.isNot(tok::eof)) {
   3592     // Each iteration of this loop reads one struct-declaration.
   3593 
   3594     // Check for extraneous top-level semicolon.
   3595     if (Tok.is(tok::semi)) {
   3596       ConsumeExtraSemi(InsideStruct, TagType);
   3597       continue;
   3598     }
   3599 
   3600     // Parse _Static_assert declaration.
   3601     if (Tok.is(tok::kw__Static_assert)) {
   3602       SourceLocation DeclEnd;
   3603       ParseStaticAssertDeclaration(DeclEnd);
   3604       continue;
   3605     }
   3606 
   3607     if (Tok.is(tok::annot_pragma_pack)) {
   3608       HandlePragmaPack();
   3609       continue;
   3610     }
   3611 
   3612     if (Tok.is(tok::annot_pragma_align)) {
   3613       HandlePragmaAlign();
   3614       continue;
   3615     }
   3616 
   3617     if (Tok.is(tok::annot_pragma_openmp)) {
   3618       // Result can be ignored, because it must be always empty.
   3619       auto Res = ParseOpenMPDeclarativeDirective();
   3620       assert(!Res);
   3621       // Silence possible warnings.
   3622       (void)Res;
   3623       continue;
   3624     }
   3625     if (!Tok.is(tok::at)) {
   3626       auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
   3627         // Install the declarator into the current TagDecl.
   3628         Decl *Field =
   3629             Actions.ActOnField(getCurScope(), TagDecl,
   3630                                FD.D.getDeclSpec().getSourceRange().getBegin(),
   3631                                FD.D, FD.BitfieldSize);
   3632         FieldDecls.push_back(Field);
   3633         FD.complete(Field);
   3634       };
   3635 
   3636       // Parse all the comma separated declarators.
   3637       ParsingDeclSpec DS(*this);
   3638       ParseStructDeclaration(DS, CFieldCallback);
   3639     } else { // Handle @defs
   3640       ConsumeToken();
   3641       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
   3642         Diag(Tok, diag::err_unexpected_at);
   3643         SkipUntil(tok::semi);
   3644         continue;
   3645       }
   3646       ConsumeToken();
   3647       ExpectAndConsume(tok::l_paren);
   3648       if (!Tok.is(tok::identifier)) {
   3649         Diag(Tok, diag::err_expected) << tok::identifier;
   3650         SkipUntil(tok::semi);
   3651         continue;
   3652       }
   3653       SmallVector<Decl *, 16> Fields;
   3654       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
   3655                         Tok.getIdentifierInfo(), Fields);
   3656       FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
   3657       ConsumeToken();
   3658       ExpectAndConsume(tok::r_paren);
   3659     }
   3660 
   3661     if (TryConsumeToken(tok::semi))
   3662       continue;
   3663 
   3664     if (Tok.is(tok::r_brace)) {
   3665       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
   3666       break;
   3667     }
   3668 
   3669     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
   3670     // Skip to end of block or statement to avoid ext-warning on extra ';'.
   3671     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
   3672     // If we stopped at a ';', eat it.
   3673     TryConsumeToken(tok::semi);
   3674   }
   3675 
   3676   T.consumeClose();
   3677 
   3678   ParsedAttributes attrs(AttrFactory);
   3679   // If attributes exist after struct contents, parse them.
   3680   MaybeParseGNUAttributes(attrs);
   3681 
   3682   Actions.ActOnFields(getCurScope(),
   3683                       RecordLoc, TagDecl, FieldDecls,
   3684                       T.getOpenLocation(), T.getCloseLocation(),
   3685                       attrs.getList());
   3686   StructScope.Exit();
   3687   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
   3688                                    T.getCloseLocation());
   3689 }
   3690 
   3691 /// ParseEnumSpecifier
   3692 ///       enum-specifier: [C99 6.7.2.2]
   3693 ///         'enum' identifier[opt] '{' enumerator-list '}'
   3694 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
   3695 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
   3696 ///                                                 '}' attributes[opt]
   3697 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
   3698 ///                                                 '}'
   3699 ///         'enum' identifier
   3700 /// [GNU]   'enum' attributes[opt] identifier
   3701 ///
   3702 /// [C++11] enum-head '{' enumerator-list[opt] '}'
   3703 /// [C++11] enum-head '{' enumerator-list ','  '}'
   3704 ///
   3705 ///       enum-head: [C++11]
   3706 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
   3707 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
   3708 ///             identifier enum-base[opt]
   3709 ///
   3710 ///       enum-key: [C++11]
   3711 ///         'enum'
   3712 ///         'enum' 'class'
   3713 ///         'enum' 'struct'
   3714 ///
   3715 ///       enum-base: [C++11]
   3716 ///         ':' type-specifier-seq
   3717 ///
   3718 /// [C++] elaborated-type-specifier:
   3719 /// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
   3720 ///
   3721 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
   3722                                 const ParsedTemplateInfo &TemplateInfo,
   3723                                 AccessSpecifier AS, DeclSpecContext DSC) {
   3724   // Parse the tag portion of this.
   3725   if (Tok.is(tok::code_completion)) {
   3726     // Code completion for an enum name.
   3727     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
   3728     return cutOffParsing();
   3729   }
   3730 
   3731   // If attributes exist after tag, parse them.
   3732   ParsedAttributesWithRange attrs(AttrFactory);
   3733   MaybeParseGNUAttributes(attrs);
   3734   MaybeParseCXX11Attributes(attrs);
   3735   MaybeParseMicrosoftDeclSpecs(attrs);
   3736 
   3737   SourceLocation ScopedEnumKWLoc;
   3738   bool IsScopedUsingClassTag = false;
   3739 
   3740   // In C++11, recognize 'enum class' and 'enum struct'.
   3741   if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
   3742     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
   3743                                         : diag::ext_scoped_enum);
   3744     IsScopedUsingClassTag = Tok.is(tok::kw_class);
   3745     ScopedEnumKWLoc = ConsumeToken();
   3746 
   3747     // Attributes are not allowed between these keywords.  Diagnose,
   3748     // but then just treat them like they appeared in the right place.
   3749     ProhibitAttributes(attrs);
   3750 
   3751     // They are allowed afterwards, though.
   3752     MaybeParseGNUAttributes(attrs);
   3753     MaybeParseCXX11Attributes(attrs);
   3754     MaybeParseMicrosoftDeclSpecs(attrs);
   3755   }
   3756 
   3757   // C++11 [temp.explicit]p12:
   3758   //   The usual access controls do not apply to names used to specify
   3759   //   explicit instantiations.
   3760   // We extend this to also cover explicit specializations.  Note that
   3761   // we don't suppress if this turns out to be an elaborated type
   3762   // specifier.
   3763   bool shouldDelayDiagsInTag =
   3764     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
   3765      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
   3766   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
   3767 
   3768   // Enum definitions should not be parsed in a trailing-return-type.
   3769   bool AllowDeclaration = DSC != DSC_trailing;
   3770 
   3771   bool AllowFixedUnderlyingType = AllowDeclaration &&
   3772     (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
   3773      getLangOpts().ObjC2);
   3774 
   3775   CXXScopeSpec &SS = DS.getTypeSpecScope();
   3776   if (getLangOpts().CPlusPlus) {
   3777     // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
   3778     // if a fixed underlying type is allowed.
   3779     ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
   3780 
   3781     CXXScopeSpec Spec;
   3782     if (ParseOptionalCXXScopeSpecifier(Spec, ParsedType(),
   3783                                        /*EnteringContext=*/true))
   3784       return;
   3785 
   3786     if (Spec.isSet() && Tok.isNot(tok::identifier)) {
   3787       Diag(Tok, diag::err_expected) << tok::identifier;
   3788       if (Tok.isNot(tok::l_brace)) {
   3789         // Has no name and is not a definition.
   3790         // Skip the rest of this declarator, up until the comma or semicolon.
   3791         SkipUntil(tok::comma, StopAtSemi);
   3792         return;
   3793       }
   3794     }
   3795 
   3796     SS = Spec;
   3797   }
   3798 
   3799   // Must have either 'enum name' or 'enum {...}'.
   3800   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
   3801       !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
   3802     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
   3803 
   3804     // Skip the rest of this declarator, up until the comma or semicolon.
   3805     SkipUntil(tok::comma, StopAtSemi);
   3806     return;
   3807   }
   3808 
   3809   // If an identifier is present, consume and remember it.
   3810   IdentifierInfo *Name = nullptr;
   3811   SourceLocation NameLoc;
   3812   if (Tok.is(tok::identifier)) {
   3813     Name = Tok.getIdentifierInfo();
   3814     NameLoc = ConsumeToken();
   3815   }
   3816 
   3817   if (!Name && ScopedEnumKWLoc.isValid()) {
   3818     // C++0x 7.2p2: The optional identifier shall not be omitted in the
   3819     // declaration of a scoped enumeration.
   3820     Diag(Tok, diag::err_scoped_enum_missing_identifier);
   3821     ScopedEnumKWLoc = SourceLocation();
   3822     IsScopedUsingClassTag = false;
   3823   }
   3824 
   3825   // Okay, end the suppression area.  We'll decide whether to emit the
   3826   // diagnostics in a second.
   3827   if (shouldDelayDiagsInTag)
   3828     diagsFromTag.done();
   3829 
   3830   TypeResult BaseType;
   3831 
   3832   // Parse the fixed underlying type.
   3833   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
   3834   if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
   3835     bool PossibleBitfield = false;
   3836     if (CanBeBitfield) {
   3837       // If we're in class scope, this can either be an enum declaration with
   3838       // an underlying type, or a declaration of a bitfield member. We try to
   3839       // use a simple disambiguation scheme first to catch the common cases
   3840       // (integer literal, sizeof); if it's still ambiguous, we then consider
   3841       // anything that's a simple-type-specifier followed by '(' as an
   3842       // expression. This suffices because function types are not valid
   3843       // underlying types anyway.
   3844       EnterExpressionEvaluationContext Unevaluated(Actions,
   3845                                                    Sema::ConstantEvaluated);
   3846       TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
   3847       // If the next token starts an expression, we know we're parsing a
   3848       // bit-field. This is the common case.
   3849       if (TPR == TPResult::True)
   3850         PossibleBitfield = true;
   3851       // If the next token starts a type-specifier-seq, it may be either a
   3852       // a fixed underlying type or the start of a function-style cast in C++;
   3853       // lookahead one more token to see if it's obvious that we have a
   3854       // fixed underlying type.
   3855       else if (TPR == TPResult::False &&
   3856                GetLookAheadToken(2).getKind() == tok::semi) {
   3857         // Consume the ':'.
   3858         ConsumeToken();
   3859       } else {
   3860         // We have the start of a type-specifier-seq, so we have to perform
   3861         // tentative parsing to determine whether we have an expression or a
   3862         // type.
   3863         TentativeParsingAction TPA(*this);
   3864 
   3865         // Consume the ':'.
   3866         ConsumeToken();
   3867 
   3868         // If we see a type specifier followed by an open-brace, we have an
   3869         // ambiguity between an underlying type and a C++11 braced
   3870         // function-style cast. Resolve this by always treating it as an
   3871         // underlying type.
   3872         // FIXME: The standard is not entirely clear on how to disambiguate in
   3873         // this case.
   3874         if ((getLangOpts().CPlusPlus &&
   3875              isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
   3876             (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
   3877           // We'll parse this as a bitfield later.
   3878           PossibleBitfield = true;
   3879           TPA.Revert();
   3880         } else {
   3881           // We have a type-specifier-seq.
   3882           TPA.Commit();
   3883         }
   3884       }
   3885     } else {
   3886       // Consume the ':'.
   3887       ConsumeToken();
   3888     }
   3889 
   3890     if (!PossibleBitfield) {
   3891       SourceRange Range;
   3892       BaseType = ParseTypeName(&Range);
   3893 
   3894       if (getLangOpts().CPlusPlus11) {
   3895         Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
   3896       } else if (!getLangOpts().ObjC2) {
   3897         if (getLangOpts().CPlusPlus)
   3898           Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
   3899         else
   3900           Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
   3901       }
   3902     }
   3903   }
   3904 
   3905   // There are four options here.  If we have 'friend enum foo;' then this is a
   3906   // friend declaration, and cannot have an accompanying definition. If we have
   3907   // 'enum foo;', then this is a forward declaration.  If we have
   3908   // 'enum foo {...' then this is a definition. Otherwise we have something
   3909   // like 'enum foo xyz', a reference.
   3910   //
   3911   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
   3912   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
   3913   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
   3914   //
   3915   Sema::TagUseKind TUK;
   3916   if (!AllowDeclaration) {
   3917     TUK = Sema::TUK_Reference;
   3918   } else if (Tok.is(tok::l_brace)) {
   3919     if (DS.isFriendSpecified()) {
   3920       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
   3921         << SourceRange(DS.getFriendSpecLoc());
   3922       ConsumeBrace();
   3923       SkipUntil(tok::r_brace, StopAtSemi);
   3924       TUK = Sema::TUK_Friend;
   3925     } else {
   3926       TUK = Sema::TUK_Definition;
   3927     }
   3928   } else if (!isTypeSpecifier(DSC) &&
   3929              (Tok.is(tok::semi) ||
   3930               (Tok.isAtStartOfLine() &&
   3931                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
   3932     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
   3933     if (Tok.isNot(tok::semi)) {
   3934       // A semicolon was missing after this declaration. Diagnose and recover.
   3935       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
   3936       PP.EnterToken(Tok);
   3937       Tok.setKind(tok::semi);
   3938     }
   3939   } else {
   3940     TUK = Sema::TUK_Reference;
   3941   }
   3942 
   3943   // If this is an elaborated type specifier, and we delayed
   3944   // diagnostics before, just merge them into the current pool.
   3945   if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
   3946     diagsFromTag.redelay();
   3947   }
   3948 
   3949   MultiTemplateParamsArg TParams;
   3950   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
   3951       TUK != Sema::TUK_Reference) {
   3952     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
   3953       // Skip the rest of this declarator, up until the comma or semicolon.
   3954       Diag(Tok, diag::err_enum_template);
   3955       SkipUntil(tok::comma, StopAtSemi);
   3956       return;
   3957     }
   3958 
   3959     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
   3960       // Enumerations can't be explicitly instantiated.
   3961       DS.SetTypeSpecError();
   3962       Diag(StartLoc, diag::err_explicit_instantiation_enum);
   3963       return;
   3964     }
   3965 
   3966     assert(TemplateInfo.TemplateParams && "no template parameters");
   3967     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
   3968                                      TemplateInfo.TemplateParams->size());
   3969   }
   3970 
   3971   if (TUK == Sema::TUK_Reference)
   3972     ProhibitAttributes(attrs);
   3973 
   3974   if (!Name && TUK != Sema::TUK_Definition) {
   3975     Diag(Tok, diag::err_enumerator_unnamed_no_def);
   3976 
   3977     // Skip the rest of this declarator, up until the comma or semicolon.
   3978     SkipUntil(tok::comma, StopAtSemi);
   3979     return;
   3980   }
   3981 
   3982   handleDeclspecAlignBeforeClassKey(attrs, DS, TUK);
   3983 
   3984   Sema::SkipBodyInfo SkipBody;
   3985   if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
   3986       NextToken().is(tok::identifier))
   3987     SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
   3988                                               NextToken().getIdentifierInfo(),
   3989                                               NextToken().getLocation());
   3990 
   3991   bool Owned = false;
   3992   bool IsDependent = false;
   3993   const char *PrevSpec = nullptr;
   3994   unsigned DiagID;
   3995   Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
   3996                                    StartLoc, SS, Name, NameLoc, attrs.getList(),
   3997                                    AS, DS.getModulePrivateSpecLoc(), TParams,
   3998                                    Owned, IsDependent, ScopedEnumKWLoc,
   3999                                    IsScopedUsingClassTag, BaseType,
   4000                                    DSC == DSC_type_specifier, &SkipBody);
   4001 
   4002   if (SkipBody.ShouldSkip) {
   4003     assert(TUK == Sema::TUK_Definition && "can only skip a definition");
   4004 
   4005     BalancedDelimiterTracker T(*this, tok::l_brace);
   4006     T.consumeOpen();
   4007     T.skipToEnd();
   4008 
   4009     if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
   4010                            NameLoc.isValid() ? NameLoc : StartLoc,
   4011                            PrevSpec, DiagID, TagDecl, Owned,
   4012                            Actions.getASTContext().getPrintingPolicy()))
   4013       Diag(StartLoc, DiagID) << PrevSpec;
   4014     return;
   4015   }
   4016 
   4017   if (IsDependent) {
   4018     // This enum has a dependent nested-name-specifier. Handle it as a
   4019     // dependent tag.
   4020     if (!Name) {
   4021       DS.SetTypeSpecError();
   4022       Diag(Tok, diag::err_expected_type_name_after_typename);
   4023       return;
   4024     }
   4025 
   4026     TypeResult Type = Actions.ActOnDependentTag(
   4027         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
   4028     if (Type.isInvalid()) {
   4029       DS.SetTypeSpecError();
   4030       return;
   4031     }
   4032 
   4033     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
   4034                            NameLoc.isValid() ? NameLoc : StartLoc,
   4035                            PrevSpec, DiagID, Type.get(),
   4036                            Actions.getASTContext().getPrintingPolicy()))
   4037       Diag(StartLoc, DiagID) << PrevSpec;
   4038 
   4039     return;
   4040   }
   4041 
   4042   if (!TagDecl) {
   4043     // The action failed to produce an enumeration tag. If this is a
   4044     // definition, consume the entire definition.
   4045     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
   4046       ConsumeBrace();
   4047       SkipUntil(tok::r_brace, StopAtSemi);
   4048     }
   4049 
   4050     DS.SetTypeSpecError();
   4051     return;
   4052   }
   4053 
   4054   if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
   4055     ParseEnumBody(StartLoc, TagDecl);
   4056 
   4057   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
   4058                          NameLoc.isValid() ? NameLoc : StartLoc,
   4059                          PrevSpec, DiagID, TagDecl, Owned,
   4060                          Actions.getASTContext().getPrintingPolicy()))
   4061     Diag(StartLoc, DiagID) << PrevSpec;
   4062 }
   4063 
   4064 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
   4065 ///       enumerator-list:
   4066 ///         enumerator
   4067 ///         enumerator-list ',' enumerator
   4068 ///       enumerator:
   4069 ///         enumeration-constant attributes[opt]
   4070 ///         enumeration-constant attributes[opt] '=' constant-expression
   4071 ///       enumeration-constant:
   4072 ///         identifier
   4073 ///
   4074 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
   4075   // Enter the scope of the enum body and start the definition.
   4076   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
   4077   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
   4078 
   4079   BalancedDelimiterTracker T(*this, tok::l_brace);
   4080   T.consumeOpen();
   4081 
   4082   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
   4083   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
   4084     Diag(Tok, diag::error_empty_enum);
   4085 
   4086   SmallVector<Decl *, 32> EnumConstantDecls;
   4087   SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
   4088 
   4089   Decl *LastEnumConstDecl = nullptr;
   4090 
   4091   // Parse the enumerator-list.
   4092   while (Tok.isNot(tok::r_brace)) {
   4093     // Parse enumerator. If failed, try skipping till the start of the next
   4094     // enumerator definition.
   4095     if (Tok.isNot(tok::identifier)) {
   4096       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
   4097       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
   4098           TryConsumeToken(tok::comma))
   4099         continue;
   4100       break;
   4101     }
   4102     IdentifierInfo *Ident = Tok.getIdentifierInfo();
   4103     SourceLocation IdentLoc = ConsumeToken();
   4104 
   4105     // If attributes exist after the enumerator, parse them.
   4106     ParsedAttributesWithRange attrs(AttrFactory);
   4107     MaybeParseGNUAttributes(attrs);
   4108     ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
   4109     if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
   4110       if (!getLangOpts().CPlusPlus1z)
   4111         Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
   4112             << 1 /*enumerator*/;
   4113       ParseCXX11Attributes(attrs);
   4114     }
   4115 
   4116     SourceLocation EqualLoc;
   4117     ExprResult AssignedVal;
   4118     EnumAvailabilityDiags.emplace_back(*this);
   4119 
   4120     if (TryConsumeToken(tok::equal, EqualLoc)) {
   4121       AssignedVal = ParseConstantExpression();
   4122       if (AssignedVal.isInvalid())
   4123         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
   4124     }
   4125 
   4126     // Install the enumerator constant into EnumDecl.
   4127     Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
   4128                                                     LastEnumConstDecl,
   4129                                                     IdentLoc, Ident,
   4130                                                     attrs.getList(), EqualLoc,
   4131                                                     AssignedVal.get());
   4132     EnumAvailabilityDiags.back().done();
   4133 
   4134     EnumConstantDecls.push_back(EnumConstDecl);
   4135     LastEnumConstDecl = EnumConstDecl;
   4136 
   4137     if (Tok.is(tok::identifier)) {
   4138       // We're missing a comma between enumerators.
   4139       SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
   4140       Diag(Loc, diag::err_enumerator_list_missing_comma)
   4141         << FixItHint::CreateInsertion(Loc, ", ");
   4142       continue;
   4143     }
   4144 
   4145     // Emumerator definition must be finished, only comma or r_brace are
   4146     // allowed here.
   4147     SourceLocation CommaLoc;
   4148     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
   4149       if (EqualLoc.isValid())
   4150         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
   4151                                                            << tok::comma;
   4152       else
   4153         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
   4154       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
   4155         if (TryConsumeToken(tok::comma, CommaLoc))
   4156           continue;
   4157       } else {
   4158         break;
   4159       }
   4160     }
   4161 
   4162     // If comma is followed by r_brace, emit appropriate warning.
   4163     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
   4164       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
   4165         Diag(CommaLoc, getLangOpts().CPlusPlus ?
   4166                diag::ext_enumerator_list_comma_cxx :
   4167                diag::ext_enumerator_list_comma_c)
   4168           << FixItHint::CreateRemoval(CommaLoc);
   4169       else if (getLangOpts().CPlusPlus11)
   4170         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
   4171           << FixItHint::CreateRemoval(CommaLoc);
   4172       break;
   4173     }
   4174   }
   4175 
   4176   // Eat the }.
   4177   T.consumeClose();
   4178 
   4179   // If attributes exist after the identifier list, parse them.
   4180   ParsedAttributes attrs(AttrFactory);
   4181   MaybeParseGNUAttributes(attrs);
   4182 
   4183   Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
   4184                         EnumDecl, EnumConstantDecls,
   4185                         getCurScope(),
   4186                         attrs.getList());
   4187 
   4188   // Now handle enum constant availability diagnostics.
   4189   assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
   4190   for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
   4191     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
   4192     EnumAvailabilityDiags[i].redelay();
   4193     PD.complete(EnumConstantDecls[i]);
   4194   }
   4195 
   4196   EnumScope.Exit();
   4197   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
   4198                                    T.getCloseLocation());
   4199 
   4200   // The next token must be valid after an enum definition. If not, a ';'
   4201   // was probably forgotten.
   4202   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
   4203   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
   4204     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
   4205     // Push this token back into the preprocessor and change our current token
   4206     // to ';' so that the rest of the code recovers as though there were an
   4207     // ';' after the definition.
   4208     PP.EnterToken(Tok);
   4209     Tok.setKind(tok::semi);
   4210   }
   4211 }
   4212 
   4213 /// isTypeSpecifierQualifier - Return true if the current token could be the
   4214 /// start of a type-qualifier-list.
   4215 bool Parser::isTypeQualifier() const {
   4216   switch (Tok.getKind()) {
   4217   default: return false;
   4218   // type-qualifier
   4219   case tok::kw_const:
   4220   case tok::kw_volatile:
   4221   case tok::kw_restrict:
   4222   case tok::kw___private:
   4223   case tok::kw___local:
   4224   case tok::kw___global:
   4225   case tok::kw___constant:
   4226   case tok::kw___generic:
   4227   case tok::kw___read_only:
   4228   case tok::kw___read_write:
   4229   case tok::kw___write_only:
   4230     return true;
   4231   }
   4232 }
   4233 
   4234 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
   4235 /// is definitely a type-specifier.  Return false if it isn't part of a type
   4236 /// specifier or if we're not sure.
   4237 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
   4238   switch (Tok.getKind()) {
   4239   default: return false;
   4240     // type-specifiers
   4241   case tok::kw_short:
   4242   case tok::kw_long:
   4243   case tok::kw___int64:
   4244   case tok::kw___int128:
   4245   case tok::kw_signed:
   4246   case tok::kw_unsigned:
   4247   case tok::kw__Complex:
   4248   case tok::kw__Imaginary:
   4249   case tok::kw_void:
   4250   case tok::kw_char:
   4251   case tok::kw_wchar_t:
   4252   case tok::kw_char16_t:
   4253   case tok::kw_char32_t:
   4254   case tok::kw_int:
   4255   case tok::kw_half:
   4256   case tok::kw_float:
   4257   case tok::kw_double:
   4258   case tok::kw_bool:
   4259   case tok::kw__Bool:
   4260   case tok::kw__Decimal32:
   4261   case tok::kw__Decimal64:
   4262   case tok::kw__Decimal128:
   4263   case tok::kw___vector:
   4264 
   4265     // struct-or-union-specifier (C99) or class-specifier (C++)
   4266   case tok::kw_class:
   4267   case tok::kw_struct:
   4268   case tok::kw___interface:
   4269   case tok::kw_union:
   4270     // enum-specifier
   4271   case tok::kw_enum:
   4272 
   4273     // typedef-name
   4274   case tok::annot_typename:
   4275     return true;
   4276   }
   4277 }
   4278 
   4279 /// isTypeSpecifierQualifier - Return true if the current token could be the
   4280 /// start of a specifier-qualifier-list.
   4281 bool Parser::isTypeSpecifierQualifier() {
   4282   switch (Tok.getKind()) {
   4283   default: return false;
   4284 
   4285   case tok::identifier:   // foo::bar
   4286     if (TryAltiVecVectorToken())
   4287       return true;
   4288     // Fall through.
   4289   case tok::kw_typename:  // typename T::type
   4290     // Annotate typenames and C++ scope specifiers.  If we get one, just
   4291     // recurse to handle whatever we get.
   4292     if (TryAnnotateTypeOrScopeToken())
   4293       return true;
   4294     if (Tok.is(tok::identifier))
   4295       return false;
   4296     return isTypeSpecifierQualifier();
   4297 
   4298   case tok::coloncolon:   // ::foo::bar
   4299     if (NextToken().is(tok::kw_new) ||    // ::new
   4300         NextToken().is(tok::kw_delete))   // ::delete
   4301       return false;
   4302 
   4303     if (TryAnnotateTypeOrScopeToken())
   4304       return true;
   4305     return isTypeSpecifierQualifier();
   4306 
   4307     // GNU attributes support.
   4308   case tok::kw___attribute:
   4309     // GNU typeof support.
   4310   case tok::kw_typeof:
   4311 
   4312     // type-specifiers
   4313   case tok::kw_short:
   4314   case tok::kw_long:
   4315   case tok::kw___int64:
   4316   case tok::kw___int128:
   4317   case tok::kw_signed:
   4318   case tok::kw_unsigned:
   4319   case tok::kw__Complex:
   4320   case tok::kw__Imaginary:
   4321   case tok::kw_void:
   4322   case tok::kw_char:
   4323   case tok::kw_wchar_t:
   4324   case tok::kw_char16_t:
   4325   case tok::kw_char32_t:
   4326   case tok::kw_int:
   4327   case tok::kw_half:
   4328   case tok::kw_float:
   4329   case tok::kw_double:
   4330   case tok::kw_bool:
   4331   case tok::kw__Bool:
   4332   case tok::kw__Decimal32:
   4333   case tok::kw__Decimal64:
   4334   case tok::kw__Decimal128:
   4335   case tok::kw___vector:
   4336 
   4337     // struct-or-union-specifier (C99) or class-specifier (C++)
   4338   case tok::kw_class:
   4339   case tok::kw_struct:
   4340   case tok::kw___interface:
   4341   case tok::kw_union:
   4342     // enum-specifier
   4343   case tok::kw_enum:
   4344 
   4345     // type-qualifier
   4346   case tok::kw_const:
   4347   case tok::kw_volatile:
   4348   case tok::kw_restrict:
   4349 
   4350     // Debugger support.
   4351   case tok::kw___unknown_anytype:
   4352 
   4353     // typedef-name
   4354   case tok::annot_typename:
   4355     return true;
   4356 
   4357     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
   4358   case tok::less:
   4359     return getLangOpts().ObjC1;
   4360 
   4361   case tok::kw___cdecl:
   4362   case tok::kw___stdcall:
   4363   case tok::kw___fastcall:
   4364   case tok::kw___thiscall:
   4365   case tok::kw___vectorcall:
   4366   case tok::kw___w64:
   4367   case tok::kw___ptr64:
   4368   case tok::kw___ptr32:
   4369   case tok::kw___pascal:
   4370   case tok::kw___unaligned:
   4371 
   4372   case tok::kw__Nonnull:
   4373   case tok::kw__Nullable:
   4374   case tok::kw__Null_unspecified:
   4375 
   4376   case tok::kw___kindof:
   4377 
   4378   case tok::kw___private:
   4379   case tok::kw___local:
   4380   case tok::kw___global:
   4381   case tok::kw___constant:
   4382   case tok::kw___generic:
   4383   case tok::kw___read_only:
   4384   case tok::kw___read_write:
   4385   case tok::kw___write_only:
   4386 
   4387     return true;
   4388 
   4389   // C11 _Atomic
   4390   case tok::kw__Atomic:
   4391     return true;
   4392   }
   4393 }
   4394 
   4395 /// isDeclarationSpecifier() - Return true if the current token is part of a
   4396 /// declaration specifier.
   4397 ///
   4398 /// \param DisambiguatingWithExpression True to indicate that the purpose of
   4399 /// this check is to disambiguate between an expression and a declaration.
   4400 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
   4401   switch (Tok.getKind()) {
   4402   default: return false;
   4403 
   4404   case tok::identifier:   // foo::bar
   4405     // Unfortunate hack to support "Class.factoryMethod" notation.
   4406     if (getLangOpts().ObjC1 && NextToken().is(tok::period))
   4407       return false;
   4408     if (TryAltiVecVectorToken())
   4409       return true;
   4410     // Fall through.
   4411   case tok::kw_decltype: // decltype(T())::type
   4412   case tok::kw_typename: // typename T::type
   4413     // Annotate typenames and C++ scope specifiers.  If we get one, just
   4414     // recurse to handle whatever we get.
   4415     if (TryAnnotateTypeOrScopeToken())
   4416       return true;
   4417     if (Tok.is(tok::identifier))
   4418       return false;
   4419 
   4420     // If we're in Objective-C and we have an Objective-C class type followed
   4421     // by an identifier and then either ':' or ']', in a place where an
   4422     // expression is permitted, then this is probably a class message send
   4423     // missing the initial '['. In this case, we won't consider this to be
   4424     // the start of a declaration.
   4425     if (DisambiguatingWithExpression &&
   4426         isStartOfObjCClassMessageMissingOpenBracket())
   4427       return false;
   4428 
   4429     return isDeclarationSpecifier();
   4430 
   4431   case tok::coloncolon:   // ::foo::bar
   4432     if (NextToken().is(tok::kw_new) ||    // ::new
   4433         NextToken().is(tok::kw_delete))   // ::delete
   4434       return false;
   4435 
   4436     // Annotate typenames and C++ scope specifiers.  If we get one, just
   4437     // recurse to handle whatever we get.
   4438     if (TryAnnotateTypeOrScopeToken())
   4439       return true;
   4440     return isDeclarationSpecifier();
   4441 
   4442     // storage-class-specifier
   4443   case tok::kw_typedef:
   4444   case tok::kw_extern:
   4445   case tok::kw___private_extern__:
   4446   case tok::kw_static:
   4447   case tok::kw_auto:
   4448   case tok::kw___auto_type:
   4449   case tok::kw_register:
   4450   case tok::kw___thread:
   4451   case tok::kw_thread_local:
   4452   case tok::kw__Thread_local:
   4453 
   4454     // Modules
   4455   case tok::kw___module_private__:
   4456 
   4457     // Debugger support
   4458   case tok::kw___unknown_anytype:
   4459 
   4460     // type-specifiers
   4461   case tok::kw_short:
   4462   case tok::kw_long:
   4463   case tok::kw___int64:
   4464   case tok::kw___int128:
   4465   case tok::kw_signed:
   4466   case tok::kw_unsigned:
   4467   case tok::kw__Complex:
   4468   case tok::kw__Imaginary:
   4469   case tok::kw_void:
   4470   case tok::kw_char:
   4471   case tok::kw_wchar_t:
   4472   case tok::kw_char16_t:
   4473   case tok::kw_char32_t:
   4474 
   4475   case tok::kw_int:
   4476   case tok::kw_half:
   4477   case tok::kw_float:
   4478   case tok::kw_double:
   4479   case tok::kw_bool:
   4480   case tok::kw__Bool:
   4481   case tok::kw__Decimal32:
   4482   case tok::kw__Decimal64:
   4483   case tok::kw__Decimal128:
   4484   case tok::kw___vector:
   4485 
   4486     // struct-or-union-specifier (C99) or class-specifier (C++)
   4487   case tok::kw_class:
   4488   case tok::kw_struct:
   4489   case tok::kw_union:
   4490   case tok::kw___interface:
   4491     // enum-specifier
   4492   case tok::kw_enum:
   4493 
   4494     // type-qualifier
   4495   case tok::kw_const:
   4496   case tok::kw_volatile:
   4497   case tok::kw_restrict:
   4498 
   4499     // function-specifier
   4500   case tok::kw_inline:
   4501   case tok::kw_virtual:
   4502   case tok::kw_explicit:
   4503   case tok::kw__Noreturn:
   4504 
   4505     // alignment-specifier
   4506   case tok::kw__Alignas:
   4507 
   4508     // friend keyword.
   4509   case tok::kw_friend:
   4510 
   4511     // static_assert-declaration
   4512   case tok::kw__Static_assert:
   4513 
   4514     // GNU typeof support.
   4515   case tok::kw_typeof:
   4516 
   4517     // GNU attributes.
   4518   case tok::kw___attribute:
   4519 
   4520     // C++11 decltype and constexpr.
   4521   case tok::annot_decltype:
   4522   case tok::kw_constexpr:
   4523 
   4524     // C++ Concepts TS - concept
   4525   case tok::kw_concept:
   4526 
   4527     // C11 _Atomic
   4528   case tok::kw__Atomic:
   4529     return true;
   4530 
   4531     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
   4532   case tok::less:
   4533     return getLangOpts().ObjC1;
   4534 
   4535     // typedef-name
   4536   case tok::annot_typename:
   4537     return !DisambiguatingWithExpression ||
   4538            !isStartOfObjCClassMessageMissingOpenBracket();
   4539 
   4540   case tok::kw___declspec:
   4541   case tok::kw___cdecl:
   4542   case tok::kw___stdcall:
   4543   case tok::kw___fastcall:
   4544   case tok::kw___thiscall:
   4545   case tok::kw___vectorcall:
   4546   case tok::kw___w64:
   4547   case tok::kw___sptr:
   4548   case tok::kw___uptr:
   4549   case tok::kw___ptr64:
   4550   case tok::kw___ptr32:
   4551   case tok::kw___forceinline:
   4552   case tok::kw___pascal:
   4553   case tok::kw___unaligned:
   4554 
   4555   case tok::kw__Nonnull:
   4556   case tok::kw__Nullable:
   4557   case tok::kw__Null_unspecified:
   4558 
   4559   case tok::kw___kindof:
   4560 
   4561   case tok::kw___private:
   4562   case tok::kw___local:
   4563   case tok::kw___global:
   4564   case tok::kw___constant:
   4565   case tok::kw___generic:
   4566   case tok::kw___read_only:
   4567   case tok::kw___read_write:
   4568   case tok::kw___write_only:
   4569 
   4570     return true;
   4571   }
   4572 }
   4573 
   4574 bool Parser::isConstructorDeclarator(bool IsUnqualified) {
   4575   TentativeParsingAction TPA(*this);
   4576 
   4577   // Parse the C++ scope specifier.
   4578   CXXScopeSpec SS;
   4579   if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
   4580                                      /*EnteringContext=*/true)) {
   4581     TPA.Revert();
   4582     return false;
   4583   }
   4584 
   4585   // Parse the constructor name.
   4586   if (Tok.isOneOf(tok::identifier, tok::annot_template_id)) {
   4587     // We already know that we have a constructor name; just consume
   4588     // the token.
   4589     ConsumeToken();
   4590   } else {
   4591     TPA.Revert();
   4592     return false;
   4593   }
   4594 
   4595   // Current class name must be followed by a left parenthesis.
   4596   if (Tok.isNot(tok::l_paren)) {
   4597     TPA.Revert();
   4598     return false;
   4599   }
   4600   ConsumeParen();
   4601 
   4602   // A right parenthesis, or ellipsis followed by a right parenthesis signals
   4603   // that we have a constructor.
   4604   if (Tok.is(tok::r_paren) ||
   4605       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
   4606     TPA.Revert();
   4607     return true;
   4608   }
   4609 
   4610   // A C++11 attribute here signals that we have a constructor, and is an
   4611   // attribute on the first constructor parameter.
   4612   if (getLangOpts().CPlusPlus11 &&
   4613       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
   4614                                 /*OuterMightBeMessageSend*/ true)) {
   4615     TPA.Revert();
   4616     return true;
   4617   }
   4618 
   4619   // If we need to, enter the specified scope.
   4620   DeclaratorScopeObj DeclScopeObj(*this, SS);
   4621   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
   4622     DeclScopeObj.EnterDeclaratorScope();
   4623 
   4624   // Optionally skip Microsoft attributes.
   4625   ParsedAttributes Attrs(AttrFactory);
   4626   MaybeParseMicrosoftAttributes(Attrs);
   4627 
   4628   // Check whether the next token(s) are part of a declaration
   4629   // specifier, in which case we have the start of a parameter and,
   4630   // therefore, we know that this is a constructor.
   4631   bool IsConstructor = false;
   4632   if (isDeclarationSpecifier())
   4633     IsConstructor = true;
   4634   else if (Tok.is(tok::identifier) ||
   4635            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
   4636     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
   4637     // This might be a parenthesized member name, but is more likely to
   4638     // be a constructor declaration with an invalid argument type. Keep
   4639     // looking.
   4640     if (Tok.is(tok::annot_cxxscope))
   4641       ConsumeToken();
   4642     ConsumeToken();
   4643 
   4644     // If this is not a constructor, we must be parsing a declarator,
   4645     // which must have one of the following syntactic forms (see the
   4646     // grammar extract at the start of ParseDirectDeclarator):
   4647     switch (Tok.getKind()) {
   4648     case tok::l_paren:
   4649       // C(X   (   int));
   4650     case tok::l_square:
   4651       // C(X   [   5]);
   4652       // C(X   [   [attribute]]);
   4653     case tok::coloncolon:
   4654       // C(X   ::   Y);
   4655       // C(X   ::   *p);
   4656       // Assume this isn't a constructor, rather than assuming it's a
   4657       // constructor with an unnamed parameter of an ill-formed type.
   4658       break;
   4659 
   4660     case tok::r_paren:
   4661       // C(X   )
   4662       if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
   4663         // Assume these were meant to be constructors:
   4664         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
   4665         //   C(X)   try  (this is otherwise ill-formed).
   4666         IsConstructor = true;
   4667       }
   4668       if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
   4669         // If we have a constructor name within the class definition,
   4670         // assume these were meant to be constructors:
   4671         //   C(X)   {
   4672         //   C(X)   ;
   4673         // ... because otherwise we would be declaring a non-static data
   4674         // member that is ill-formed because it's of the same type as its
   4675         // surrounding class.
   4676         //
   4677         // FIXME: We can actually do this whether or not the name is qualified,
   4678         // because if it is qualified in this context it must be being used as
   4679         // a constructor name. However, we do not implement that rule correctly
   4680         // currently, so we're somewhat conservative here.
   4681         IsConstructor = IsUnqualified;
   4682       }
   4683       break;
   4684 
   4685     default:
   4686       IsConstructor = true;
   4687       break;
   4688     }
   4689   }
   4690 
   4691   TPA.Revert();
   4692   return IsConstructor;
   4693 }
   4694 
   4695 /// ParseTypeQualifierListOpt
   4696 ///          type-qualifier-list: [C99 6.7.5]
   4697 ///            type-qualifier
   4698 /// [vendor]   attributes
   4699 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
   4700 ///            type-qualifier-list type-qualifier
   4701 /// [vendor]   type-qualifier-list attributes
   4702 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
   4703 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
   4704 ///              [ only if AttReqs & AR_CXX11AttributesParsed ]
   4705 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
   4706 /// AttrRequirements bitmask values.
   4707 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs,
   4708                                        bool AtomicAllowed,
   4709                                        bool IdentifierRequired) {
   4710   if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) &&
   4711       isCXX11AttributeSpecifier()) {
   4712     ParsedAttributesWithRange attrs(AttrFactory);
   4713     ParseCXX11Attributes(attrs);
   4714     DS.takeAttributesFrom(attrs);
   4715   }
   4716 
   4717   SourceLocation EndLoc;
   4718 
   4719   while (1) {
   4720     bool isInvalid = false;
   4721     const char *PrevSpec = nullptr;
   4722     unsigned DiagID = 0;
   4723     SourceLocation Loc = Tok.getLocation();
   4724 
   4725     switch (Tok.getKind()) {
   4726     case tok::code_completion:
   4727       Actions.CodeCompleteTypeQualifiers(DS);
   4728       return cutOffParsing();
   4729 
   4730     case tok::kw_const:
   4731       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
   4732                                  getLangOpts());
   4733       break;
   4734     case tok::kw_volatile:
   4735       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
   4736                                  getLangOpts());
   4737       break;
   4738     case tok::kw_restrict:
   4739       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
   4740                                  getLangOpts());
   4741       break;
   4742     case tok::kw__Atomic:
   4743       if (!AtomicAllowed)
   4744         goto DoneWithTypeQuals;
   4745       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
   4746                                  getLangOpts());
   4747       break;
   4748 
   4749     // OpenCL qualifiers:
   4750     case tok::kw___private:
   4751     case tok::kw___global:
   4752     case tok::kw___local:
   4753     case tok::kw___constant:
   4754     case tok::kw___generic:
   4755     case tok::kw___read_only:
   4756     case tok::kw___write_only:
   4757     case tok::kw___read_write:
   4758       ParseOpenCLQualifiers(DS.getAttributes());
   4759       break;
   4760 
   4761     case tok::kw___uptr:
   4762       // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
   4763       // with the MS modifier keyword.
   4764       if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
   4765           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
   4766         if (TryKeywordIdentFallback(false))
   4767           continue;
   4768       }
   4769     case tok::kw___sptr:
   4770     case tok::kw___w64:
   4771     case tok::kw___ptr64:
   4772     case tok::kw___ptr32:
   4773     case tok::kw___cdecl:
   4774     case tok::kw___stdcall:
   4775     case tok::kw___fastcall:
   4776     case tok::kw___thiscall:
   4777     case tok::kw___vectorcall:
   4778     case tok::kw___unaligned:
   4779       if (AttrReqs & AR_DeclspecAttributesParsed) {
   4780         ParseMicrosoftTypeAttributes(DS.getAttributes());
   4781         continue;
   4782       }
   4783       goto DoneWithTypeQuals;
   4784     case tok::kw___pascal:
   4785       if (AttrReqs & AR_VendorAttributesParsed) {
   4786         ParseBorlandTypeAttributes(DS.getAttributes());
   4787         continue;
   4788       }
   4789       goto DoneWithTypeQuals;
   4790 
   4791     // Nullability type specifiers.
   4792     case tok::kw__Nonnull:
   4793     case tok::kw__Nullable:
   4794     case tok::kw__Null_unspecified:
   4795       ParseNullabilityTypeSpecifiers(DS.getAttributes());
   4796       continue;
   4797 
   4798     // Objective-C 'kindof' types.
   4799     case tok::kw___kindof:
   4800       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
   4801                                 nullptr, 0, AttributeList::AS_Keyword);
   4802       (void)ConsumeToken();
   4803       continue;
   4804 
   4805     case tok::kw___attribute:
   4806       if (AttrReqs & AR_GNUAttributesParsedAndRejected)
   4807         // When GNU attributes are expressly forbidden, diagnose their usage.
   4808         Diag(Tok, diag::err_attributes_not_allowed);
   4809 
   4810       // Parse the attributes even if they are rejected to ensure that error
   4811       // recovery is graceful.
   4812       if (AttrReqs & AR_GNUAttributesParsed ||
   4813           AttrReqs & AR_GNUAttributesParsedAndRejected) {
   4814         ParseGNUAttributes(DS.getAttributes());
   4815         continue; // do *not* consume the next token!
   4816       }
   4817       // otherwise, FALL THROUGH!
   4818     default:
   4819       DoneWithTypeQuals:
   4820       // If this is not a type-qualifier token, we're done reading type
   4821       // qualifiers.  First verify that DeclSpec's are consistent.
   4822       DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
   4823       if (EndLoc.isValid())
   4824         DS.SetRangeEnd(EndLoc);
   4825       return;
   4826     }
   4827 
   4828     // If the specifier combination wasn't legal, issue a diagnostic.
   4829     if (isInvalid) {
   4830       assert(PrevSpec && "Method did not return previous specifier!");
   4831       Diag(Tok, DiagID) << PrevSpec;
   4832     }
   4833     EndLoc = ConsumeToken();
   4834   }
   4835 }
   4836 
   4837 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
   4838 ///
   4839 void Parser::ParseDeclarator(Declarator &D) {
   4840   /// This implements the 'declarator' production in the C grammar, then checks
   4841   /// for well-formedness and issues diagnostics.
   4842   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
   4843 }
   4844 
   4845 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
   4846                                unsigned TheContext) {
   4847   if (Kind == tok::star || Kind == tok::caret)
   4848     return true;
   4849 
   4850   if (!Lang.CPlusPlus)
   4851     return false;
   4852 
   4853   if (Kind == tok::amp)
   4854     return true;
   4855 
   4856   // We parse rvalue refs in C++03, because otherwise the errors are scary.
   4857   // But we must not parse them in conversion-type-ids and new-type-ids, since
   4858   // those can be legitimately followed by a && operator.
   4859   // (The same thing can in theory happen after a trailing-return-type, but
   4860   // since those are a C++11 feature, there is no rejects-valid issue there.)
   4861   if (Kind == tok::ampamp)
   4862     return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext &&
   4863                                 TheContext != Declarator::CXXNewContext);
   4864 
   4865   return false;
   4866 }
   4867 
   4868 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
   4869 /// is parsed by the function passed to it. Pass null, and the direct-declarator
   4870 /// isn't parsed at all, making this function effectively parse the C++
   4871 /// ptr-operator production.
   4872 ///
   4873 /// If the grammar of this construct is extended, matching changes must also be
   4874 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
   4875 /// isConstructorDeclarator.
   4876 ///
   4877 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
   4878 /// [C]     pointer[opt] direct-declarator
   4879 /// [C++]   direct-declarator
   4880 /// [C++]   ptr-operator declarator
   4881 ///
   4882 ///       pointer: [C99 6.7.5]
   4883 ///         '*' type-qualifier-list[opt]
   4884 ///         '*' type-qualifier-list[opt] pointer
   4885 ///
   4886 ///       ptr-operator:
   4887 ///         '*' cv-qualifier-seq[opt]
   4888 ///         '&'
   4889 /// [C++0x] '&&'
   4890 /// [GNU]   '&' restrict[opt] attributes[opt]
   4891 /// [GNU?]  '&&' restrict[opt] attributes[opt]
   4892 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
   4893 void Parser::ParseDeclaratorInternal(Declarator &D,
   4894                                      DirectDeclParseFunction DirectDeclParser) {
   4895   if (Diags.hasAllExtensionsSilenced())
   4896     D.setExtension();
   4897 
   4898   // C++ member pointers start with a '::' or a nested-name.
   4899   // Member pointers get special handling, since there's no place for the
   4900   // scope spec in the generic path below.
   4901   if (getLangOpts().CPlusPlus &&
   4902       (Tok.is(tok::coloncolon) ||
   4903        (Tok.is(tok::identifier) &&
   4904         (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
   4905        Tok.is(tok::annot_cxxscope))) {
   4906     bool EnteringContext = D.getContext() == Declarator::FileContext ||
   4907                            D.getContext() == Declarator::MemberContext;
   4908     CXXScopeSpec SS;
   4909     ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
   4910 
   4911     if (SS.isNotEmpty()) {
   4912       if (Tok.isNot(tok::star)) {
   4913         // The scope spec really belongs to the direct-declarator.
   4914         if (D.mayHaveIdentifier())
   4915           D.getCXXScopeSpec() = SS;
   4916         else
   4917           AnnotateScopeToken(SS, true);
   4918 
   4919         if (DirectDeclParser)
   4920           (this->*DirectDeclParser)(D);
   4921         return;
   4922       }
   4923 
   4924       SourceLocation Loc = ConsumeToken();
   4925       D.SetRangeEnd(Loc);
   4926       DeclSpec DS(AttrFactory);
   4927       ParseTypeQualifierListOpt(DS);
   4928       D.ExtendWithDeclSpec(DS);
   4929 
   4930       // Recurse to parse whatever is left.
   4931       ParseDeclaratorInternal(D, DirectDeclParser);
   4932 
   4933       // Sema will have to catch (syntactically invalid) pointers into global
   4934       // scope. It has to catch pointers into namespace scope anyway.
   4935       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
   4936                                                       DS.getLocEnd()),
   4937                     DS.getAttributes(),
   4938                     /* Don't replace range end. */SourceLocation());
   4939       return;
   4940     }
   4941   }
   4942 
   4943   tok::TokenKind Kind = Tok.getKind();
   4944   // Not a pointer, C++ reference, or block.
   4945   if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
   4946     if (DirectDeclParser)
   4947       (this->*DirectDeclParser)(D);
   4948     return;
   4949   }
   4950 
   4951   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
   4952   // '&&' -> rvalue reference
   4953   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
   4954   D.SetRangeEnd(Loc);
   4955 
   4956   if (Kind == tok::star || Kind == tok::caret) {
   4957     // Is a pointer.
   4958     DeclSpec DS(AttrFactory);
   4959 
   4960     // GNU attributes are not allowed here in a new-type-id, but Declspec and
   4961     // C++11 attributes are allowed.
   4962     unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
   4963                             ((D.getContext() != Declarator::CXXNewContext)
   4964                                  ? AR_GNUAttributesParsed
   4965                                  : AR_GNUAttributesParsedAndRejected);
   4966     ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
   4967     D.ExtendWithDeclSpec(DS);
   4968 
   4969     // Recursively parse the declarator.
   4970     ParseDeclaratorInternal(D, DirectDeclParser);
   4971     if (Kind == tok::star)
   4972       // Remember that we parsed a pointer type, and remember the type-quals.
   4973       D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
   4974                                                 DS.getConstSpecLoc(),
   4975                                                 DS.getVolatileSpecLoc(),
   4976                                                 DS.getRestrictSpecLoc(),
   4977                                                 DS.getAtomicSpecLoc()),
   4978                     DS.getAttributes(),
   4979                     SourceLocation());
   4980     else
   4981       // Remember that we parsed a Block type, and remember the type-quals.
   4982       D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
   4983                                                      Loc),
   4984                     DS.getAttributes(),
   4985                     SourceLocation());
   4986   } else {
   4987     // Is a reference
   4988     DeclSpec DS(AttrFactory);
   4989 
   4990     // Complain about rvalue references in C++03, but then go on and build
   4991     // the declarator.
   4992     if (Kind == tok::ampamp)
   4993       Diag(Loc, getLangOpts().CPlusPlus11 ?
   4994            diag::warn_cxx98_compat_rvalue_reference :
   4995            diag::ext_rvalue_reference);
   4996 
   4997     // GNU-style and C++11 attributes are allowed here, as is restrict.
   4998     ParseTypeQualifierListOpt(DS);
   4999     D.ExtendWithDeclSpec(DS);
   5000 
   5001     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
   5002     // cv-qualifiers are introduced through the use of a typedef or of a
   5003     // template type argument, in which case the cv-qualifiers are ignored.
   5004     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
   5005       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   5006         Diag(DS.getConstSpecLoc(),
   5007              diag::err_invalid_reference_qualifier_application) << "const";
   5008       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   5009         Diag(DS.getVolatileSpecLoc(),
   5010              diag::err_invalid_reference_qualifier_application) << "volatile";
   5011       // 'restrict' is permitted as an extension.
   5012       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
   5013         Diag(DS.getAtomicSpecLoc(),
   5014              diag::err_invalid_reference_qualifier_application) << "_Atomic";
   5015     }
   5016 
   5017     // Recursively parse the declarator.
   5018     ParseDeclaratorInternal(D, DirectDeclParser);
   5019 
   5020     if (D.getNumTypeObjects() > 0) {
   5021       // C++ [dcl.ref]p4: There shall be no references to references.
   5022       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
   5023       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
   5024         if (const IdentifierInfo *II = D.getIdentifier())
   5025           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
   5026            << II;
   5027         else
   5028           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
   5029             << "type name";
   5030 
   5031         // Once we've complained about the reference-to-reference, we
   5032         // can go ahead and build the (technically ill-formed)
   5033         // declarator: reference collapsing will take care of it.
   5034       }
   5035     }
   5036 
   5037     // Remember that we parsed a reference type.
   5038     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
   5039                                                 Kind == tok::amp),
   5040                   DS.getAttributes(),
   5041                   SourceLocation());
   5042   }
   5043 }
   5044 
   5045 // When correcting from misplaced brackets before the identifier, the location
   5046 // is saved inside the declarator so that other diagnostic messages can use
   5047 // them.  This extracts and returns that location, or returns the provided
   5048 // location if a stored location does not exist.
   5049 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
   5050                                                 SourceLocation Loc) {
   5051   if (D.getName().StartLocation.isInvalid() &&
   5052       D.getName().EndLocation.isValid())
   5053     return D.getName().EndLocation;
   5054 
   5055   return Loc;
   5056 }
   5057 
   5058 /// ParseDirectDeclarator
   5059 ///       direct-declarator: [C99 6.7.5]
   5060 /// [C99]   identifier
   5061 ///         '(' declarator ')'
   5062 /// [GNU]   '(' attributes declarator ')'
   5063 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
   5064 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
   5065 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
   5066 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
   5067 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
   5068 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
   5069 ///                    attribute-specifier-seq[opt]
   5070 ///         direct-declarator '(' parameter-type-list ')'
   5071 ///         direct-declarator '(' identifier-list[opt] ')'
   5072 /// [GNU]   direct-declarator '(' parameter-forward-declarations
   5073 ///                    parameter-type-list[opt] ')'
   5074 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
   5075 ///                    cv-qualifier-seq[opt] exception-specification[opt]
   5076 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
   5077 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
   5078 ///                    ref-qualifier[opt] exception-specification[opt]
   5079 /// [C++]   declarator-id
   5080 /// [C++11] declarator-id attribute-specifier-seq[opt]
   5081 ///
   5082 ///       declarator-id: [C++ 8]
   5083 ///         '...'[opt] id-expression
   5084 ///         '::'[opt] nested-name-specifier[opt] type-name
   5085 ///
   5086 ///       id-expression: [C++ 5.1]
   5087 ///         unqualified-id
   5088 ///         qualified-id
   5089 ///
   5090 ///       unqualified-id: [C++ 5.1]
   5091 ///         identifier
   5092 ///         operator-function-id
   5093 ///         conversion-function-id
   5094 ///          '~' class-name
   5095 ///         template-id
   5096 ///
   5097 /// Note, any additional constructs added here may need corresponding changes
   5098 /// in isConstructorDeclarator.
   5099 void Parser::ParseDirectDeclarator(Declarator &D) {
   5100   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
   5101 
   5102   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
   5103     // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
   5104     // this context it is a bitfield. Also in range-based for statement colon
   5105     // may delimit for-range-declaration.
   5106     ColonProtectionRAIIObject X(*this,
   5107                                 D.getContext() == Declarator::MemberContext ||
   5108                                     (D.getContext() == Declarator::ForContext &&
   5109                                      getLangOpts().CPlusPlus11));
   5110 
   5111     // ParseDeclaratorInternal might already have parsed the scope.
   5112     if (D.getCXXScopeSpec().isEmpty()) {
   5113       bool EnteringContext = D.getContext() == Declarator::FileContext ||
   5114                              D.getContext() == Declarator::MemberContext;
   5115       ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
   5116                                      EnteringContext);
   5117     }
   5118 
   5119     if (D.getCXXScopeSpec().isValid()) {
   5120       if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
   5121                                              D.getCXXScopeSpec()))
   5122         // Change the declaration context for name lookup, until this function
   5123         // is exited (and the declarator has been parsed).
   5124         DeclScopeObj.EnterDeclaratorScope();
   5125     }
   5126 
   5127     // C++0x [dcl.fct]p14:
   5128     //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
   5129     //   parameter-declaration-clause without a preceding comma. In this case,
   5130     //   the ellipsis is parsed as part of the abstract-declarator if the type
   5131     //   of the parameter either names a template parameter pack that has not
   5132     //   been expanded or contains auto; otherwise, it is parsed as part of the
   5133     //   parameter-declaration-clause.
   5134     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
   5135         !((D.getContext() == Declarator::PrototypeContext ||
   5136            D.getContext() == Declarator::LambdaExprParameterContext ||
   5137            D.getContext() == Declarator::BlockLiteralContext) &&
   5138           NextToken().is(tok::r_paren) &&
   5139           !D.hasGroupingParens() &&
   5140           !Actions.containsUnexpandedParameterPacks(D) &&
   5141           D.getDeclSpec().getTypeSpecType() != TST_auto)) {
   5142       SourceLocation EllipsisLoc = ConsumeToken();
   5143       if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
   5144         // The ellipsis was put in the wrong place. Recover, and explain to
   5145         // the user what they should have done.
   5146         ParseDeclarator(D);
   5147         if (EllipsisLoc.isValid())
   5148           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
   5149         return;
   5150       } else
   5151         D.setEllipsisLoc(EllipsisLoc);
   5152 
   5153       // The ellipsis can't be followed by a parenthesized declarator. We
   5154       // check for that in ParseParenDeclarator, after we have disambiguated
   5155       // the l_paren token.
   5156     }
   5157 
   5158     if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
   5159                     tok::tilde)) {
   5160       // We found something that indicates the start of an unqualified-id.
   5161       // Parse that unqualified-id.
   5162       bool AllowConstructorName;
   5163       if (D.getDeclSpec().hasTypeSpecifier())
   5164         AllowConstructorName = false;
   5165       else if (D.getCXXScopeSpec().isSet())
   5166         AllowConstructorName =
   5167           (D.getContext() == Declarator::FileContext ||
   5168            D.getContext() == Declarator::MemberContext);
   5169       else
   5170         AllowConstructorName = (D.getContext() == Declarator::MemberContext);
   5171 
   5172       SourceLocation TemplateKWLoc;
   5173       bool HadScope = D.getCXXScopeSpec().isValid();
   5174       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
   5175                              /*EnteringContext=*/true,
   5176                              /*AllowDestructorName=*/true,
   5177                              AllowConstructorName,
   5178                              ParsedType(),
   5179                              TemplateKWLoc,
   5180                              D.getName()) ||
   5181           // Once we're past the identifier, if the scope was bad, mark the
   5182           // whole declarator bad.
   5183           D.getCXXScopeSpec().isInvalid()) {
   5184         D.SetIdentifier(nullptr, Tok.getLocation());
   5185         D.setInvalidType(true);
   5186       } else {
   5187         // ParseUnqualifiedId might have parsed a scope specifier during error
   5188         // recovery. If it did so, enter that scope.
   5189         if (!HadScope && D.getCXXScopeSpec().isValid() &&
   5190             Actions.ShouldEnterDeclaratorScope(getCurScope(),
   5191                                                D.getCXXScopeSpec()))
   5192           DeclScopeObj.EnterDeclaratorScope();
   5193 
   5194         // Parsed the unqualified-id; update range information and move along.
   5195         if (D.getSourceRange().getBegin().isInvalid())
   5196           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
   5197         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
   5198       }
   5199       goto PastIdentifier;
   5200     }
   5201 
   5202     if (D.getCXXScopeSpec().isNotEmpty()) {
   5203       // We have a scope specifier but no following unqualified-id.
   5204       Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
   5205            diag::err_expected_unqualified_id)
   5206           << /*C++*/1;
   5207       D.SetIdentifier(nullptr, Tok.getLocation());
   5208       goto PastIdentifier;
   5209     }
   5210   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
   5211     assert(!getLangOpts().CPlusPlus &&
   5212            "There's a C++-specific check for tok::identifier above");
   5213     assert(Tok.getIdentifierInfo() && "Not an identifier?");
   5214     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
   5215     D.SetRangeEnd(Tok.getLocation());
   5216     ConsumeToken();
   5217     goto PastIdentifier;
   5218   } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
   5219     // A virt-specifier isn't treated as an identifier if it appears after a
   5220     // trailing-return-type.
   5221     if (D.getContext() != Declarator::TrailingReturnContext ||
   5222         !isCXX11VirtSpecifier(Tok)) {
   5223       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
   5224         << FixItHint::CreateRemoval(Tok.getLocation());
   5225       D.SetIdentifier(nullptr, Tok.getLocation());
   5226       ConsumeToken();
   5227       goto PastIdentifier;
   5228     }
   5229   }
   5230 
   5231   if (Tok.is(tok::l_paren)) {
   5232     // direct-declarator: '(' declarator ')'
   5233     // direct-declarator: '(' attributes declarator ')'
   5234     // Example: 'char (*X)'   or 'int (*XX)(void)'
   5235     ParseParenDeclarator(D);
   5236 
   5237     // If the declarator was parenthesized, we entered the declarator
   5238     // scope when parsing the parenthesized declarator, then exited
   5239     // the scope already. Re-enter the scope, if we need to.
   5240     if (D.getCXXScopeSpec().isSet()) {
   5241       // If there was an error parsing parenthesized declarator, declarator
   5242       // scope may have been entered before. Don't do it again.
   5243       if (!D.isInvalidType() &&
   5244           Actions.ShouldEnterDeclaratorScope(getCurScope(),
   5245                                              D.getCXXScopeSpec()))
   5246         // Change the declaration context for name lookup, until this function
   5247         // is exited (and the declarator has been parsed).
   5248         DeclScopeObj.EnterDeclaratorScope();
   5249     }
   5250   } else if (D.mayOmitIdentifier()) {
   5251     // This could be something simple like "int" (in which case the declarator
   5252     // portion is empty), if an abstract-declarator is allowed.
   5253     D.SetIdentifier(nullptr, Tok.getLocation());
   5254 
   5255     // The grammar for abstract-pack-declarator does not allow grouping parens.
   5256     // FIXME: Revisit this once core issue 1488 is resolved.
   5257     if (D.hasEllipsis() && D.hasGroupingParens())
   5258       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
   5259            diag::ext_abstract_pack_declarator_parens);
   5260   } else {
   5261     if (Tok.getKind() == tok::annot_pragma_parser_crash)
   5262       LLVM_BUILTIN_TRAP;
   5263     if (Tok.is(tok::l_square))
   5264       return ParseMisplacedBracketDeclarator(D);
   5265     if (D.getContext() == Declarator::MemberContext) {
   5266       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
   5267            diag::err_expected_member_name_or_semi)
   5268           << (D.getDeclSpec().isEmpty() ? SourceRange()
   5269                                         : D.getDeclSpec().getSourceRange());
   5270     } else if (getLangOpts().CPlusPlus) {
   5271       if (Tok.isOneOf(tok::period, tok::arrow))
   5272         Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
   5273       else {
   5274         SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
   5275         if (Tok.isAtStartOfLine() && Loc.isValid())
   5276           Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
   5277               << getLangOpts().CPlusPlus;
   5278         else
   5279           Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
   5280                diag::err_expected_unqualified_id)
   5281               << getLangOpts().CPlusPlus;
   5282       }
   5283     } else {
   5284       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
   5285            diag::err_expected_either)
   5286           << tok::identifier << tok::l_paren;
   5287     }
   5288     D.SetIdentifier(nullptr, Tok.getLocation());
   5289     D.setInvalidType(true);
   5290   }
   5291 
   5292  PastIdentifier:
   5293   assert(D.isPastIdentifier() &&
   5294          "Haven't past the location of the identifier yet?");
   5295 
   5296   // Don't parse attributes unless we have parsed an unparenthesized name.
   5297   if (D.hasName() && !D.getNumTypeObjects())
   5298     MaybeParseCXX11Attributes(D);
   5299 
   5300   while (1) {
   5301     if (Tok.is(tok::l_paren)) {
   5302       // Enter function-declaration scope, limiting any declarators to the
   5303       // function prototype scope, including parameter declarators.
   5304       ParseScope PrototypeScope(this,
   5305                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
   5306                                 (D.isFunctionDeclaratorAFunctionDeclaration()
   5307                                    ? Scope::FunctionDeclarationScope : 0));
   5308 
   5309       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
   5310       // In such a case, check if we actually have a function declarator; if it
   5311       // is not, the declarator has been fully parsed.
   5312       bool IsAmbiguous = false;
   5313       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
   5314         // The name of the declarator, if any, is tentatively declared within
   5315         // a possible direct initializer.
   5316         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
   5317         bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
   5318         TentativelyDeclaredIdentifiers.pop_back();
   5319         if (!IsFunctionDecl)
   5320           break;
   5321       }
   5322       ParsedAttributes attrs(AttrFactory);
   5323       BalancedDelimiterTracker T(*this, tok::l_paren);
   5324       T.consumeOpen();
   5325       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
   5326       PrototypeScope.Exit();
   5327     } else if (Tok.is(tok::l_square)) {
   5328       ParseBracketDeclarator(D);
   5329     } else {
   5330       break;
   5331     }
   5332   }
   5333 }
   5334 
   5335 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
   5336 /// only called before the identifier, so these are most likely just grouping
   5337 /// parens for precedence.  If we find that these are actually function
   5338 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
   5339 ///
   5340 ///       direct-declarator:
   5341 ///         '(' declarator ')'
   5342 /// [GNU]   '(' attributes declarator ')'
   5343 ///         direct-declarator '(' parameter-type-list ')'
   5344 ///         direct-declarator '(' identifier-list[opt] ')'
   5345 /// [GNU]   direct-declarator '(' parameter-forward-declarations
   5346 ///                    parameter-type-list[opt] ')'
   5347 ///
   5348 void Parser::ParseParenDeclarator(Declarator &D) {
   5349   BalancedDelimiterTracker T(*this, tok::l_paren);
   5350   T.consumeOpen();
   5351 
   5352   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
   5353 
   5354   // Eat any attributes before we look at whether this is a grouping or function
   5355   // declarator paren.  If this is a grouping paren, the attribute applies to
   5356   // the type being built up, for example:
   5357   //     int (__attribute__(()) *x)(long y)
   5358   // If this ends up not being a grouping paren, the attribute applies to the
   5359   // first argument, for example:
   5360   //     int (__attribute__(()) int x)
   5361   // In either case, we need to eat any attributes to be able to determine what
   5362   // sort of paren this is.
   5363   //
   5364   ParsedAttributes attrs(AttrFactory);
   5365   bool RequiresArg = false;
   5366   if (Tok.is(tok::kw___attribute)) {
   5367     ParseGNUAttributes(attrs);
   5368 
   5369     // We require that the argument list (if this is a non-grouping paren) be
   5370     // present even if the attribute list was empty.
   5371     RequiresArg = true;
   5372   }
   5373 
   5374   // Eat any Microsoft extensions.
   5375   ParseMicrosoftTypeAttributes(attrs);
   5376 
   5377   // Eat any Borland extensions.
   5378   if  (Tok.is(tok::kw___pascal))
   5379     ParseBorlandTypeAttributes(attrs);
   5380 
   5381   // If we haven't past the identifier yet (or where the identifier would be
   5382   // stored, if this is an abstract declarator), then this is probably just
   5383   // grouping parens. However, if this could be an abstract-declarator, then
   5384   // this could also be the start of function arguments (consider 'void()').
   5385   bool isGrouping;
   5386 
   5387   if (!D.mayOmitIdentifier()) {
   5388     // If this can't be an abstract-declarator, this *must* be a grouping
   5389     // paren, because we haven't seen the identifier yet.
   5390     isGrouping = true;
   5391   } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
   5392              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
   5393               NextToken().is(tok::r_paren)) || // C++ int(...)
   5394              isDeclarationSpecifier() ||       // 'int(int)' is a function.
   5395              isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
   5396     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
   5397     // considered to be a type, not a K&R identifier-list.
   5398     isGrouping = false;
   5399   } else {
   5400     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
   5401     isGrouping = true;
   5402   }
   5403 
   5404   // If this is a grouping paren, handle:
   5405   // direct-declarator: '(' declarator ')'
   5406   // direct-declarator: '(' attributes declarator ')'
   5407   if (isGrouping) {
   5408     SourceLocation EllipsisLoc = D.getEllipsisLoc();
   5409     D.setEllipsisLoc(SourceLocation());
   5410 
   5411     bool hadGroupingParens = D.hasGroupingParens();
   5412     D.setGroupingParens(true);
   5413     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
   5414     // Match the ')'.
   5415     T.consumeClose();
   5416     D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
   5417                                             T.getCloseLocation()),
   5418                   attrs, T.getCloseLocation());
   5419 
   5420     D.setGroupingParens(hadGroupingParens);
   5421 
   5422     // An ellipsis cannot be placed outside parentheses.
   5423     if (EllipsisLoc.isValid())
   5424       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
   5425 
   5426     return;
   5427   }
   5428 
   5429   // Okay, if this wasn't a grouping paren, it must be the start of a function
   5430   // argument list.  Recognize that this declarator will never have an
   5431   // identifier (and remember where it would have been), then call into
   5432   // ParseFunctionDeclarator to handle of argument list.
   5433   D.SetIdentifier(nullptr, Tok.getLocation());
   5434 
   5435   // Enter function-declaration scope, limiting any declarators to the
   5436   // function prototype scope, including parameter declarators.
   5437   ParseScope PrototypeScope(this,
   5438                             Scope::FunctionPrototypeScope | Scope::DeclScope |
   5439                             (D.isFunctionDeclaratorAFunctionDeclaration()
   5440                                ? Scope::FunctionDeclarationScope : 0));
   5441   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
   5442   PrototypeScope.Exit();
   5443 }
   5444 
   5445 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
   5446 /// declarator D up to a paren, which indicates that we are parsing function
   5447 /// arguments.
   5448 ///
   5449 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
   5450 /// immediately after the open paren - they should be considered to be the
   5451 /// first argument of a parameter.
   5452 ///
   5453 /// If RequiresArg is true, then the first argument of the function is required
   5454 /// to be present and required to not be an identifier list.
   5455 ///
   5456 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
   5457 /// (C++11) ref-qualifier[opt], exception-specification[opt],
   5458 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
   5459 ///
   5460 /// [C++11] exception-specification:
   5461 ///           dynamic-exception-specification
   5462 ///           noexcept-specification
   5463 ///
   5464 void Parser::ParseFunctionDeclarator(Declarator &D,
   5465                                      ParsedAttributes &FirstArgAttrs,
   5466                                      BalancedDelimiterTracker &Tracker,
   5467                                      bool IsAmbiguous,
   5468                                      bool RequiresArg) {
   5469   assert(getCurScope()->isFunctionPrototypeScope() &&
   5470          "Should call from a Function scope");
   5471   // lparen is already consumed!
   5472   assert(D.isPastIdentifier() && "Should not call before identifier!");
   5473 
   5474   // This should be true when the function has typed arguments.
   5475   // Otherwise, it is treated as a K&R-style function.
   5476   bool HasProto = false;
   5477   // Build up an array of information about the parsed arguments.
   5478   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
   5479   // Remember where we see an ellipsis, if any.
   5480   SourceLocation EllipsisLoc;
   5481 
   5482   DeclSpec DS(AttrFactory);
   5483   bool RefQualifierIsLValueRef = true;
   5484   SourceLocation RefQualifierLoc;
   5485   SourceLocation ConstQualifierLoc;
   5486   SourceLocation VolatileQualifierLoc;
   5487   SourceLocation RestrictQualifierLoc;
   5488   ExceptionSpecificationType ESpecType = EST_None;
   5489   SourceRange ESpecRange;
   5490   SmallVector<ParsedType, 2> DynamicExceptions;
   5491   SmallVector<SourceRange, 2> DynamicExceptionRanges;
   5492   ExprResult NoexceptExpr;
   5493   CachedTokens *ExceptionSpecTokens = nullptr;
   5494   ParsedAttributes FnAttrs(AttrFactory);
   5495   TypeResult TrailingReturnType;
   5496 
   5497   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
   5498      EndLoc is the end location for the function declarator.
   5499      They differ for trailing return types. */
   5500   SourceLocation StartLoc, LocalEndLoc, EndLoc;
   5501   SourceLocation LParenLoc, RParenLoc;
   5502   LParenLoc = Tracker.getOpenLocation();
   5503   StartLoc = LParenLoc;
   5504 
   5505   if (isFunctionDeclaratorIdentifierList()) {
   5506     if (RequiresArg)
   5507       Diag(Tok, diag::err_argument_required_after_attribute);
   5508 
   5509     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
   5510 
   5511     Tracker.consumeClose();
   5512     RParenLoc = Tracker.getCloseLocation();
   5513     LocalEndLoc = RParenLoc;
   5514     EndLoc = RParenLoc;
   5515   } else {
   5516     if (Tok.isNot(tok::r_paren))
   5517       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
   5518                                       EllipsisLoc);
   5519     else if (RequiresArg)
   5520       Diag(Tok, diag::err_argument_required_after_attribute);
   5521 
   5522     HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
   5523 
   5524     // If we have the closing ')', eat it.
   5525     Tracker.consumeClose();
   5526     RParenLoc = Tracker.getCloseLocation();
   5527     LocalEndLoc = RParenLoc;
   5528     EndLoc = RParenLoc;
   5529 
   5530     if (getLangOpts().CPlusPlus) {
   5531       // FIXME: Accept these components in any order, and produce fixits to
   5532       // correct the order if the user gets it wrong. Ideally we should deal
   5533       // with the pure-specifier in the same way.
   5534 
   5535       // Parse cv-qualifier-seq[opt].
   5536       ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
   5537                                 /*AtomicAllowed*/ false);
   5538       if (!DS.getSourceRange().getEnd().isInvalid()) {
   5539         EndLoc = DS.getSourceRange().getEnd();
   5540         ConstQualifierLoc = DS.getConstSpecLoc();
   5541         VolatileQualifierLoc = DS.getVolatileSpecLoc();
   5542         RestrictQualifierLoc = DS.getRestrictSpecLoc();
   5543       }
   5544 
   5545       // Parse ref-qualifier[opt].
   5546       if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
   5547         EndLoc = RefQualifierLoc;
   5548 
   5549       // C++11 [expr.prim.general]p3:
   5550       //   If a declaration declares a member function or member function
   5551       //   template of a class X, the expression this is a prvalue of type
   5552       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
   5553       //   and the end of the function-definition, member-declarator, or
   5554       //   declarator.
   5555       // FIXME: currently, "static" case isn't handled correctly.
   5556       bool IsCXX11MemberFunction =
   5557         getLangOpts().CPlusPlus11 &&
   5558         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
   5559         (D.getContext() == Declarator::MemberContext
   5560          ? !D.getDeclSpec().isFriendSpecified()
   5561          : D.getContext() == Declarator::FileContext &&
   5562            D.getCXXScopeSpec().isValid() &&
   5563            Actions.CurContext->isRecord());
   5564       Sema::CXXThisScopeRAII ThisScope(Actions,
   5565                                dyn_cast<CXXRecordDecl>(Actions.CurContext),
   5566                                DS.getTypeQualifiers() |
   5567                                (D.getDeclSpec().isConstexprSpecified() &&
   5568                                 !getLangOpts().CPlusPlus14
   5569                                   ? Qualifiers::Const : 0),
   5570                                IsCXX11MemberFunction);
   5571 
   5572       // Parse exception-specification[opt].
   5573       bool Delayed = D.isFirstDeclarationOfMember() &&
   5574                      D.isFunctionDeclaratorAFunctionDeclaration();
   5575       if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
   5576           GetLookAheadToken(0).is(tok::kw_noexcept) &&
   5577           GetLookAheadToken(1).is(tok::l_paren) &&
   5578           GetLookAheadToken(2).is(tok::kw_noexcept) &&
   5579           GetLookAheadToken(3).is(tok::l_paren) &&
   5580           GetLookAheadToken(4).is(tok::identifier) &&
   5581           GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
   5582         // HACK: We've got an exception-specification
   5583         //   noexcept(noexcept(swap(...)))
   5584         // or
   5585         //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
   5586         // on a 'swap' member function. This is a libstdc++ bug; the lookup
   5587         // for 'swap' will only find the function we're currently declaring,
   5588         // whereas it expects to find a non-member swap through ADL. Turn off
   5589         // delayed parsing to give it a chance to find what it expects.
   5590         Delayed = false;
   5591       }
   5592       ESpecType = tryParseExceptionSpecification(Delayed,
   5593                                                  ESpecRange,
   5594                                                  DynamicExceptions,
   5595                                                  DynamicExceptionRanges,
   5596                                                  NoexceptExpr,
   5597                                                  ExceptionSpecTokens);
   5598       if (ESpecType != EST_None)
   5599         EndLoc = ESpecRange.getEnd();
   5600 
   5601       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
   5602       // after the exception-specification.
   5603       MaybeParseCXX11Attributes(FnAttrs);
   5604 
   5605       // Parse trailing-return-type[opt].
   5606       LocalEndLoc = EndLoc;
   5607       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
   5608         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
   5609         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
   5610           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
   5611         LocalEndLoc = Tok.getLocation();
   5612         SourceRange Range;
   5613         TrailingReturnType = ParseTrailingReturnType(Range);
   5614         EndLoc = Range.getEnd();
   5615       }
   5616     }
   5617   }
   5618 
   5619   // Remember that we parsed a function type, and remember the attributes.
   5620   D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
   5621                                              IsAmbiguous,
   5622                                              LParenLoc,
   5623                                              ParamInfo.data(), ParamInfo.size(),
   5624                                              EllipsisLoc, RParenLoc,
   5625                                              DS.getTypeQualifiers(),
   5626                                              RefQualifierIsLValueRef,
   5627                                              RefQualifierLoc, ConstQualifierLoc,
   5628                                              VolatileQualifierLoc,
   5629                                              RestrictQualifierLoc,
   5630                                              /*MutableLoc=*/SourceLocation(),
   5631                                              ESpecType, ESpecRange,
   5632                                              DynamicExceptions.data(),
   5633                                              DynamicExceptionRanges.data(),
   5634                                              DynamicExceptions.size(),
   5635                                              NoexceptExpr.isUsable() ?
   5636                                                NoexceptExpr.get() : nullptr,
   5637                                              ExceptionSpecTokens,
   5638                                              StartLoc, LocalEndLoc, D,
   5639                                              TrailingReturnType),
   5640                 FnAttrs, EndLoc);
   5641 }
   5642 
   5643 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
   5644 /// true if a ref-qualifier is found.
   5645 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
   5646                                SourceLocation &RefQualifierLoc) {
   5647   if (Tok.isOneOf(tok::amp, tok::ampamp)) {
   5648     Diag(Tok, getLangOpts().CPlusPlus11 ?
   5649          diag::warn_cxx98_compat_ref_qualifier :
   5650          diag::ext_ref_qualifier);
   5651 
   5652     RefQualifierIsLValueRef = Tok.is(tok::amp);
   5653     RefQualifierLoc = ConsumeToken();
   5654     return true;
   5655   }
   5656   return false;
   5657 }
   5658 
   5659 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
   5660 /// identifier list form for a K&R-style function:  void foo(a,b,c)
   5661 ///
   5662 /// Note that identifier-lists are only allowed for normal declarators, not for
   5663 /// abstract-declarators.
   5664 bool Parser::isFunctionDeclaratorIdentifierList() {
   5665   return !getLangOpts().CPlusPlus
   5666          && Tok.is(tok::identifier)
   5667          && !TryAltiVecVectorToken()
   5668          // K&R identifier lists can't have typedefs as identifiers, per C99
   5669          // 6.7.5.3p11.
   5670          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
   5671          // Identifier lists follow a really simple grammar: the identifiers can
   5672          // be followed *only* by a ", identifier" or ")".  However, K&R
   5673          // identifier lists are really rare in the brave new modern world, and
   5674          // it is very common for someone to typo a type in a non-K&R style
   5675          // list.  If we are presented with something like: "void foo(intptr x,
   5676          // float y)", we don't want to start parsing the function declarator as
   5677          // though it is a K&R style declarator just because intptr is an
   5678          // invalid type.
   5679          //
   5680          // To handle this, we check to see if the token after the first
   5681          // identifier is a "," or ")".  Only then do we parse it as an
   5682          // identifier list.
   5683          && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
   5684 }
   5685 
   5686 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
   5687 /// we found a K&R-style identifier list instead of a typed parameter list.
   5688 ///
   5689 /// After returning, ParamInfo will hold the parsed parameters.
   5690 ///
   5691 ///       identifier-list: [C99 6.7.5]
   5692 ///         identifier
   5693 ///         identifier-list ',' identifier
   5694 ///
   5695 void Parser::ParseFunctionDeclaratorIdentifierList(
   5696        Declarator &D,
   5697        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
   5698   // If there was no identifier specified for the declarator, either we are in
   5699   // an abstract-declarator, or we are in a parameter declarator which was found
   5700   // to be abstract.  In abstract-declarators, identifier lists are not valid:
   5701   // diagnose this.
   5702   if (!D.getIdentifier())
   5703     Diag(Tok, diag::ext_ident_list_in_param);
   5704 
   5705   // Maintain an efficient lookup of params we have seen so far.
   5706   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
   5707 
   5708   do {
   5709     // If this isn't an identifier, report the error and skip until ')'.
   5710     if (Tok.isNot(tok::identifier)) {
   5711       Diag(Tok, diag::err_expected) << tok::identifier;
   5712       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
   5713       // Forget we parsed anything.
   5714       ParamInfo.clear();
   5715       return;
   5716     }
   5717 
   5718     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
   5719 
   5720     // Reject 'typedef int y; int test(x, y)', but continue parsing.
   5721     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
   5722       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
   5723 
   5724     // Verify that the argument identifier has not already been mentioned.
   5725     if (!ParamsSoFar.insert(ParmII).second) {
   5726       Diag(Tok, diag::err_param_redefinition) << ParmII;
   5727     } else {
   5728       // Remember this identifier in ParamInfo.
   5729       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
   5730                                                      Tok.getLocation(),
   5731                                                      nullptr));
   5732     }
   5733 
   5734     // Eat the identifier.
   5735     ConsumeToken();
   5736     // The list continues if we see a comma.
   5737   } while (TryConsumeToken(tok::comma));
   5738 }
   5739 
   5740 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
   5741 /// after the opening parenthesis. This function will not parse a K&R-style
   5742 /// identifier list.
   5743 ///
   5744 /// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
   5745 /// caller parsed those arguments immediately after the open paren - they should
   5746 /// be considered to be part of the first parameter.
   5747 ///
   5748 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
   5749 /// be the location of the ellipsis, if any was parsed.
   5750 ///
   5751 ///       parameter-type-list: [C99 6.7.5]
   5752 ///         parameter-list
   5753 ///         parameter-list ',' '...'
   5754 /// [C++]   parameter-list '...'
   5755 ///
   5756 ///       parameter-list: [C99 6.7.5]
   5757 ///         parameter-declaration
   5758 ///         parameter-list ',' parameter-declaration
   5759 ///
   5760 ///       parameter-declaration: [C99 6.7.5]
   5761 ///         declaration-specifiers declarator
   5762 /// [C++]   declaration-specifiers declarator '=' assignment-expression
   5763 /// [C++11]                                       initializer-clause
   5764 /// [GNU]   declaration-specifiers declarator attributes
   5765 ///         declaration-specifiers abstract-declarator[opt]
   5766 /// [C++]   declaration-specifiers abstract-declarator[opt]
   5767 ///           '=' assignment-expression
   5768 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
   5769 /// [C++11] attribute-specifier-seq parameter-declaration
   5770 ///
   5771 void Parser::ParseParameterDeclarationClause(
   5772        Declarator &D,
   5773        ParsedAttributes &FirstArgAttrs,
   5774        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
   5775        SourceLocation &EllipsisLoc) {
   5776   do {
   5777     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
   5778     // before deciding this was a parameter-declaration-clause.
   5779     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
   5780       break;
   5781 
   5782     // Parse the declaration-specifiers.
   5783     // Just use the ParsingDeclaration "scope" of the declarator.
   5784     DeclSpec DS(AttrFactory);
   5785 
   5786     // Parse any C++11 attributes.
   5787     MaybeParseCXX11Attributes(DS.getAttributes());
   5788 
   5789     // Skip any Microsoft attributes before a param.
   5790     MaybeParseMicrosoftAttributes(DS.getAttributes());
   5791 
   5792     SourceLocation DSStart = Tok.getLocation();
   5793 
   5794     // If the caller parsed attributes for the first argument, add them now.
   5795     // Take them so that we only apply the attributes to the first parameter.
   5796     // FIXME: If we can leave the attributes in the token stream somehow, we can
   5797     // get rid of a parameter (FirstArgAttrs) and this statement. It might be
   5798     // too much hassle.
   5799     DS.takeAttributesFrom(FirstArgAttrs);
   5800 
   5801     ParseDeclarationSpecifiers(DS);
   5802 
   5803 
   5804     // Parse the declarator.  This is "PrototypeContext" or
   5805     // "LambdaExprParameterContext", because we must accept either
   5806     // 'declarator' or 'abstract-declarator' here.
   5807     Declarator ParmDeclarator(DS,
   5808               D.getContext() == Declarator::LambdaExprContext ?
   5809                                   Declarator::LambdaExprParameterContext :
   5810                                                 Declarator::PrototypeContext);
   5811     ParseDeclarator(ParmDeclarator);
   5812 
   5813     // Parse GNU attributes, if present.
   5814     MaybeParseGNUAttributes(ParmDeclarator);
   5815 
   5816     // Remember this parsed parameter in ParamInfo.
   5817     IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
   5818 
   5819     // DefArgToks is used when the parsing of default arguments needs
   5820     // to be delayed.
   5821     CachedTokens *DefArgToks = nullptr;
   5822 
   5823     // If no parameter was specified, verify that *something* was specified,
   5824     // otherwise we have a missing type and identifier.
   5825     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
   5826         ParmDeclarator.getNumTypeObjects() == 0) {
   5827       // Completely missing, emit error.
   5828       Diag(DSStart, diag::err_missing_param);
   5829     } else {
   5830       // Otherwise, we have something.  Add it and let semantic analysis try
   5831       // to grok it and add the result to the ParamInfo we are building.
   5832 
   5833       // Last chance to recover from a misplaced ellipsis in an attempted
   5834       // parameter pack declaration.
   5835       if (Tok.is(tok::ellipsis) &&
   5836           (NextToken().isNot(tok::r_paren) ||
   5837            (!ParmDeclarator.getEllipsisLoc().isValid() &&
   5838             !Actions.isUnexpandedParameterPackPermitted())) &&
   5839           Actions.containsUnexpandedParameterPacks(ParmDeclarator))
   5840         DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
   5841 
   5842       // Inform the actions module about the parameter declarator, so it gets
   5843       // added to the current scope.
   5844       Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
   5845       // Parse the default argument, if any. We parse the default
   5846       // arguments in all dialects; the semantic analysis in
   5847       // ActOnParamDefaultArgument will reject the default argument in
   5848       // C.
   5849       if (Tok.is(tok::equal)) {
   5850         SourceLocation EqualLoc = Tok.getLocation();
   5851 
   5852         // Parse the default argument
   5853         if (D.getContext() == Declarator::MemberContext) {
   5854           // If we're inside a class definition, cache the tokens
   5855           // corresponding to the default argument. We'll actually parse
   5856           // them when we see the end of the class definition.
   5857           // FIXME: Can we use a smart pointer for Toks?
   5858           DefArgToks = new CachedTokens;
   5859 
   5860           SourceLocation ArgStartLoc = NextToken().getLocation();
   5861           if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
   5862             delete DefArgToks;
   5863             DefArgToks = nullptr;
   5864             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
   5865           } else {
   5866             Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
   5867                                                       ArgStartLoc);
   5868           }
   5869         } else {
   5870           // Consume the '='.
   5871           ConsumeToken();
   5872 
   5873           // The argument isn't actually potentially evaluated unless it is
   5874           // used.
   5875           EnterExpressionEvaluationContext Eval(Actions,
   5876                                               Sema::PotentiallyEvaluatedIfUsed,
   5877                                                 Param);
   5878 
   5879           ExprResult DefArgResult;
   5880           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
   5881             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   5882             DefArgResult = ParseBraceInitializer();
   5883           } else
   5884             DefArgResult = ParseAssignmentExpression();
   5885           DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
   5886           if (DefArgResult.isInvalid()) {
   5887             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
   5888             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
   5889           } else {
   5890             // Inform the actions module about the default argument
   5891             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
   5892                                               DefArgResult.get());
   5893           }
   5894         }
   5895       }
   5896 
   5897       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
   5898                                           ParmDeclarator.getIdentifierLoc(),
   5899                                           Param, DefArgToks));
   5900     }
   5901 
   5902     if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
   5903       if (!getLangOpts().CPlusPlus) {
   5904         // We have ellipsis without a preceding ',', which is ill-formed
   5905         // in C. Complain and provide the fix.
   5906         Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
   5907             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
   5908       } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
   5909                  Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
   5910         // It looks like this was supposed to be a parameter pack. Warn and
   5911         // point out where the ellipsis should have gone.
   5912         SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
   5913         Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
   5914           << ParmEllipsis.isValid() << ParmEllipsis;
   5915         if (ParmEllipsis.isValid()) {
   5916           Diag(ParmEllipsis,
   5917                diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
   5918         } else {
   5919           Diag(ParmDeclarator.getIdentifierLoc(),
   5920                diag::note_misplaced_ellipsis_vararg_add_ellipsis)
   5921             << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
   5922                                           "...")
   5923             << !ParmDeclarator.hasName();
   5924         }
   5925         Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
   5926           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
   5927       }
   5928 
   5929       // We can't have any more parameters after an ellipsis.
   5930       break;
   5931     }
   5932 
   5933     // If the next token is a comma, consume it and keep reading arguments.
   5934   } while (TryConsumeToken(tok::comma));
   5935 }
   5936 
   5937 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
   5938 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
   5939 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
   5940 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
   5941 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
   5942 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
   5943 ///                           attribute-specifier-seq[opt]
   5944 void Parser::ParseBracketDeclarator(Declarator &D) {
   5945   if (CheckProhibitedCXX11Attribute())
   5946     return;
   5947 
   5948   BalancedDelimiterTracker T(*this, tok::l_square);
   5949   T.consumeOpen();
   5950 
   5951   // C array syntax has many features, but by-far the most common is [] and [4].
   5952   // This code does a fast path to handle some of the most obvious cases.
   5953   if (Tok.getKind() == tok::r_square) {
   5954     T.consumeClose();
   5955     ParsedAttributes attrs(AttrFactory);
   5956     MaybeParseCXX11Attributes(attrs);
   5957 
   5958     // Remember that we parsed the empty array type.
   5959     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
   5960                                             T.getOpenLocation(),
   5961                                             T.getCloseLocation()),
   5962                   attrs, T.getCloseLocation());
   5963     return;
   5964   } else if (Tok.getKind() == tok::numeric_constant &&
   5965              GetLookAheadToken(1).is(tok::r_square)) {
   5966     // [4] is very common.  Parse the numeric constant expression.
   5967     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
   5968     ConsumeToken();
   5969 
   5970     T.consumeClose();
   5971     ParsedAttributes attrs(AttrFactory);
   5972     MaybeParseCXX11Attributes(attrs);
   5973 
   5974     // Remember that we parsed a array type, and remember its features.
   5975     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
   5976                                             ExprRes.get(),
   5977                                             T.getOpenLocation(),
   5978                                             T.getCloseLocation()),
   5979                   attrs, T.getCloseLocation());
   5980     return;
   5981   }
   5982 
   5983   // If valid, this location is the position where we read the 'static' keyword.
   5984   SourceLocation StaticLoc;
   5985   TryConsumeToken(tok::kw_static, StaticLoc);
   5986 
   5987   // If there is a type-qualifier-list, read it now.
   5988   // Type qualifiers in an array subscript are a C99 feature.
   5989   DeclSpec DS(AttrFactory);
   5990   ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
   5991 
   5992   // If we haven't already read 'static', check to see if there is one after the
   5993   // type-qualifier-list.
   5994   if (!StaticLoc.isValid())
   5995     TryConsumeToken(tok::kw_static, StaticLoc);
   5996 
   5997   // Handle "direct-declarator [ type-qual-list[opt] * ]".
   5998   bool isStar = false;
   5999   ExprResult NumElements;
   6000 
   6001   // Handle the case where we have '[*]' as the array size.  However, a leading
   6002   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
   6003   // the token after the star is a ']'.  Since stars in arrays are
   6004   // infrequent, use of lookahead is not costly here.
   6005   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
   6006     ConsumeToken();  // Eat the '*'.
   6007 
   6008     if (StaticLoc.isValid()) {
   6009       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
   6010       StaticLoc = SourceLocation();  // Drop the static.
   6011     }
   6012     isStar = true;
   6013   } else if (Tok.isNot(tok::r_square)) {
   6014     // Note, in C89, this production uses the constant-expr production instead
   6015     // of assignment-expr.  The only difference is that assignment-expr allows
   6016     // things like '=' and '*='.  Sema rejects these in C89 mode because they
   6017     // are not i-c-e's, so we don't need to distinguish between the two here.
   6018 
   6019     // Parse the constant-expression or assignment-expression now (depending
   6020     // on dialect).
   6021     if (getLangOpts().CPlusPlus) {
   6022       NumElements = ParseConstantExpression();
   6023     } else {
   6024       EnterExpressionEvaluationContext Unevaluated(Actions,
   6025                                                    Sema::ConstantEvaluated);
   6026       NumElements =
   6027           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
   6028     }
   6029   } else {
   6030     if (StaticLoc.isValid()) {
   6031       Diag(StaticLoc, diag::err_unspecified_size_with_static);
   6032       StaticLoc = SourceLocation();  // Drop the static.
   6033     }
   6034   }
   6035 
   6036   // If there was an error parsing the assignment-expression, recover.
   6037   if (NumElements.isInvalid()) {
   6038     D.setInvalidType(true);
   6039     // If the expression was invalid, skip it.
   6040     SkipUntil(tok::r_square, StopAtSemi);
   6041     return;
   6042   }
   6043 
   6044   T.consumeClose();
   6045 
   6046   ParsedAttributes attrs(AttrFactory);
   6047   MaybeParseCXX11Attributes(attrs);
   6048 
   6049   // Remember that we parsed a array type, and remember its features.
   6050   D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
   6051                                           StaticLoc.isValid(), isStar,
   6052                                           NumElements.get(),
   6053                                           T.getOpenLocation(),
   6054                                           T.getCloseLocation()),
   6055                 attrs, T.getCloseLocation());
   6056 }
   6057 
   6058 /// Diagnose brackets before an identifier.
   6059 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
   6060   assert(Tok.is(tok::l_square) && "Missing opening bracket");
   6061   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
   6062 
   6063   SourceLocation StartBracketLoc = Tok.getLocation();
   6064   Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
   6065 
   6066   while (Tok.is(tok::l_square)) {
   6067     ParseBracketDeclarator(TempDeclarator);
   6068   }
   6069 
   6070   // Stuff the location of the start of the brackets into the Declarator.
   6071   // The diagnostics from ParseDirectDeclarator will make more sense if
   6072   // they use this location instead.
   6073   if (Tok.is(tok::semi))
   6074     D.getName().EndLocation = StartBracketLoc;
   6075 
   6076   SourceLocation SuggestParenLoc = Tok.getLocation();
   6077 
   6078   // Now that the brackets are removed, try parsing the declarator again.
   6079   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
   6080 
   6081   // Something went wrong parsing the brackets, in which case,
   6082   // ParseBracketDeclarator has emitted an error, and we don't need to emit
   6083   // one here.
   6084   if (TempDeclarator.getNumTypeObjects() == 0)
   6085     return;
   6086 
   6087   // Determine if parens will need to be suggested in the diagnostic.
   6088   bool NeedParens = false;
   6089   if (D.getNumTypeObjects() != 0) {
   6090     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
   6091     case DeclaratorChunk::Pointer:
   6092     case DeclaratorChunk::Reference:
   6093     case DeclaratorChunk::BlockPointer:
   6094     case DeclaratorChunk::MemberPointer:
   6095       NeedParens = true;
   6096       break;
   6097     case DeclaratorChunk::Array:
   6098     case DeclaratorChunk::Function:
   6099     case DeclaratorChunk::Paren:
   6100       break;
   6101     }
   6102   }
   6103 
   6104   if (NeedParens) {
   6105     // Create a DeclaratorChunk for the inserted parens.
   6106     ParsedAttributes attrs(AttrFactory);
   6107     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
   6108     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
   6109                   SourceLocation());
   6110   }
   6111 
   6112   // Adding back the bracket info to the end of the Declarator.
   6113   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
   6114     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
   6115     ParsedAttributes attrs(AttrFactory);
   6116     attrs.set(Chunk.Common.AttrList);
   6117     D.AddTypeInfo(Chunk, attrs, SourceLocation());
   6118   }
   6119 
   6120   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
   6121   // If parentheses are required, always suggest them.
   6122   if (!D.getIdentifier() && !NeedParens)
   6123     return;
   6124 
   6125   SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
   6126 
   6127   // Generate the move bracket error message.
   6128   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
   6129   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
   6130 
   6131   if (NeedParens) {
   6132     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
   6133         << getLangOpts().CPlusPlus
   6134         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
   6135         << FixItHint::CreateInsertion(EndLoc, ")")
   6136         << FixItHint::CreateInsertionFromRange(
   6137                EndLoc, CharSourceRange(BracketRange, true))
   6138         << FixItHint::CreateRemoval(BracketRange);
   6139   } else {
   6140     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
   6141         << getLangOpts().CPlusPlus
   6142         << FixItHint::CreateInsertionFromRange(
   6143                EndLoc, CharSourceRange(BracketRange, true))
   6144         << FixItHint::CreateRemoval(BracketRange);
   6145   }
   6146 }
   6147 
   6148 /// [GNU]   typeof-specifier:
   6149 ///           typeof ( expressions )
   6150 ///           typeof ( type-name )
   6151 /// [GNU/C++] typeof unary-expression
   6152 ///
   6153 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
   6154   assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
   6155   Token OpTok = Tok;
   6156   SourceLocation StartLoc = ConsumeToken();
   6157 
   6158   const bool hasParens = Tok.is(tok::l_paren);
   6159 
   6160   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
   6161                                                Sema::ReuseLambdaContextDecl);
   6162 
   6163   bool isCastExpr;
   6164   ParsedType CastTy;
   6165   SourceRange CastRange;
   6166   ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
   6167       ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
   6168   if (hasParens)
   6169     DS.setTypeofParensRange(CastRange);
   6170 
   6171   if (CastRange.getEnd().isInvalid())
   6172     // FIXME: Not accurate, the range gets one token more than it should.
   6173     DS.SetRangeEnd(Tok.getLocation());
   6174   else
   6175     DS.SetRangeEnd(CastRange.getEnd());
   6176 
   6177   if (isCastExpr) {
   6178     if (!CastTy) {
   6179       DS.SetTypeSpecError();
   6180       return;
   6181     }
   6182 
   6183     const char *PrevSpec = nullptr;
   6184     unsigned DiagID;
   6185     // Check for duplicate type specifiers (e.g. "int typeof(int)").
   6186     if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
   6187                            DiagID, CastTy,
   6188                            Actions.getASTContext().getPrintingPolicy()))
   6189       Diag(StartLoc, DiagID) << PrevSpec;
   6190     return;
   6191   }
   6192 
   6193   // If we get here, the operand to the typeof was an expresion.
   6194   if (Operand.isInvalid()) {
   6195     DS.SetTypeSpecError();
   6196     return;
   6197   }
   6198 
   6199   // We might need to transform the operand if it is potentially evaluated.
   6200   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
   6201   if (Operand.isInvalid()) {
   6202     DS.SetTypeSpecError();
   6203     return;
   6204   }
   6205 
   6206   const char *PrevSpec = nullptr;
   6207   unsigned DiagID;
   6208   // Check for duplicate type specifiers (e.g. "int typeof(int)").
   6209   if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
   6210                          DiagID, Operand.get(),
   6211                          Actions.getASTContext().getPrintingPolicy()))
   6212     Diag(StartLoc, DiagID) << PrevSpec;
   6213 }
   6214 
   6215 /// [C11]   atomic-specifier:
   6216 ///           _Atomic ( type-name )
   6217 ///
   6218 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
   6219   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
   6220          "Not an atomic specifier");
   6221 
   6222   SourceLocation StartLoc = ConsumeToken();
   6223   BalancedDelimiterTracker T(*this, tok::l_paren);
   6224   if (T.consumeOpen())
   6225     return;
   6226 
   6227   TypeResult Result = ParseTypeName();
   6228   if (Result.isInvalid()) {
   6229     SkipUntil(tok::r_paren, StopAtSemi);
   6230     return;
   6231   }
   6232 
   6233   // Match the ')'
   6234   T.consumeClose();
   6235 
   6236   if (T.getCloseLocation().isInvalid())
   6237     return;
   6238 
   6239   DS.setTypeofParensRange(T.getRange());
   6240   DS.SetRangeEnd(T.getCloseLocation());
   6241 
   6242   const char *PrevSpec = nullptr;
   6243   unsigned DiagID;
   6244   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
   6245                          DiagID, Result.get(),
   6246                          Actions.getASTContext().getPrintingPolicy()))
   6247     Diag(StartLoc, DiagID) << PrevSpec;
   6248 }
   6249 
   6250 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
   6251 /// from TryAltiVecVectorToken.
   6252 bool Parser::TryAltiVecVectorTokenOutOfLine() {
   6253   Token Next = NextToken();
   6254   switch (Next.getKind()) {
   6255   default: return false;
   6256   case tok::kw_short:
   6257   case tok::kw_long:
   6258   case tok::kw_signed:
   6259   case tok::kw_unsigned:
   6260   case tok::kw_void:
   6261   case tok::kw_char:
   6262   case tok::kw_int:
   6263   case tok::kw_float:
   6264   case tok::kw_double:
   6265   case tok::kw_bool:
   6266   case tok::kw___bool:
   6267   case tok::kw___pixel:
   6268     Tok.setKind(tok::kw___vector);
   6269     return true;
   6270   case tok::identifier:
   6271     if (Next.getIdentifierInfo() == Ident_pixel) {
   6272       Tok.setKind(tok::kw___vector);
   6273       return true;
   6274     }
   6275     if (Next.getIdentifierInfo() == Ident_bool) {
   6276       Tok.setKind(tok::kw___vector);
   6277       return true;
   6278     }
   6279     return false;
   6280   }
   6281 }
   6282 
   6283 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
   6284                                       const char *&PrevSpec, unsigned &DiagID,
   6285                                       bool &isInvalid) {
   6286   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
   6287   if (Tok.getIdentifierInfo() == Ident_vector) {
   6288     Token Next = NextToken();
   6289     switch (Next.getKind()) {
   6290     case tok::kw_short:
   6291     case tok::kw_long:
   6292     case tok::kw_signed:
   6293     case tok::kw_unsigned:
   6294     case tok::kw_void:
   6295     case tok::kw_char:
   6296     case tok::kw_int:
   6297     case tok::kw_float:
   6298     case tok::kw_double:
   6299     case tok::kw_bool:
   6300     case tok::kw___bool:
   6301     case tok::kw___pixel:
   6302       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
   6303       return true;
   6304     case tok::identifier:
   6305       if (Next.getIdentifierInfo() == Ident_pixel) {
   6306         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
   6307         return true;
   6308       }
   6309       if (Next.getIdentifierInfo() == Ident_bool) {
   6310         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
   6311         return true;
   6312       }
   6313       break;
   6314     default:
   6315       break;
   6316     }
   6317   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
   6318              DS.isTypeAltiVecVector()) {
   6319     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
   6320     return true;
   6321   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
   6322              DS.isTypeAltiVecVector()) {
   6323     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
   6324     return true;
   6325   }
   6326   return false;
   6327 }
   6328