Home | History | Annotate | Download | only in compiler
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "image_writer.h"
     18 
     19 #include <sys/stat.h>
     20 #include <lz4.h>
     21 #include <lz4hc.h>
     22 
     23 #include <memory>
     24 #include <numeric>
     25 #include <unordered_set>
     26 #include <vector>
     27 
     28 #include "art_field-inl.h"
     29 #include "art_method-inl.h"
     30 #include "base/logging.h"
     31 #include "base/unix_file/fd_file.h"
     32 #include "class_linker-inl.h"
     33 #include "compiled_method.h"
     34 #include "dex_file-inl.h"
     35 #include "driver/compiler_driver.h"
     36 #include "elf_file.h"
     37 #include "elf_utils.h"
     38 #include "elf_writer.h"
     39 #include "gc/accounting/card_table-inl.h"
     40 #include "gc/accounting/heap_bitmap.h"
     41 #include "gc/accounting/space_bitmap-inl.h"
     42 #include "gc/heap.h"
     43 #include "gc/space/large_object_space.h"
     44 #include "gc/space/space-inl.h"
     45 #include "globals.h"
     46 #include "image.h"
     47 #include "intern_table.h"
     48 #include "linear_alloc.h"
     49 #include "lock_word.h"
     50 #include "mirror/abstract_method.h"
     51 #include "mirror/array-inl.h"
     52 #include "mirror/class-inl.h"
     53 #include "mirror/class_loader.h"
     54 #include "mirror/dex_cache-inl.h"
     55 #include "mirror/method.h"
     56 #include "mirror/object-inl.h"
     57 #include "mirror/object_array-inl.h"
     58 #include "mirror/string-inl.h"
     59 #include "oat.h"
     60 #include "oat_file.h"
     61 #include "oat_file_manager.h"
     62 #include "runtime.h"
     63 #include "scoped_thread_state_change.h"
     64 #include "handle_scope-inl.h"
     65 #include "utils/dex_cache_arrays_layout-inl.h"
     66 
     67 using ::art::mirror::Class;
     68 using ::art::mirror::DexCache;
     69 using ::art::mirror::Object;
     70 using ::art::mirror::ObjectArray;
     71 using ::art::mirror::String;
     72 
     73 namespace art {
     74 
     75 // Separate objects into multiple bins to optimize dirty memory use.
     76 static constexpr bool kBinObjects = true;
     77 
     78 // Return true if an object is already in an image space.
     79 bool ImageWriter::IsInBootImage(const void* obj) const {
     80   gc::Heap* const heap = Runtime::Current()->GetHeap();
     81   if (!compile_app_image_) {
     82     DCHECK(heap->GetBootImageSpaces().empty());
     83     return false;
     84   }
     85   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
     86     const uint8_t* image_begin = boot_image_space->Begin();
     87     // Real image end including ArtMethods and ArtField sections.
     88     const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
     89     if (image_begin <= obj && obj < image_end) {
     90       return true;
     91     }
     92   }
     93   return false;
     94 }
     95 
     96 bool ImageWriter::IsInBootOatFile(const void* ptr) const {
     97   gc::Heap* const heap = Runtime::Current()->GetHeap();
     98   if (!compile_app_image_) {
     99     DCHECK(heap->GetBootImageSpaces().empty());
    100     return false;
    101   }
    102   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
    103     const ImageHeader& image_header = boot_image_space->GetImageHeader();
    104     if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
    105       return true;
    106     }
    107   }
    108   return false;
    109 }
    110 
    111 static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED)
    112     SHARED_REQUIRES(Locks::mutator_lock_) {
    113   Class* klass = obj->GetClass();
    114   CHECK_NE(PrettyClass(klass), "com.android.dex.Dex");
    115 }
    116 
    117 static void CheckNoDexObjects() {
    118   ScopedObjectAccess soa(Thread::Current());
    119   Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr);
    120 }
    121 
    122 bool ImageWriter::PrepareImageAddressSpace() {
    123   target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
    124   gc::Heap* const heap = Runtime::Current()->GetHeap();
    125   {
    126     ScopedObjectAccess soa(Thread::Current());
    127     PruneNonImageClasses();  // Remove junk
    128     if (!compile_app_image_) {
    129       // Avoid for app image since this may increase RAM and image size.
    130       ComputeLazyFieldsForImageClasses();  // Add useful information
    131     }
    132   }
    133   heap->CollectGarbage(false);  // Remove garbage.
    134 
    135   // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped
    136   // dex files.
    137   //
    138   // We may open them in the unstarted-runtime code for class metadata. Their fields should all be
    139   // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually
    140   // true.
    141   if (kIsDebugBuild) {
    142     CheckNoDexObjects();
    143   }
    144 
    145   if (kIsDebugBuild) {
    146     ScopedObjectAccess soa(Thread::Current());
    147     CheckNonImageClassesRemoved();
    148   }
    149 
    150   {
    151     ScopedObjectAccess soa(Thread::Current());
    152     CalculateNewObjectOffsets();
    153   }
    154 
    155   // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
    156   // bin size sums being calculated.
    157   if (!AllocMemory()) {
    158     return false;
    159   }
    160 
    161   return true;
    162 }
    163 
    164 bool ImageWriter::Write(int image_fd,
    165                         const std::vector<const char*>& image_filenames,
    166                         const std::vector<const char*>& oat_filenames) {
    167   // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
    168   // oat_filenames.
    169   CHECK(!image_filenames.empty());
    170   if (image_fd != kInvalidFd) {
    171     CHECK_EQ(image_filenames.size(), 1u);
    172   }
    173   CHECK(!oat_filenames.empty());
    174   CHECK_EQ(image_filenames.size(), oat_filenames.size());
    175 
    176   {
    177     ScopedObjectAccess soa(Thread::Current());
    178     for (size_t i = 0; i < oat_filenames.size(); ++i) {
    179       CreateHeader(i);
    180       CopyAndFixupNativeData(i);
    181     }
    182   }
    183 
    184   {
    185     // TODO: heap validation can't handle these fix up passes.
    186     ScopedObjectAccess soa(Thread::Current());
    187     Runtime::Current()->GetHeap()->DisableObjectValidation();
    188     CopyAndFixupObjects();
    189   }
    190 
    191   for (size_t i = 0; i < image_filenames.size(); ++i) {
    192     const char* image_filename = image_filenames[i];
    193     ImageInfo& image_info = GetImageInfo(i);
    194     std::unique_ptr<File> image_file;
    195     if (image_fd != kInvalidFd) {
    196       if (strlen(image_filename) == 0u) {
    197         image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
    198         // Empty the file in case it already exists.
    199         if (image_file != nullptr) {
    200           TEMP_FAILURE_RETRY(image_file->SetLength(0));
    201           TEMP_FAILURE_RETRY(image_file->Flush());
    202         }
    203       } else {
    204         LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
    205       }
    206     } else {
    207       image_file.reset(OS::CreateEmptyFile(image_filename));
    208     }
    209 
    210     if (image_file == nullptr) {
    211       LOG(ERROR) << "Failed to open image file " << image_filename;
    212       return false;
    213     }
    214 
    215     if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) {
    216       PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
    217       image_file->Erase();
    218       return EXIT_FAILURE;
    219     }
    220 
    221     std::unique_ptr<char[]> compressed_data;
    222     // Image data size excludes the bitmap and the header.
    223     ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
    224     const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader);
    225     char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader);
    226     size_t data_size;
    227     const char* image_data_to_write;
    228     const uint64_t compress_start_time = NanoTime();
    229 
    230     CHECK_EQ(image_header->storage_mode_, image_storage_mode_);
    231     switch (image_storage_mode_) {
    232       case ImageHeader::kStorageModeLZ4HC:  // Fall-through.
    233       case ImageHeader::kStorageModeLZ4: {
    234         const size_t compressed_max_size = LZ4_compressBound(image_data_size);
    235         compressed_data.reset(new char[compressed_max_size]);
    236         data_size = LZ4_compress(
    237             reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
    238             &compressed_data[0],
    239             image_data_size);
    240 
    241         break;
    242       }
    243       /*
    244        * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444
    245       case ImageHeader::kStorageModeLZ4HC: {
    246         // Bound is same as non HC.
    247         const size_t compressed_max_size = LZ4_compressBound(image_data_size);
    248         compressed_data.reset(new char[compressed_max_size]);
    249         data_size = LZ4_compressHC(
    250             reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
    251             &compressed_data[0],
    252             image_data_size);
    253         break;
    254       }
    255       */
    256       case ImageHeader::kStorageModeUncompressed: {
    257         data_size = image_data_size;
    258         image_data_to_write = image_data;
    259         break;
    260       }
    261       default: {
    262         LOG(FATAL) << "Unsupported";
    263         UNREACHABLE();
    264       }
    265     }
    266 
    267     if (compressed_data != nullptr) {
    268       image_data_to_write = &compressed_data[0];
    269       VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in "
    270                      << PrettyDuration(NanoTime() - compress_start_time);
    271       if (kIsDebugBuild) {
    272         std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]);
    273         const size_t decompressed_size = LZ4_decompress_safe(
    274             reinterpret_cast<char*>(&compressed_data[0]),
    275             reinterpret_cast<char*>(&temp[0]),
    276             data_size,
    277             image_data_size);
    278         CHECK_EQ(decompressed_size, image_data_size);
    279         CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_;
    280       }
    281     }
    282 
    283     // Write out the image + fields + methods.
    284     const bool is_compressed = compressed_data != nullptr;
    285     if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) {
    286       PLOG(ERROR) << "Failed to write image file data " << image_filename;
    287       image_file->Erase();
    288       return false;
    289     }
    290 
    291     // Write out the image bitmap at the page aligned start of the image end, also uncompressed for
    292     // convenience.
    293     const ImageSection& bitmap_section = image_header->GetImageSection(
    294         ImageHeader::kSectionImageBitmap);
    295     // Align up since data size may be unaligned if the image is compressed.
    296     size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize);
    297     if (!is_compressed) {
    298       CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset());
    299     }
    300     if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()),
    301                                  bitmap_section.Size(),
    302                                  bitmap_position_in_file)) {
    303       PLOG(ERROR) << "Failed to write image file " << image_filename;
    304       image_file->Erase();
    305       return false;
    306     }
    307 
    308     int err = image_file->Flush();
    309     if (err < 0) {
    310       PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
    311       image_file->Erase();
    312       return false;
    313     }
    314 
    315     // Write header last in case the compiler gets killed in the middle of image writing.
    316     // We do not want to have a corrupted image with a valid header.
    317     // The header is uncompressed since it contains whether the image is compressed or not.
    318     image_header->data_size_ = data_size;
    319     if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()),
    320                                  sizeof(ImageHeader),
    321                                  0)) {
    322       PLOG(ERROR) << "Failed to write image file header " << image_filename;
    323       image_file->Erase();
    324       return false;
    325     }
    326 
    327     CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(),
    328              static_cast<size_t>(image_file->GetLength()));
    329     if (image_file->FlushCloseOrErase() != 0) {
    330       PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
    331       return false;
    332     }
    333   }
    334   return true;
    335 }
    336 
    337 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
    338   DCHECK(object != nullptr);
    339   DCHECK_NE(offset, 0U);
    340 
    341   // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
    342   object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
    343   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
    344   DCHECK(IsImageOffsetAssigned(object));
    345 }
    346 
    347 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
    348   DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
    349   obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
    350   DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
    351 }
    352 
    353 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
    354   DCHECK(object != nullptr);
    355   DCHECK_NE(image_objects_offset_begin_, 0u);
    356 
    357   size_t oat_index = GetOatIndex(object);
    358   ImageInfo& image_info = GetImageInfo(oat_index);
    359   size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()];
    360   size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
    361   DCHECK_ALIGNED(new_offset, kObjectAlignment);
    362 
    363   SetImageOffset(object, new_offset);
    364   DCHECK_LT(new_offset, image_info.image_end_);
    365 }
    366 
    367 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
    368   // Will also return true if the bin slot was assigned since we are reusing the lock word.
    369   DCHECK(object != nullptr);
    370   return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
    371 }
    372 
    373 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
    374   DCHECK(object != nullptr);
    375   DCHECK(IsImageOffsetAssigned(object));
    376   LockWord lock_word = object->GetLockWord(false);
    377   size_t offset = lock_word.ForwardingAddress();
    378   size_t oat_index = GetOatIndex(object);
    379   const ImageInfo& image_info = GetImageInfo(oat_index);
    380   DCHECK_LT(offset, image_info.image_end_);
    381   return offset;
    382 }
    383 
    384 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
    385   DCHECK(object != nullptr);
    386   DCHECK(!IsImageOffsetAssigned(object));
    387   DCHECK(!IsImageBinSlotAssigned(object));
    388 
    389   // Before we stomp over the lock word, save the hash code for later.
    390   LockWord lw(object->GetLockWord(false));
    391   switch (lw.GetState()) {
    392     case LockWord::kFatLocked: {
    393       LOG(FATAL) << "Fat locked object " << object << " found during object copy";
    394       break;
    395     }
    396     case LockWord::kThinLocked: {
    397       LOG(FATAL) << "Thin locked object " << object << " found during object copy";
    398       break;
    399     }
    400     case LockWord::kUnlocked:
    401       // No hash, don't need to save it.
    402       break;
    403     case LockWord::kHashCode:
    404       DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
    405       saved_hashcode_map_.emplace(object, lw.GetHashCode());
    406       break;
    407     default:
    408       LOG(FATAL) << "Unreachable.";
    409       UNREACHABLE();
    410   }
    411   object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
    412   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
    413   DCHECK(IsImageBinSlotAssigned(object));
    414 }
    415 
    416 void ImageWriter::PrepareDexCacheArraySlots() {
    417   // Prepare dex cache array starts based on the ordering specified in the CompilerDriver.
    418   // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
    419   // when AssignImageBinSlot() assigns their indexes out or order.
    420   for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
    421     auto it = dex_file_oat_index_map_.find(dex_file);
    422     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
    423     ImageInfo& image_info = GetImageInfo(it->second);
    424     image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]);
    425     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
    426     image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size();
    427   }
    428 
    429   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    430   Thread* const self = Thread::Current();
    431   ReaderMutexLock mu(self, *class_linker->DexLock());
    432   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
    433     mirror::DexCache* dex_cache =
    434         down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
    435     if (dex_cache == nullptr || IsInBootImage(dex_cache)) {
    436       continue;
    437     }
    438     const DexFile* dex_file = dex_cache->GetDexFile();
    439     CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
    440         << "Dex cache should have been pruned " << dex_file->GetLocation()
    441         << "; possibly in class path";
    442     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
    443     DCHECK(layout.Valid());
    444     size_t oat_index = GetOatIndexForDexCache(dex_cache);
    445     ImageInfo& image_info = GetImageInfo(oat_index);
    446     uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
    447     DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
    448     AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
    449                                start + layout.TypesOffset(),
    450                                dex_cache);
    451     DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
    452     AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
    453                                start + layout.MethodsOffset(),
    454                                dex_cache);
    455     DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
    456     AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
    457                                start + layout.FieldsOffset(),
    458                                dex_cache);
    459     DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
    460     AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache);
    461   }
    462 }
    463 
    464 void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) {
    465   if (array != nullptr) {
    466     DCHECK(!IsInBootImage(array));
    467     size_t oat_index = GetOatIndexForDexCache(dex_cache);
    468     native_object_relocations_.emplace(array,
    469         NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray });
    470   }
    471 }
    472 
    473 void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
    474   DCHECK(arr != nullptr);
    475   if (kIsDebugBuild) {
    476     for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
    477       ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
    478       if (method != nullptr && !method->IsRuntimeMethod()) {
    479         mirror::Class* klass = method->GetDeclaringClass();
    480         CHECK(klass == nullptr || KeepClass(klass))
    481             << PrettyClass(klass) << " should be a kept class";
    482       }
    483     }
    484   }
    485   // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
    486   // ArtMethods.
    487   pointer_arrays_.emplace(arr, kBinArtMethodClean);
    488 }
    489 
    490 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
    491   DCHECK(object != nullptr);
    492   size_t object_size = object->SizeOf();
    493 
    494   // The magic happens here. We segregate objects into different bins based
    495   // on how likely they are to get dirty at runtime.
    496   //
    497   // Likely-to-dirty objects get packed together into the same bin so that
    498   // at runtime their page dirtiness ratio (how many dirty objects a page has) is
    499   // maximized.
    500   //
    501   // This means more pages will stay either clean or shared dirty (with zygote) and
    502   // the app will use less of its own (private) memory.
    503   Bin bin = kBinRegular;
    504   size_t current_offset = 0u;
    505 
    506   if (kBinObjects) {
    507     //
    508     // Changing the bin of an object is purely a memory-use tuning.
    509     // It has no change on runtime correctness.
    510     //
    511     // Memory analysis has determined that the following types of objects get dirtied
    512     // the most:
    513     //
    514     // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
    515     //   a fixed layout which helps improve generated code (using PC-relative addressing),
    516     //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
    517     //   Since these arrays are huge, most pages do not overlap other objects and it's not
    518     //   really important where they are for the clean/dirty separation. Due to their
    519     //   special PC-relative addressing, we arbitrarily keep them at the end.
    520     // * Class'es which are verified [their clinit runs only at runtime]
    521     //   - classes in general [because their static fields get overwritten]
    522     //   - initialized classes with all-final statics are unlikely to be ever dirty,
    523     //     so bin them separately
    524     // * Art Methods that are:
    525     //   - native [their native entry point is not looked up until runtime]
    526     //   - have declaring classes that aren't initialized
    527     //            [their interpreter/quick entry points are trampolines until the class
    528     //             becomes initialized]
    529     //
    530     // We also assume the following objects get dirtied either never or extremely rarely:
    531     //  * Strings (they are immutable)
    532     //  * Art methods that aren't native and have initialized declared classes
    533     //
    534     // We assume that "regular" bin objects are highly unlikely to become dirtied,
    535     // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
    536     //
    537     if (object->IsClass()) {
    538       bin = kBinClassVerified;
    539       mirror::Class* klass = object->AsClass();
    540 
    541       // Add non-embedded vtable to the pointer array table if there is one.
    542       auto* vtable = klass->GetVTable();
    543       if (vtable != nullptr) {
    544         AddMethodPointerArray(vtable);
    545       }
    546       auto* iftable = klass->GetIfTable();
    547       if (iftable != nullptr) {
    548         for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
    549           if (iftable->GetMethodArrayCount(i) > 0) {
    550             AddMethodPointerArray(iftable->GetMethodArray(i));
    551           }
    552         }
    553       }
    554 
    555       if (klass->GetStatus() == Class::kStatusInitialized) {
    556         bin = kBinClassInitialized;
    557 
    558         // If the class's static fields are all final, put it into a separate bin
    559         // since it's very likely it will stay clean.
    560         uint32_t num_static_fields = klass->NumStaticFields();
    561         if (num_static_fields == 0) {
    562           bin = kBinClassInitializedFinalStatics;
    563         } else {
    564           // Maybe all the statics are final?
    565           bool all_final = true;
    566           for (uint32_t i = 0; i < num_static_fields; ++i) {
    567             ArtField* field = klass->GetStaticField(i);
    568             if (!field->IsFinal()) {
    569               all_final = false;
    570               break;
    571             }
    572           }
    573 
    574           if (all_final) {
    575             bin = kBinClassInitializedFinalStatics;
    576           }
    577         }
    578       }
    579     } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
    580       bin = kBinString;  // Strings are almost always immutable (except for object header).
    581     } else if (object->GetClass<kVerifyNone>() ==
    582         Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) {
    583       // Instance of java lang object, probably a lock object. This means it will be dirty when we
    584       // synchronize on it.
    585       bin = kBinMiscDirty;
    586     } else if (object->IsDexCache()) {
    587       // Dex file field becomes dirty when the image is loaded.
    588       bin = kBinMiscDirty;
    589     }
    590     // else bin = kBinRegular
    591   }
    592 
    593   // Assign the oat index too.
    594   DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
    595   oat_index_map_.emplace(object, oat_index);
    596 
    597   ImageInfo& image_info = GetImageInfo(oat_index);
    598 
    599   size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
    600   current_offset = image_info.bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
    601   // Move the current bin size up to accommodate the object we just assigned a bin slot.
    602   image_info.bin_slot_sizes_[bin] += offset_delta;
    603 
    604   BinSlot new_bin_slot(bin, current_offset);
    605   SetImageBinSlot(object, new_bin_slot);
    606 
    607   ++image_info.bin_slot_count_[bin];
    608 
    609   // Grow the image closer to the end by the object we just assigned.
    610   image_info.image_end_ += offset_delta;
    611 }
    612 
    613 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
    614   if (m->IsNative()) {
    615     return true;
    616   }
    617   mirror::Class* declaring_class = m->GetDeclaringClass();
    618   // Initialized is highly unlikely to dirty since there's no entry points to mutate.
    619   return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
    620 }
    621 
    622 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
    623   DCHECK(object != nullptr);
    624 
    625   // We always stash the bin slot into a lockword, in the 'forwarding address' state.
    626   // If it's in some other state, then we haven't yet assigned an image bin slot.
    627   if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
    628     return false;
    629   } else if (kIsDebugBuild) {
    630     LockWord lock_word = object->GetLockWord(false);
    631     size_t offset = lock_word.ForwardingAddress();
    632     BinSlot bin_slot(offset);
    633     size_t oat_index = GetOatIndex(object);
    634     const ImageInfo& image_info = GetImageInfo(oat_index);
    635     DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()])
    636         << "bin slot offset should not exceed the size of that bin";
    637   }
    638   return true;
    639 }
    640 
    641 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
    642   DCHECK(object != nullptr);
    643   DCHECK(IsImageBinSlotAssigned(object));
    644 
    645   LockWord lock_word = object->GetLockWord(false);
    646   size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
    647   DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
    648 
    649   BinSlot bin_slot(static_cast<uint32_t>(offset));
    650   size_t oat_index = GetOatIndex(object);
    651   const ImageInfo& image_info = GetImageInfo(oat_index);
    652   DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]);
    653 
    654   return bin_slot;
    655 }
    656 
    657 bool ImageWriter::AllocMemory() {
    658   for (ImageInfo& image_info : image_infos_) {
    659     ImageSection unused_sections[ImageHeader::kSectionCount];
    660     const size_t length = RoundUp(
    661         image_info.CreateImageSections(unused_sections), kPageSize);
    662 
    663     std::string error_msg;
    664     image_info.image_.reset(MemMap::MapAnonymous("image writer image",
    665                                                  nullptr,
    666                                                  length,
    667                                                  PROT_READ | PROT_WRITE,
    668                                                  false,
    669                                                  false,
    670                                                  &error_msg));
    671     if (UNLIKELY(image_info.image_.get() == nullptr)) {
    672       LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
    673       return false;
    674     }
    675 
    676     // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
    677     CHECK_LE(image_info.image_end_, length);
    678     image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
    679         "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize)));
    680     if (image_info.image_bitmap_.get() == nullptr) {
    681       LOG(ERROR) << "Failed to allocate memory for image bitmap";
    682       return false;
    683     }
    684   }
    685   return true;
    686 }
    687 
    688 class ComputeLazyFieldsForClassesVisitor : public ClassVisitor {
    689  public:
    690   bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    691     StackHandleScope<1> hs(Thread::Current());
    692     mirror::Class::ComputeName(hs.NewHandle(c));
    693     return true;
    694   }
    695 };
    696 
    697 void ImageWriter::ComputeLazyFieldsForImageClasses() {
    698   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    699   ComputeLazyFieldsForClassesVisitor visitor;
    700   class_linker->VisitClassesWithoutClassesLock(&visitor);
    701 }
    702 
    703 static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) {
    704   return klass->GetClassLoader() == nullptr;
    705 }
    706 
    707 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
    708   return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
    709 }
    710 
    711 bool ImageWriter::PruneAppImageClass(mirror::Class* klass) {
    712   bool early_exit = false;
    713   std::unordered_set<mirror::Class*> visited;
    714   return PruneAppImageClassInternal(klass, &early_exit, &visited);
    715 }
    716 
    717 bool ImageWriter::PruneAppImageClassInternal(
    718     mirror::Class* klass,
    719     bool* early_exit,
    720     std::unordered_set<mirror::Class*>* visited) {
    721   DCHECK(early_exit != nullptr);
    722   DCHECK(visited != nullptr);
    723   DCHECK(compile_app_image_);
    724   if (klass == nullptr || IsInBootImage(klass)) {
    725     return false;
    726   }
    727   auto found = prune_class_memo_.find(klass);
    728   if (found != prune_class_memo_.end()) {
    729     // Already computed, return the found value.
    730     return found->second;
    731   }
    732   // Circular dependencies, return false but do not store the result in the memoization table.
    733   if (visited->find(klass) != visited->end()) {
    734     *early_exit = true;
    735     return false;
    736   }
    737   visited->emplace(klass);
    738   bool result = IsBootClassLoaderClass(klass);
    739   std::string temp;
    740   // Prune if not an image class, this handles any broken sets of image classes such as having a
    741   // class in the set but not it's superclass.
    742   result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
    743   bool my_early_exit = false;  // Only for ourselves, ignore caller.
    744   // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
    745   // app image.
    746   if (klass->GetStatus() == mirror::Class::kStatusError) {
    747     result = true;
    748   } else {
    749     CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass);
    750   }
    751   if (!result) {
    752     // Check interfaces since these wont be visited through VisitReferences.)
    753     mirror::IfTable* if_table = klass->GetIfTable();
    754     for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
    755       result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
    756                                                     &my_early_exit,
    757                                                     visited);
    758     }
    759   }
    760   if (klass->IsObjectArrayClass()) {
    761     result = result || PruneAppImageClassInternal(klass->GetComponentType(),
    762                                                   &my_early_exit,
    763                                                   visited);
    764   }
    765   // Check static fields and their classes.
    766   size_t num_static_fields = klass->NumReferenceStaticFields();
    767   if (num_static_fields != 0 && klass->IsResolved()) {
    768     // Presumably GC can happen when we are cross compiling, it should not cause performance
    769     // problems to do pointer size logic.
    770     MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
    771         Runtime::Current()->GetClassLinker()->GetImagePointerSize());
    772     for (size_t i = 0u; i < num_static_fields; ++i) {
    773       mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
    774       if (ref != nullptr) {
    775         if (ref->IsClass()) {
    776           result = result || PruneAppImageClassInternal(ref->AsClass(),
    777                                                         &my_early_exit,
    778                                                         visited);
    779         } else {
    780           result = result || PruneAppImageClassInternal(ref->GetClass(),
    781                                                         &my_early_exit,
    782                                                         visited);
    783         }
    784       }
    785       field_offset = MemberOffset(field_offset.Uint32Value() +
    786                                   sizeof(mirror::HeapReference<mirror::Object>));
    787     }
    788   }
    789   result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
    790                                                 &my_early_exit,
    791                                                 visited);
    792   // Erase the element we stored earlier since we are exiting the function.
    793   auto it = visited->find(klass);
    794   DCHECK(it != visited->end());
    795   visited->erase(it);
    796   // Only store result if it is true or none of the calls early exited due to circular
    797   // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
    798   // a child call and we can remember the result.
    799   if (result == true || !my_early_exit || visited->empty()) {
    800     prune_class_memo_[klass] = result;
    801   }
    802   *early_exit |= my_early_exit;
    803   return result;
    804 }
    805 
    806 bool ImageWriter::KeepClass(Class* klass) {
    807   if (klass == nullptr) {
    808     return false;
    809   }
    810   if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
    811     // Already in boot image, return true.
    812     return true;
    813   }
    814   std::string temp;
    815   if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) {
    816     return false;
    817   }
    818   if (compile_app_image_) {
    819     // For app images, we need to prune boot loader classes that are not in the boot image since
    820     // these may have already been loaded when the app image is loaded.
    821     // Keep classes in the boot image space since we don't want to re-resolve these.
    822     return !PruneAppImageClass(klass);
    823   }
    824   return true;
    825 }
    826 
    827 class NonImageClassesVisitor : public ClassVisitor {
    828  public:
    829   explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
    830 
    831   bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    832     if (!image_writer_->KeepClass(klass)) {
    833       classes_to_prune_.insert(klass);
    834     }
    835     return true;
    836   }
    837 
    838   std::unordered_set<mirror::Class*> classes_to_prune_;
    839   ImageWriter* const image_writer_;
    840 };
    841 
    842 void ImageWriter::PruneNonImageClasses() {
    843   Runtime* runtime = Runtime::Current();
    844   ClassLinker* class_linker = runtime->GetClassLinker();
    845   Thread* self = Thread::Current();
    846 
    847   // Clear class table strong roots so that dex caches can get pruned. We require pruning the class
    848   // path dex caches.
    849   class_linker->ClearClassTableStrongRoots();
    850 
    851   // Make a list of classes we would like to prune.
    852   NonImageClassesVisitor visitor(this);
    853   class_linker->VisitClasses(&visitor);
    854 
    855   // Remove the undesired classes from the class roots.
    856   VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes";
    857   for (mirror::Class* klass : visitor.classes_to_prune_) {
    858     std::string temp;
    859     const char* name = klass->GetDescriptor(&temp);
    860     VLOG(compiler) << "Pruning class " << name;
    861     if (!compile_app_image_) {
    862       DCHECK(IsBootClassLoaderClass(klass));
    863     }
    864     bool result = class_linker->RemoveClass(name, klass->GetClassLoader());
    865     DCHECK(result);
    866   }
    867 
    868   // Clear references to removed classes from the DexCaches.
    869   ArtMethod* resolution_method = runtime->GetResolutionMethod();
    870 
    871   ScopedAssertNoThreadSuspension sa(self, __FUNCTION__);
    872   ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);  // For ClassInClassTable
    873   ReaderMutexLock mu2(self, *class_linker->DexLock());
    874   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
    875     if (self->IsJWeakCleared(data.weak_root)) {
    876       continue;
    877     }
    878     mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache();
    879     for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
    880       Class* klass = dex_cache->GetResolvedType(i);
    881       if (klass != nullptr && !KeepClass(klass)) {
    882         dex_cache->SetResolvedType(i, nullptr);
    883       }
    884     }
    885     ArtMethod** resolved_methods = dex_cache->GetResolvedMethods();
    886     for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) {
    887       ArtMethod* method =
    888           mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_);
    889       DCHECK(method != nullptr) << "Expected resolution method instead of null method";
    890       mirror::Class* declaring_class = method->GetDeclaringClass();
    891       // Copied methods may be held live by a class which was not an image class but have a
    892       // declaring class which is an image class. Set it to the resolution method to be safe and
    893       // prevent dangling pointers.
    894       if (method->IsCopied() || !KeepClass(declaring_class)) {
    895         mirror::DexCache::SetElementPtrSize(resolved_methods,
    896                                             i,
    897                                             resolution_method,
    898                                             target_ptr_size_);
    899       } else {
    900         // Check that the class is still in the classes table.
    901         DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class "
    902             << PrettyClass(declaring_class) << " not in class linker table";
    903       }
    904     }
    905     ArtField** resolved_fields = dex_cache->GetResolvedFields();
    906     for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
    907       ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_);
    908       if (field != nullptr && !KeepClass(field->GetDeclaringClass())) {
    909         dex_cache->SetResolvedField(i, nullptr, target_ptr_size_);
    910       }
    911     }
    912     // Clean the dex field. It might have been populated during the initialization phase, but
    913     // contains data only valid during a real run.
    914     dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr);
    915   }
    916 
    917   // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
    918   class_linker->DropFindArrayClassCache();
    919 
    920   // Clear to save RAM.
    921   prune_class_memo_.clear();
    922 }
    923 
    924 void ImageWriter::CheckNonImageClassesRemoved() {
    925   if (compiler_driver_.GetImageClasses() != nullptr) {
    926     gc::Heap* heap = Runtime::Current()->GetHeap();
    927     heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
    928   }
    929 }
    930 
    931 void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
    932   ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
    933   if (obj->IsClass() && !image_writer->IsInBootImage(obj)) {
    934     Class* klass = obj->AsClass();
    935     if (!image_writer->KeepClass(klass)) {
    936       image_writer->DumpImageClasses();
    937       std::string temp;
    938       CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp)
    939                                             << " " << PrettyDescriptor(klass);
    940     }
    941   }
    942 }
    943 
    944 void ImageWriter::DumpImageClasses() {
    945   auto image_classes = compiler_driver_.GetImageClasses();
    946   CHECK(image_classes != nullptr);
    947   for (const std::string& image_class : *image_classes) {
    948     LOG(INFO) << " " << image_class;
    949   }
    950 }
    951 
    952 mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
    953   Thread* const self = Thread::Current();
    954   for (const ImageInfo& image_info : image_infos_) {
    955     mirror::String* const found = image_info.intern_table_->LookupStrong(self, string);
    956     DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
    957         << string->ToModifiedUtf8();
    958     if (found != nullptr) {
    959       return found;
    960     }
    961   }
    962   if (compile_app_image_) {
    963     Runtime* const runtime = Runtime::Current();
    964     mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string);
    965     // If we found it in the runtime intern table it could either be in the boot image or interned
    966     // during app image compilation. If it was in the boot image return that, otherwise return null
    967     // since it belongs to another image space.
    968     if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) {
    969       return found;
    970     }
    971     DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
    972         << string->ToModifiedUtf8();
    973   }
    974   return nullptr;
    975 }
    976 
    977 
    978 ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const {
    979   Runtime* runtime = Runtime::Current();
    980   ClassLinker* class_linker = runtime->GetClassLinker();
    981   Thread* self = Thread::Current();
    982   StackHandleScope<3> hs(self);
    983   Handle<Class> object_array_class(hs.NewHandle(
    984       class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
    985 
    986   std::unordered_set<const DexFile*> image_dex_files;
    987   for (auto& pair : dex_file_oat_index_map_) {
    988     const DexFile* image_dex_file = pair.first;
    989     size_t image_oat_index = pair.second;
    990     if (oat_index == image_oat_index) {
    991       image_dex_files.insert(image_dex_file);
    992     }
    993   }
    994 
    995   // build an Object[] of all the DexCaches used in the source_space_.
    996   // Since we can't hold the dex lock when allocating the dex_caches
    997   // ObjectArray, we lock the dex lock twice, first to get the number
    998   // of dex caches first and then lock it again to copy the dex
    999   // caches. We check that the number of dex caches does not change.
   1000   size_t dex_cache_count = 0;
   1001   {
   1002     ReaderMutexLock mu(self, *class_linker->DexLock());
   1003     // Count number of dex caches not in the boot image.
   1004     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
   1005       mirror::DexCache* dex_cache =
   1006           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
   1007       if (dex_cache == nullptr) {
   1008         continue;
   1009       }
   1010       const DexFile* dex_file = dex_cache->GetDexFile();
   1011       if (!IsInBootImage(dex_cache)) {
   1012         dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
   1013       }
   1014     }
   1015   }
   1016   Handle<ObjectArray<Object>> dex_caches(
   1017       hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count)));
   1018   CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
   1019   {
   1020     ReaderMutexLock mu(self, *class_linker->DexLock());
   1021     size_t non_image_dex_caches = 0;
   1022     // Re-count number of non image dex caches.
   1023     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
   1024       mirror::DexCache* dex_cache =
   1025           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
   1026       if (dex_cache == nullptr) {
   1027         continue;
   1028       }
   1029       const DexFile* dex_file = dex_cache->GetDexFile();
   1030       if (!IsInBootImage(dex_cache)) {
   1031         non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
   1032       }
   1033     }
   1034     CHECK_EQ(dex_cache_count, non_image_dex_caches)
   1035         << "The number of non-image dex caches changed.";
   1036     size_t i = 0;
   1037     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
   1038       mirror::DexCache* dex_cache =
   1039           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
   1040       if (dex_cache == nullptr) {
   1041         continue;
   1042       }
   1043       const DexFile* dex_file = dex_cache->GetDexFile();
   1044       if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) {
   1045         dex_caches->Set<false>(i, dex_cache);
   1046         ++i;
   1047       }
   1048     }
   1049   }
   1050 
   1051   // build an Object[] of the roots needed to restore the runtime
   1052   auto image_roots(hs.NewHandle(
   1053       ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
   1054   image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
   1055   image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
   1056   for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
   1057     CHECK(image_roots->Get(i) != nullptr);
   1058   }
   1059   return image_roots.Get();
   1060 }
   1061 
   1062 mirror::Object* ImageWriter::TryAssignBinSlot(WorkStack& work_stack,
   1063                                               mirror::Object* obj,
   1064                                               size_t oat_index) {
   1065   if (obj == nullptr || IsInBootImage(obj)) {
   1066     // Object is null or already in the image, there is no work to do.
   1067     return obj;
   1068   }
   1069   if (!IsImageBinSlotAssigned(obj)) {
   1070     // We want to intern all strings but also assign offsets for the source string. Since the
   1071     // pruning phase has already happened, if we intern a string to one in the image we still
   1072     // end up copying an unreachable string.
   1073     if (obj->IsString()) {
   1074       // Need to check if the string is already interned in another image info so that we don't have
   1075       // the intern tables of two different images contain the same string.
   1076       mirror::String* interned = FindInternedString(obj->AsString());
   1077       if (interned == nullptr) {
   1078         // Not in another image space, insert to our table.
   1079         interned = GetImageInfo(oat_index).intern_table_->InternStrongImageString(obj->AsString());
   1080         DCHECK_EQ(interned, obj);
   1081       }
   1082     } else if (obj->IsDexCache()) {
   1083       oat_index = GetOatIndexForDexCache(obj->AsDexCache());
   1084     } else if (obj->IsClass()) {
   1085       // Visit and assign offsets for fields and field arrays.
   1086       mirror::Class* as_klass = obj->AsClass();
   1087       mirror::DexCache* dex_cache = as_klass->GetDexCache();
   1088       DCHECK_NE(as_klass->GetStatus(), mirror::Class::kStatusError);
   1089       if (compile_app_image_) {
   1090         // Extra sanity, no boot loader classes should be left!
   1091         CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass);
   1092       }
   1093       LengthPrefixedArray<ArtField>* fields[] = {
   1094           as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
   1095       };
   1096       // Overwrite the oat index value since the class' dex cache is more accurate of where it
   1097       // belongs.
   1098       oat_index = GetOatIndexForDexCache(dex_cache);
   1099       ImageInfo& image_info = GetImageInfo(oat_index);
   1100       {
   1101         // Note: This table is only accessed from the image writer, avoid locking to prevent lock
   1102         // order violations from root visiting.
   1103         image_info.class_table_->InsertWithoutLocks(as_klass);
   1104       }
   1105       for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
   1106         // Total array length including header.
   1107         if (cur_fields != nullptr) {
   1108           const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
   1109           // Forward the entire array at once.
   1110           auto it = native_object_relocations_.find(cur_fields);
   1111           CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
   1112                                                   << " already forwarded";
   1113           size_t& offset = image_info.bin_slot_sizes_[kBinArtField];
   1114           DCHECK(!IsInBootImage(cur_fields));
   1115           native_object_relocations_.emplace(
   1116               cur_fields,
   1117               NativeObjectRelocation {
   1118                   oat_index, offset, kNativeObjectRelocationTypeArtFieldArray
   1119               });
   1120           offset += header_size;
   1121           // Forward individual fields so that we can quickly find where they belong.
   1122           for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
   1123             // Need to forward arrays separate of fields.
   1124             ArtField* field = &cur_fields->At(i);
   1125             auto it2 = native_object_relocations_.find(field);
   1126             CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
   1127                 << " already assigned " << PrettyField(field) << " static=" << field->IsStatic();
   1128             DCHECK(!IsInBootImage(field));
   1129             native_object_relocations_.emplace(
   1130                 field,
   1131                 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField });
   1132             offset += sizeof(ArtField);
   1133           }
   1134         }
   1135       }
   1136       // Visit and assign offsets for methods.
   1137       size_t num_methods = as_klass->NumMethods();
   1138       if (num_methods != 0) {
   1139         bool any_dirty = false;
   1140         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
   1141           if (WillMethodBeDirty(&m)) {
   1142             any_dirty = true;
   1143             break;
   1144           }
   1145         }
   1146         NativeObjectRelocationType type = any_dirty
   1147             ? kNativeObjectRelocationTypeArtMethodDirty
   1148             : kNativeObjectRelocationTypeArtMethodClean;
   1149         Bin bin_type = BinTypeForNativeRelocationType(type);
   1150         // Forward the entire array at once, but header first.
   1151         const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
   1152         const size_t method_size = ArtMethod::Size(target_ptr_size_);
   1153         const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
   1154                                                                                method_size,
   1155                                                                                method_alignment);
   1156         LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
   1157         auto it = native_object_relocations_.find(array);
   1158         CHECK(it == native_object_relocations_.end())
   1159             << "Method array " << array << " already forwarded";
   1160         size_t& offset = image_info.bin_slot_sizes_[bin_type];
   1161         DCHECK(!IsInBootImage(array));
   1162         native_object_relocations_.emplace(array,
   1163             NativeObjectRelocation {
   1164                 oat_index,
   1165                 offset,
   1166                 any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty
   1167                           : kNativeObjectRelocationTypeArtMethodArrayClean });
   1168         offset += header_size;
   1169         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
   1170           AssignMethodOffset(&m, type, oat_index);
   1171         }
   1172         (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
   1173       }
   1174       // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
   1175       // live.
   1176       if (as_klass->ShouldHaveImt()) {
   1177         ImTable* imt = as_klass->GetImt(target_ptr_size_);
   1178         for (size_t i = 0; i < ImTable::kSize; ++i) {
   1179           ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
   1180           DCHECK(imt_method != nullptr);
   1181           if (imt_method->IsRuntimeMethod() &&
   1182               !IsInBootImage(imt_method) &&
   1183               !NativeRelocationAssigned(imt_method)) {
   1184             AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index);
   1185           }
   1186         }
   1187       }
   1188 
   1189       if (as_klass->ShouldHaveImt()) {
   1190         ImTable* imt = as_klass->GetImt(target_ptr_size_);
   1191         TryAssignImTableOffset(imt, oat_index);
   1192       }
   1193     } else if (obj->IsClassLoader()) {
   1194       // Register the class loader if it has a class table.
   1195       // The fake boot class loader should not get registered and we should end up with only one
   1196       // class loader.
   1197       mirror::ClassLoader* class_loader = obj->AsClassLoader();
   1198       if (class_loader->GetClassTable() != nullptr) {
   1199         class_loaders_.insert(class_loader);
   1200       }
   1201     }
   1202     AssignImageBinSlot(obj, oat_index);
   1203     work_stack.emplace(obj, oat_index);
   1204   }
   1205   if (obj->IsString()) {
   1206     // Always return the interned string if there exists one.
   1207     mirror::String* interned = FindInternedString(obj->AsString());
   1208     if (interned != nullptr) {
   1209       return interned;
   1210     }
   1211   }
   1212   return obj;
   1213 }
   1214 
   1215 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
   1216   return native_object_relocations_.find(ptr) != native_object_relocations_.end();
   1217 }
   1218 
   1219 void ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
   1220   // No offset, or already assigned.
   1221   if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
   1222     return;
   1223   }
   1224   // If the method is a conflict method we also want to assign the conflict table offset.
   1225   ImageInfo& image_info = GetImageInfo(oat_index);
   1226   const size_t size = ImTable::SizeInBytes(target_ptr_size_);
   1227   native_object_relocations_.emplace(
   1228       imt,
   1229       NativeObjectRelocation {
   1230           oat_index,
   1231           image_info.bin_slot_sizes_[kBinImTable],
   1232           kNativeObjectRelocationTypeIMTable});
   1233   image_info.bin_slot_sizes_[kBinImTable] += size;
   1234 }
   1235 
   1236 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
   1237   // No offset, or already assigned.
   1238   if (table == nullptr || NativeRelocationAssigned(table)) {
   1239     return;
   1240   }
   1241   CHECK(!IsInBootImage(table));
   1242   // If the method is a conflict method we also want to assign the conflict table offset.
   1243   ImageInfo& image_info = GetImageInfo(oat_index);
   1244   const size_t size = table->ComputeSize(target_ptr_size_);
   1245   native_object_relocations_.emplace(
   1246       table,
   1247       NativeObjectRelocation {
   1248           oat_index,
   1249           image_info.bin_slot_sizes_[kBinIMTConflictTable],
   1250           kNativeObjectRelocationTypeIMTConflictTable});
   1251   image_info.bin_slot_sizes_[kBinIMTConflictTable] += size;
   1252 }
   1253 
   1254 void ImageWriter::AssignMethodOffset(ArtMethod* method,
   1255                                      NativeObjectRelocationType type,
   1256                                      size_t oat_index) {
   1257   DCHECK(!IsInBootImage(method));
   1258   CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
   1259       << PrettyMethod(method);
   1260   if (method->IsRuntimeMethod()) {
   1261     TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
   1262   }
   1263   ImageInfo& image_info = GetImageInfo(oat_index);
   1264   size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)];
   1265   native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
   1266   offset += ArtMethod::Size(target_ptr_size_);
   1267 }
   1268 
   1269 void ImageWriter::EnsureBinSlotAssignedCallback(mirror::Object* obj, void* arg) {
   1270   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
   1271   DCHECK(writer != nullptr);
   1272   if (!Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(obj)) {
   1273     CHECK(writer->IsImageBinSlotAssigned(obj)) << PrettyTypeOf(obj) << " " << obj;
   1274   }
   1275 }
   1276 
   1277 void ImageWriter::DeflateMonitorCallback(mirror::Object* obj, void* arg ATTRIBUTE_UNUSED) {
   1278   Monitor::Deflate(Thread::Current(), obj);
   1279 }
   1280 
   1281 void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
   1282   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
   1283   DCHECK(writer != nullptr);
   1284   if (!writer->IsInBootImage(obj)) {
   1285     writer->UnbinObjectsIntoOffset(obj);
   1286   }
   1287 }
   1288 
   1289 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
   1290   DCHECK(!IsInBootImage(obj));
   1291   CHECK(obj != nullptr);
   1292 
   1293   // We know the bin slot, and the total bin sizes for all objects by now,
   1294   // so calculate the object's final image offset.
   1295 
   1296   DCHECK(IsImageBinSlotAssigned(obj));
   1297   BinSlot bin_slot = GetImageBinSlot(obj);
   1298   // Change the lockword from a bin slot into an offset
   1299   AssignImageOffset(obj, bin_slot);
   1300 }
   1301 
   1302 class ImageWriter::VisitReferencesVisitor {
   1303  public:
   1304   VisitReferencesVisitor(ImageWriter* image_writer, WorkStack* work_stack, size_t oat_index)
   1305       : image_writer_(image_writer), work_stack_(work_stack), oat_index_(oat_index) {}
   1306 
   1307   // Fix up separately since we also need to fix up method entrypoints.
   1308   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   1309       SHARED_REQUIRES(Locks::mutator_lock_) {
   1310     if (!root->IsNull()) {
   1311       VisitRoot(root);
   1312     }
   1313   }
   1314 
   1315   ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   1316       SHARED_REQUIRES(Locks::mutator_lock_) {
   1317     root->Assign(VisitReference(root->AsMirrorPtr()));
   1318   }
   1319 
   1320   ALWAYS_INLINE void operator() (mirror::Object* obj,
   1321                                  MemberOffset offset,
   1322                                  bool is_static ATTRIBUTE_UNUSED) const
   1323       SHARED_REQUIRES(Locks::mutator_lock_) {
   1324     mirror::Object* ref =
   1325         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
   1326     obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref));
   1327   }
   1328 
   1329   ALWAYS_INLINE void operator() (mirror::Class* klass ATTRIBUTE_UNUSED,
   1330                                  mirror::Reference* ref) const
   1331       SHARED_REQUIRES(Locks::mutator_lock_) {
   1332     ref->SetReferent</*kTransactionActive*/false>(
   1333         VisitReference(ref->GetReferent<kWithoutReadBarrier>()));
   1334   }
   1335 
   1336  private:
   1337   mirror::Object* VisitReference(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) {
   1338     return image_writer_->TryAssignBinSlot(*work_stack_, ref, oat_index_);
   1339   }
   1340 
   1341   ImageWriter* const image_writer_;
   1342   WorkStack* const work_stack_;
   1343   const size_t oat_index_;
   1344 };
   1345 
   1346 class ImageWriter::GetRootsVisitor : public RootVisitor  {
   1347  public:
   1348   explicit GetRootsVisitor(std::vector<mirror::Object*>* roots) : roots_(roots) {}
   1349 
   1350   void VisitRoots(mirror::Object*** roots,
   1351                   size_t count,
   1352                   const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE
   1353       SHARED_REQUIRES(Locks::mutator_lock_) {
   1354     for (size_t i = 0; i < count; ++i) {
   1355       roots_->push_back(*roots[i]);
   1356     }
   1357   }
   1358 
   1359   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
   1360                   size_t count,
   1361                   const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE
   1362       SHARED_REQUIRES(Locks::mutator_lock_) {
   1363     for (size_t i = 0; i < count; ++i) {
   1364       roots_->push_back(roots[i]->AsMirrorPtr());
   1365     }
   1366   }
   1367 
   1368  private:
   1369   std::vector<mirror::Object*>* const roots_;
   1370 };
   1371 
   1372 void ImageWriter::ProcessWorkStack(WorkStack* work_stack) {
   1373   while (!work_stack->empty()) {
   1374     std::pair<mirror::Object*, size_t> pair(work_stack->top());
   1375     work_stack->pop();
   1376     VisitReferencesVisitor visitor(this, work_stack, /*oat_index*/ pair.second);
   1377     // Walk references and assign bin slots for them.
   1378     pair.first->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
   1379         visitor,
   1380         visitor);
   1381   }
   1382 }
   1383 
   1384 void ImageWriter::CalculateNewObjectOffsets() {
   1385   Thread* const self = Thread::Current();
   1386   StackHandleScopeCollection handles(self);
   1387   std::vector<Handle<ObjectArray<Object>>> image_roots;
   1388   for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
   1389     image_roots.push_back(handles.NewHandle(CreateImageRoots(i)));
   1390   }
   1391 
   1392   Runtime* const runtime = Runtime::Current();
   1393   gc::Heap* const heap = runtime->GetHeap();
   1394 
   1395   // Leave space for the header, but do not write it yet, we need to
   1396   // know where image_roots is going to end up
   1397   image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
   1398 
   1399   const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
   1400   // Write the image runtime methods.
   1401   image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
   1402   image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
   1403   image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
   1404   image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll);
   1405   image_methods_[ImageHeader::kRefsOnlySaveMethod] =
   1406       runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
   1407   image_methods_[ImageHeader::kRefsAndArgsSaveMethod] =
   1408       runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
   1409   // Visit image methods first to have the main runtime methods in the first image.
   1410   for (auto* m : image_methods_) {
   1411     CHECK(m != nullptr);
   1412     CHECK(m->IsRuntimeMethod());
   1413     DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image";
   1414     if (!IsInBootImage(m)) {
   1415       AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex());
   1416     }
   1417   }
   1418 
   1419   // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
   1420   // this lock while holding other locks may cause lock order violations.
   1421   heap->VisitObjects(DeflateMonitorCallback, this);
   1422 
   1423   // Work list of <object, oat_index> for objects. Everything on the stack must already be
   1424   // assigned a bin slot.
   1425   WorkStack work_stack;
   1426 
   1427   // Special case interned strings to put them in the image they are likely to be resolved from.
   1428   for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
   1429     auto it = dex_file_oat_index_map_.find(dex_file);
   1430     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
   1431     const size_t oat_index = it->second;
   1432     InternTable* const intern_table = runtime->GetInternTable();
   1433     for (size_t i = 0, count = dex_file->NumStringIds(); i < count; ++i) {
   1434       uint32_t utf16_length;
   1435       const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(i, &utf16_length);
   1436       mirror::String* string = intern_table->LookupStrong(self, utf16_length, utf8_data);
   1437       TryAssignBinSlot(work_stack, string, oat_index);
   1438     }
   1439   }
   1440 
   1441   // Get the GC roots and then visit them separately to avoid lock violations since the root visitor
   1442   // visits roots while holding various locks.
   1443   {
   1444     std::vector<mirror::Object*> roots;
   1445     GetRootsVisitor root_visitor(&roots);
   1446     runtime->VisitRoots(&root_visitor);
   1447     for (mirror::Object* obj : roots) {
   1448       TryAssignBinSlot(work_stack, obj, GetDefaultOatIndex());
   1449     }
   1450   }
   1451   ProcessWorkStack(&work_stack);
   1452 
   1453   // For app images, there may be objects that are only held live by the by the boot image. One
   1454   // example is finalizer references. Forward these objects so that EnsureBinSlotAssignedCallback
   1455   // does not fail any checks. TODO: We should probably avoid copying these objects.
   1456   if (compile_app_image_) {
   1457     for (gc::space::ImageSpace* space : heap->GetBootImageSpaces()) {
   1458       DCHECK(space->IsImageSpace());
   1459       gc::accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1460       live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
   1461                                     reinterpret_cast<uintptr_t>(space->Limit()),
   1462                                     [this, &work_stack](mirror::Object* obj)
   1463           SHARED_REQUIRES(Locks::mutator_lock_) {
   1464         VisitReferencesVisitor visitor(this, &work_stack, GetDefaultOatIndex());
   1465         // Visit all references and try to assign bin slots for them (calls TryAssignBinSlot).
   1466         obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
   1467             visitor,
   1468             visitor);
   1469       });
   1470     }
   1471     // Process the work stack in case anything was added by TryAssignBinSlot.
   1472     ProcessWorkStack(&work_stack);
   1473   }
   1474 
   1475   // Verify that all objects have assigned image bin slots.
   1476   heap->VisitObjects(EnsureBinSlotAssignedCallback, this);
   1477 
   1478   // Calculate size of the dex cache arrays slot and prepare offsets.
   1479   PrepareDexCacheArraySlots();
   1480 
   1481   // Calculate the sizes of the intern tables and class tables.
   1482   for (ImageInfo& image_info : image_infos_) {
   1483     // Calculate how big the intern table will be after being serialized.
   1484     InternTable* const intern_table = image_info.intern_table_.get();
   1485     CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
   1486     image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
   1487     // Calculate the size of the class table.
   1488     ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
   1489     image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
   1490   }
   1491 
   1492   // Calculate bin slot offsets.
   1493   for (ImageInfo& image_info : image_infos_) {
   1494     size_t bin_offset = image_objects_offset_begin_;
   1495     for (size_t i = 0; i != kBinSize; ++i) {
   1496       switch (i) {
   1497         case kBinArtMethodClean:
   1498         case kBinArtMethodDirty: {
   1499           bin_offset = RoundUp(bin_offset, method_alignment);
   1500           break;
   1501         }
   1502         case kBinImTable:
   1503         case kBinIMTConflictTable: {
   1504           bin_offset = RoundUp(bin_offset, target_ptr_size_);
   1505           break;
   1506         }
   1507         default: {
   1508           // Normal alignment.
   1509         }
   1510       }
   1511       image_info.bin_slot_offsets_[i] = bin_offset;
   1512       bin_offset += image_info.bin_slot_sizes_[i];
   1513     }
   1514     // NOTE: There may be additional padding between the bin slots and the intern table.
   1515     DCHECK_EQ(image_info.image_end_,
   1516               GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_);
   1517   }
   1518 
   1519   // Calculate image offsets.
   1520   size_t image_offset = 0;
   1521   for (ImageInfo& image_info : image_infos_) {
   1522     image_info.image_begin_ = global_image_begin_ + image_offset;
   1523     image_info.image_offset_ = image_offset;
   1524     ImageSection unused_sections[ImageHeader::kSectionCount];
   1525     image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize);
   1526     // There should be no gaps until the next image.
   1527     image_offset += image_info.image_size_;
   1528   }
   1529 
   1530   // Transform each object's bin slot into an offset which will be used to do the final copy.
   1531   heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);
   1532 
   1533   // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
   1534 
   1535   size_t i = 0;
   1536   for (ImageInfo& image_info : image_infos_) {
   1537     image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
   1538     i++;
   1539   }
   1540 
   1541   // Update the native relocations by adding their bin sums.
   1542   for (auto& pair : native_object_relocations_) {
   1543     NativeObjectRelocation& relocation = pair.second;
   1544     Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
   1545     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
   1546     relocation.offset += image_info.bin_slot_offsets_[bin_type];
   1547   }
   1548 
   1549   // Note that image_info.image_end_ is left at end of used mirror object section.
   1550 }
   1551 
   1552 size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const {
   1553   DCHECK(out_sections != nullptr);
   1554 
   1555   // Do not round up any sections here that are represented by the bins since it will break
   1556   // offsets.
   1557 
   1558   // Objects section
   1559   ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects];
   1560   *objects_section = ImageSection(0u, image_end_);
   1561 
   1562   // Add field section.
   1563   ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields];
   1564   *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]);
   1565   CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset());
   1566 
   1567   // Add method section.
   1568   ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods];
   1569   *methods_section = ImageSection(
   1570       bin_slot_offsets_[kBinArtMethodClean],
   1571       bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]);
   1572 
   1573   // IMT section.
   1574   ImageSection* imt_section = &out_sections[ImageHeader::kSectionImTables];
   1575   *imt_section = ImageSection(bin_slot_offsets_[kBinImTable], bin_slot_sizes_[kBinImTable]);
   1576 
   1577   // Conflict tables section.
   1578   ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables];
   1579   *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable],
   1580                                               bin_slot_sizes_[kBinIMTConflictTable]);
   1581 
   1582   // Runtime methods section.
   1583   ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods];
   1584   *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod],
   1585                                           bin_slot_sizes_[kBinRuntimeMethod]);
   1586 
   1587   // Add dex cache arrays section.
   1588   ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays];
   1589   *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray],
   1590                                            bin_slot_sizes_[kBinDexCacheArray]);
   1591 
   1592   // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
   1593   size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t));
   1594   // Calculate the size of the interned strings.
   1595   ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings];
   1596   *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
   1597   cur_pos = interned_strings_section->End();
   1598   // Round up to the alignment the class table expects. See HashSet::WriteToMemory.
   1599   cur_pos = RoundUp(cur_pos, sizeof(uint64_t));
   1600   // Calculate the size of the class table section.
   1601   ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable];
   1602   *class_table_section = ImageSection(cur_pos, class_table_bytes_);
   1603   cur_pos = class_table_section->End();
   1604   // Image end goes right before the start of the image bitmap.
   1605   return cur_pos;
   1606 }
   1607 
   1608 void ImageWriter::CreateHeader(size_t oat_index) {
   1609   ImageInfo& image_info = GetImageInfo(oat_index);
   1610   const uint8_t* oat_file_begin = image_info.oat_file_begin_;
   1611   const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
   1612   const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
   1613 
   1614   // Create the image sections.
   1615   ImageSection sections[ImageHeader::kSectionCount];
   1616   const size_t image_end = image_info.CreateImageSections(sections);
   1617 
   1618   // Finally bitmap section.
   1619   const size_t bitmap_bytes = image_info.image_bitmap_->Size();
   1620   auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
   1621   *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
   1622   if (VLOG_IS_ON(compiler)) {
   1623     LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
   1624     size_t idx = 0;
   1625     for (const ImageSection& section : sections) {
   1626       LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
   1627       ++idx;
   1628     }
   1629     LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
   1630     LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
   1631     LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
   1632               << " Image offset=" << image_info.image_offset_ << std::dec;
   1633     LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
   1634               << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
   1635               << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
   1636               << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
   1637   }
   1638   // Store boot image info for app image so that we can relocate.
   1639   uint32_t boot_image_begin = 0;
   1640   uint32_t boot_image_end = 0;
   1641   uint32_t boot_oat_begin = 0;
   1642   uint32_t boot_oat_end = 0;
   1643   gc::Heap* const heap = Runtime::Current()->GetHeap();
   1644   heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
   1645 
   1646   // Create the header, leave 0 for data size since we will fill this in as we are writing the
   1647   // image.
   1648   new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_),
   1649                                                image_end,
   1650                                                sections,
   1651                                                image_info.image_roots_address_,
   1652                                                image_info.oat_checksum_,
   1653                                                PointerToLowMemUInt32(oat_file_begin),
   1654                                                PointerToLowMemUInt32(image_info.oat_data_begin_),
   1655                                                PointerToLowMemUInt32(oat_data_end),
   1656                                                PointerToLowMemUInt32(oat_file_end),
   1657                                                boot_image_begin,
   1658                                                boot_image_end - boot_image_begin,
   1659                                                boot_oat_begin,
   1660                                                boot_oat_end - boot_oat_begin,
   1661                                                target_ptr_size_,
   1662                                                compile_pic_,
   1663                                                /*is_pic*/compile_app_image_,
   1664                                                image_storage_mode_,
   1665                                                /*data_size*/0u);
   1666 }
   1667 
   1668 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
   1669   auto it = native_object_relocations_.find(method);
   1670   CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method;
   1671   size_t oat_index = GetOatIndex(method->GetDexCache());
   1672   ImageInfo& image_info = GetImageInfo(oat_index);
   1673   CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects";
   1674   return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset);
   1675 }
   1676 
   1677 class FixupRootVisitor : public RootVisitor {
   1678  public:
   1679   explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
   1680   }
   1681 
   1682   void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
   1683       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
   1684     for (size_t i = 0; i < count; ++i) {
   1685       *roots[i] = image_writer_->GetImageAddress(*roots[i]);
   1686     }
   1687   }
   1688 
   1689   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
   1690                   const RootInfo& info ATTRIBUTE_UNUSED)
   1691       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
   1692     for (size_t i = 0; i < count; ++i) {
   1693       roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr()));
   1694     }
   1695   }
   1696 
   1697  private:
   1698   ImageWriter* const image_writer_;
   1699 };
   1700 
   1701 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
   1702   for (size_t i = 0; i < ImTable::kSize; ++i) {
   1703     ArtMethod* method = orig->Get(i, target_ptr_size_);
   1704     copy->Set(i, NativeLocationInImage(method), target_ptr_size_);
   1705   }
   1706 }
   1707 
   1708 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
   1709   const size_t count = orig->NumEntries(target_ptr_size_);
   1710   for (size_t i = 0; i < count; ++i) {
   1711     ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
   1712     ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
   1713     copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method));
   1714     copy->SetImplementationMethod(i,
   1715                                   target_ptr_size_,
   1716                                   NativeLocationInImage(implementation_method));
   1717   }
   1718 }
   1719 
   1720 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
   1721   const ImageInfo& image_info = GetImageInfo(oat_index);
   1722   // Copy ArtFields and methods to their locations and update the array for convenience.
   1723   for (auto& pair : native_object_relocations_) {
   1724     NativeObjectRelocation& relocation = pair.second;
   1725     // Only work with fields and methods that are in the current oat file.
   1726     if (relocation.oat_index != oat_index) {
   1727       continue;
   1728     }
   1729     auto* dest = image_info.image_->Begin() + relocation.offset;
   1730     DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_);
   1731     DCHECK(!IsInBootImage(pair.first));
   1732     switch (relocation.type) {
   1733       case kNativeObjectRelocationTypeArtField: {
   1734         memcpy(dest, pair.first, sizeof(ArtField));
   1735         reinterpret_cast<ArtField*>(dest)->SetDeclaringClass(
   1736             GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()));
   1737         break;
   1738       }
   1739       case kNativeObjectRelocationTypeRuntimeMethod:
   1740       case kNativeObjectRelocationTypeArtMethodClean:
   1741       case kNativeObjectRelocationTypeArtMethodDirty: {
   1742         CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
   1743                            reinterpret_cast<ArtMethod*>(dest),
   1744                            image_info);
   1745         break;
   1746       }
   1747       // For arrays, copy just the header since the elements will get copied by their corresponding
   1748       // relocations.
   1749       case kNativeObjectRelocationTypeArtFieldArray: {
   1750         memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
   1751         break;
   1752       }
   1753       case kNativeObjectRelocationTypeArtMethodArrayClean:
   1754       case kNativeObjectRelocationTypeArtMethodArrayDirty: {
   1755         size_t size = ArtMethod::Size(target_ptr_size_);
   1756         size_t alignment = ArtMethod::Alignment(target_ptr_size_);
   1757         memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
   1758         // Clear padding to avoid non-deterministic data in the image (and placate valgrind).
   1759         reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
   1760         break;
   1761       }
   1762       case kNativeObjectRelocationTypeDexCacheArray:
   1763         // Nothing to copy here, everything is done in FixupDexCache().
   1764         break;
   1765       case kNativeObjectRelocationTypeIMTable: {
   1766         ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
   1767         ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
   1768         CopyAndFixupImTable(orig_imt, dest_imt);
   1769         break;
   1770       }
   1771       case kNativeObjectRelocationTypeIMTConflictTable: {
   1772         auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
   1773         CopyAndFixupImtConflictTable(
   1774             orig_table,
   1775             new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
   1776         break;
   1777       }
   1778     }
   1779   }
   1780   // Fixup the image method roots.
   1781   auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
   1782   for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
   1783     ArtMethod* method = image_methods_[i];
   1784     CHECK(method != nullptr);
   1785     if (!IsInBootImage(method)) {
   1786       method = NativeLocationInImage(method);
   1787     }
   1788     image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method);
   1789   }
   1790   FixupRootVisitor root_visitor(this);
   1791 
   1792   // Write the intern table into the image.
   1793   if (image_info.intern_table_bytes_ > 0) {
   1794     const ImageSection& intern_table_section = image_header->GetImageSection(
   1795         ImageHeader::kSectionInternedStrings);
   1796     InternTable* const intern_table = image_info.intern_table_.get();
   1797     uint8_t* const intern_table_memory_ptr =
   1798         image_info.image_->Begin() + intern_table_section.Offset();
   1799     const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
   1800     CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
   1801     // Fixup the pointers in the newly written intern table to contain image addresses.
   1802     InternTable temp_intern_table;
   1803     // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
   1804     // the VisitRoots() will update the memory directly rather than the copies.
   1805     // This also relies on visit roots not doing any verification which could fail after we update
   1806     // the roots to be the image addresses.
   1807     temp_intern_table.AddTableFromMemory(intern_table_memory_ptr);
   1808     CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
   1809     temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
   1810   }
   1811   // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
   1812   // class loaders. Writing multiple class tables into the image is currently unsupported.
   1813   if (image_info.class_table_bytes_ > 0u) {
   1814     const ImageSection& class_table_section = image_header->GetImageSection(
   1815         ImageHeader::kSectionClassTable);
   1816     uint8_t* const class_table_memory_ptr =
   1817         image_info.image_->Begin() + class_table_section.Offset();
   1818     ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
   1819 
   1820     ClassTable* table = image_info.class_table_.get();
   1821     CHECK(table != nullptr);
   1822     const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
   1823     CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
   1824     // Fixup the pointers in the newly written class table to contain image addresses. See
   1825     // above comment for intern tables.
   1826     ClassTable temp_class_table;
   1827     temp_class_table.ReadFromMemory(class_table_memory_ptr);
   1828     CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() +
   1829              table->NumZygoteClasses());
   1830     BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor,
   1831                                                                     RootInfo(kRootUnknown));
   1832     temp_class_table.VisitRoots(buffered_visitor);
   1833   }
   1834 }
   1835 
   1836 void ImageWriter::CopyAndFixupObjects() {
   1837   gc::Heap* heap = Runtime::Current()->GetHeap();
   1838   heap->VisitObjects(CopyAndFixupObjectsCallback, this);
   1839   // Fix up the object previously had hash codes.
   1840   for (const auto& hash_pair : saved_hashcode_map_) {
   1841     Object* obj = hash_pair.first;
   1842     DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U);
   1843     obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false);
   1844   }
   1845   saved_hashcode_map_.clear();
   1846 }
   1847 
   1848 void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
   1849   DCHECK(obj != nullptr);
   1850   DCHECK(arg != nullptr);
   1851   reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj);
   1852 }
   1853 
   1854 void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr,
   1855                                     mirror::Class* klass, Bin array_type) {
   1856   CHECK(klass->IsArrayClass());
   1857   CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr;
   1858   // Fixup int and long pointers for the ArtMethod or ArtField arrays.
   1859   const size_t num_elements = arr->GetLength();
   1860   dst->SetClass(GetImageAddress(arr->GetClass()));
   1861   auto* dest_array = down_cast<mirror::PointerArray*>(dst);
   1862   for (size_t i = 0, count = num_elements; i < count; ++i) {
   1863     void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
   1864     if (elem != nullptr && !IsInBootImage(elem)) {
   1865       auto it = native_object_relocations_.find(elem);
   1866       if (UNLIKELY(it == native_object_relocations_.end())) {
   1867         if (it->second.IsArtMethodRelocation()) {
   1868           auto* method = reinterpret_cast<ArtMethod*>(elem);
   1869           LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ "
   1870               << method << " idx=" << i << "/" << num_elements << " with declaring class "
   1871               << PrettyClass(method->GetDeclaringClass());
   1872         } else {
   1873           CHECK_EQ(array_type, kBinArtField);
   1874           auto* field = reinterpret_cast<ArtField*>(elem);
   1875           LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ "
   1876               << field << " idx=" << i << "/" << num_elements << " with declaring class "
   1877               << PrettyClass(field->GetDeclaringClass());
   1878         }
   1879         UNREACHABLE();
   1880       } else {
   1881         ImageInfo& image_info = GetImageInfo(it->second.oat_index);
   1882         elem = image_info.image_begin_ + it->second.offset;
   1883       }
   1884     }
   1885     dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_);
   1886   }
   1887 }
   1888 
   1889 void ImageWriter::CopyAndFixupObject(Object* obj) {
   1890   if (IsInBootImage(obj)) {
   1891     return;
   1892   }
   1893   size_t offset = GetImageOffset(obj);
   1894   size_t oat_index = GetOatIndex(obj);
   1895   ImageInfo& image_info = GetImageInfo(oat_index);
   1896   auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset);
   1897   DCHECK_LT(offset, image_info.image_end_);
   1898   const auto* src = reinterpret_cast<const uint8_t*>(obj);
   1899 
   1900   image_info.image_bitmap_->Set(dst);  // Mark the obj as live.
   1901 
   1902   const size_t n = obj->SizeOf();
   1903   DCHECK_LE(offset + n, image_info.image_->Size());
   1904   memcpy(dst, src, n);
   1905 
   1906   // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
   1907   // word.
   1908   const auto it = saved_hashcode_map_.find(obj);
   1909   dst->SetLockWord(it != saved_hashcode_map_.end() ?
   1910       LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
   1911   FixupObject(obj, dst);
   1912 }
   1913 
   1914 // Rewrite all the references in the copied object to point to their image address equivalent
   1915 class FixupVisitor {
   1916  public:
   1917   FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
   1918   }
   1919 
   1920   // Ignore class roots since we don't have a way to map them to the destination. These are handled
   1921   // with other logic.
   1922   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
   1923       const {}
   1924   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
   1925 
   1926 
   1927   void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
   1928       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1929     Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
   1930     // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
   1931     // image.
   1932     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
   1933         offset,
   1934         image_writer_->GetImageAddress(ref));
   1935   }
   1936 
   1937   // java.lang.ref.Reference visitor.
   1938   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
   1939       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
   1940     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
   1941         mirror::Reference::ReferentOffset(),
   1942         image_writer_->GetImageAddress(ref->GetReferent()));
   1943   }
   1944 
   1945  protected:
   1946   ImageWriter* const image_writer_;
   1947   mirror::Object* const copy_;
   1948 };
   1949 
   1950 class FixupClassVisitor FINAL : public FixupVisitor {
   1951  public:
   1952   FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
   1953   }
   1954 
   1955   void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
   1956       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1957     DCHECK(obj->IsClass());
   1958     FixupVisitor::operator()(obj, offset, /*is_static*/false);
   1959   }
   1960 
   1961   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED,
   1962                   mirror::Reference* ref ATTRIBUTE_UNUSED) const
   1963       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
   1964     LOG(FATAL) << "Reference not expected here.";
   1965   }
   1966 };
   1967 
   1968 uintptr_t ImageWriter::NativeOffsetInImage(void* obj) {
   1969   DCHECK(obj != nullptr);
   1970   DCHECK(!IsInBootImage(obj));
   1971   auto it = native_object_relocations_.find(obj);
   1972   CHECK(it != native_object_relocations_.end()) << obj << " spaces "
   1973       << Runtime::Current()->GetHeap()->DumpSpaces();
   1974   const NativeObjectRelocation& relocation = it->second;
   1975   return relocation.offset;
   1976 }
   1977 
   1978 template <typename T>
   1979 std::string PrettyPrint(T* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
   1980   std::ostringstream oss;
   1981   oss << ptr;
   1982   return oss.str();
   1983 }
   1984 
   1985 template <>
   1986 std::string PrettyPrint(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) {
   1987   return PrettyMethod(method);
   1988 }
   1989 
   1990 template <typename T>
   1991 T* ImageWriter::NativeLocationInImage(T* obj) {
   1992   if (obj == nullptr || IsInBootImage(obj)) {
   1993     return obj;
   1994   } else {
   1995     auto it = native_object_relocations_.find(obj);
   1996     CHECK(it != native_object_relocations_.end()) << obj << " " << PrettyPrint(obj)
   1997         << " spaces " << Runtime::Current()->GetHeap()->DumpSpaces();
   1998     const NativeObjectRelocation& relocation = it->second;
   1999     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
   2000     return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
   2001   }
   2002 }
   2003 
   2004 template <typename T>
   2005 T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) {
   2006   if (obj == nullptr || IsInBootImage(obj)) {
   2007     return obj;
   2008   } else {
   2009     size_t oat_index = GetOatIndexForDexCache(dex_cache);
   2010     ImageInfo& image_info = GetImageInfo(oat_index);
   2011     return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj));
   2012   }
   2013 }
   2014 
   2015 class NativeLocationVisitor {
   2016  public:
   2017   explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
   2018 
   2019   template <typename T>
   2020   T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
   2021     return image_writer_->NativeLocationInImage(ptr);
   2022   }
   2023 
   2024  private:
   2025   ImageWriter* const image_writer_;
   2026 };
   2027 
   2028 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
   2029   orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
   2030   FixupClassVisitor visitor(this, copy);
   2031   static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor);
   2032 
   2033   // Remove the clinitThreadId. This is required for image determinism.
   2034   copy->SetClinitThreadId(static_cast<pid_t>(0));
   2035 }
   2036 
   2037 void ImageWriter::FixupObject(Object* orig, Object* copy) {
   2038   DCHECK(orig != nullptr);
   2039   DCHECK(copy != nullptr);
   2040   if (kUseBakerOrBrooksReadBarrier) {
   2041     orig->AssertReadBarrierPointer();
   2042     if (kUseBrooksReadBarrier) {
   2043       // Note the address 'copy' isn't the same as the image address of 'orig'.
   2044       copy->SetReadBarrierPointer(GetImageAddress(orig));
   2045       DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
   2046     }
   2047   }
   2048   auto* klass = orig->GetClass();
   2049   if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
   2050     // Is this a native pointer array?
   2051     auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
   2052     if (it != pointer_arrays_.end()) {
   2053       // Should only need to fixup every pointer array exactly once.
   2054       FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
   2055       pointer_arrays_.erase(it);
   2056       return;
   2057     }
   2058   }
   2059   if (orig->IsClass()) {
   2060     FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
   2061   } else {
   2062     if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
   2063       // Need to go update the ArtMethod.
   2064       auto* dest = down_cast<mirror::AbstractMethod*>(copy);
   2065       auto* src = down_cast<mirror::AbstractMethod*>(orig);
   2066       ArtMethod* src_method = src->GetArtMethod();
   2067       auto it = native_object_relocations_.find(src_method);
   2068       CHECK(it != native_object_relocations_.end())
   2069           << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method);
   2070       dest->SetArtMethod(
   2071           reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset));
   2072     } else if (!klass->IsArrayClass()) {
   2073       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2074       if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) {
   2075         FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
   2076       } else if (klass->IsClassLoaderClass()) {
   2077         mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
   2078         // If src is a ClassLoader, set the class table to null so that it gets recreated by the
   2079         // ClassLoader.
   2080         copy_loader->SetClassTable(nullptr);
   2081         // Also set allocator to null to be safe. The allocator is created when we create the class
   2082         // table. We also never expect to unload things in the image since they are held live as
   2083         // roots.
   2084         copy_loader->SetAllocator(nullptr);
   2085       }
   2086     }
   2087     FixupVisitor visitor(this, copy);
   2088     orig->VisitReferences(visitor, visitor);
   2089   }
   2090 }
   2091 
   2092 
   2093 class ImageAddressVisitor {
   2094  public:
   2095   explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
   2096 
   2097   template <typename T>
   2098   T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
   2099     return image_writer_->GetImageAddress(ptr);
   2100   }
   2101 
   2102  private:
   2103   ImageWriter* const image_writer_;
   2104 };
   2105 
   2106 
   2107 void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache,
   2108                                 mirror::DexCache* copy_dex_cache) {
   2109   // Though the DexCache array fields are usually treated as native pointers, we set the full
   2110   // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
   2111   // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
   2112   //     static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
   2113   GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings();
   2114   if (orig_strings != nullptr) {
   2115     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(),
   2116                                                NativeLocationInImage(orig_strings),
   2117                                                /*pointer size*/8u);
   2118     orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache),
   2119                                  ImageAddressVisitor(this));
   2120   }
   2121   GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes();
   2122   if (orig_types != nullptr) {
   2123     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(),
   2124                                                NativeLocationInImage(orig_types),
   2125                                                /*pointer size*/8u);
   2126     orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache),
   2127                                        ImageAddressVisitor(this));
   2128   }
   2129   ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods();
   2130   if (orig_methods != nullptr) {
   2131     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(),
   2132                                                NativeLocationInImage(orig_methods),
   2133                                                /*pointer size*/8u);
   2134     ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache);
   2135     for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) {
   2136       ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_);
   2137       // NativeLocationInImage also handles runtime methods since these have relocation info.
   2138       ArtMethod* copy = NativeLocationInImage(orig);
   2139       mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_);
   2140     }
   2141   }
   2142   ArtField** orig_fields = orig_dex_cache->GetResolvedFields();
   2143   if (orig_fields != nullptr) {
   2144     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(),
   2145                                                NativeLocationInImage(orig_fields),
   2146                                                /*pointer size*/8u);
   2147     ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache);
   2148     for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) {
   2149       ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_);
   2150       ArtField* copy = NativeLocationInImage(orig);
   2151       mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_);
   2152     }
   2153   }
   2154 
   2155   // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
   2156   // compiler pointers in here will make the output non-deterministic.
   2157   copy_dex_cache->SetDexFile(nullptr);
   2158 }
   2159 
   2160 const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const {
   2161   DCHECK_LT(type, kOatAddressCount);
   2162   // If we are compiling an app image, we need to use the stubs of the boot image.
   2163   if (compile_app_image_) {
   2164     // Use the current image pointers.
   2165     const std::vector<gc::space::ImageSpace*>& image_spaces =
   2166         Runtime::Current()->GetHeap()->GetBootImageSpaces();
   2167     DCHECK(!image_spaces.empty());
   2168     const OatFile* oat_file = image_spaces[0]->GetOatFile();
   2169     CHECK(oat_file != nullptr);
   2170     const OatHeader& header = oat_file->GetOatHeader();
   2171     switch (type) {
   2172       // TODO: We could maybe clean this up if we stored them in an array in the oat header.
   2173       case kOatAddressQuickGenericJNITrampoline:
   2174         return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
   2175       case kOatAddressInterpreterToInterpreterBridge:
   2176         return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge());
   2177       case kOatAddressInterpreterToCompiledCodeBridge:
   2178         return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge());
   2179       case kOatAddressJNIDlsymLookup:
   2180         return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
   2181       case kOatAddressQuickIMTConflictTrampoline:
   2182         return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
   2183       case kOatAddressQuickResolutionTrampoline:
   2184         return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
   2185       case kOatAddressQuickToInterpreterBridge:
   2186         return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
   2187       default:
   2188         UNREACHABLE();
   2189     }
   2190   }
   2191   const ImageInfo& primary_image_info = GetImageInfo(0);
   2192   return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info);
   2193 }
   2194 
   2195 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
   2196                                          const ImageInfo& image_info,
   2197                                          bool* quick_is_interpreted) {
   2198   DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method);
   2199   DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method);
   2200   DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method);
   2201   DCHECK(method->IsInvokable()) << PrettyMethod(method);
   2202   DCHECK(!IsInBootImage(method)) << PrettyMethod(method);
   2203 
   2204   // Use original code if it exists. Otherwise, set the code pointer to the resolution
   2205   // trampoline.
   2206 
   2207   // Quick entrypoint:
   2208   const void* quick_oat_entry_point =
   2209       method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
   2210   const uint8_t* quick_code;
   2211 
   2212   if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) {
   2213     DCHECK(method->IsCopied());
   2214     // If the code is not in the oat file corresponding to this image (e.g. default methods)
   2215     quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
   2216   } else {
   2217     uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
   2218     quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
   2219   }
   2220 
   2221   *quick_is_interpreted = false;
   2222   if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
   2223       method->GetDeclaringClass()->IsInitialized())) {
   2224     // We have code for a non-static or initialized method, just use the code.
   2225   } else if (quick_code == nullptr && method->IsNative() &&
   2226       (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
   2227     // Non-static or initialized native method missing compiled code, use generic JNI version.
   2228     quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline);
   2229   } else if (quick_code == nullptr && !method->IsNative()) {
   2230     // We don't have code at all for a non-native method, use the interpreter.
   2231     quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge);
   2232     *quick_is_interpreted = true;
   2233   } else {
   2234     CHECK(!method->GetDeclaringClass()->IsInitialized());
   2235     // We have code for a static method, but need to go through the resolution stub for class
   2236     // initialization.
   2237     quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline);
   2238   }
   2239   if (!IsInBootOatFile(quick_code)) {
   2240     // DCHECK_GE(quick_code, oat_data_begin_);
   2241   }
   2242   return quick_code;
   2243 }
   2244 
   2245 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
   2246                                      ArtMethod* copy,
   2247                                      const ImageInfo& image_info) {
   2248   memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
   2249 
   2250   copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked()));
   2251   ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_);
   2252   copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_);
   2253   GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_);
   2254   copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_);
   2255 
   2256   // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
   2257   // oat_begin_
   2258 
   2259   // The resolution method has a special trampoline to call.
   2260   Runtime* runtime = Runtime::Current();
   2261   if (orig->IsRuntimeMethod()) {
   2262     ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
   2263     if (orig_table != nullptr) {
   2264       // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
   2265       copy->SetEntryPointFromQuickCompiledCodePtrSize(
   2266           GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_);
   2267       copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_);
   2268     } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
   2269       copy->SetEntryPointFromQuickCompiledCodePtrSize(
   2270           GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_);
   2271     } else {
   2272       bool found_one = false;
   2273       for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) {
   2274         auto idx = static_cast<Runtime::CalleeSaveType>(i);
   2275         if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
   2276           found_one = true;
   2277           break;
   2278         }
   2279       }
   2280       CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig);
   2281       CHECK(copy->IsRuntimeMethod());
   2282     }
   2283   } else {
   2284     // We assume all methods have code. If they don't currently then we set them to the use the
   2285     // resolution trampoline. Abstract methods never have code and so we need to make sure their
   2286     // use results in an AbstractMethodError. We use the interpreter to achieve this.
   2287     if (UNLIKELY(!orig->IsInvokable())) {
   2288       copy->SetEntryPointFromQuickCompiledCodePtrSize(
   2289           GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_);
   2290     } else {
   2291       bool quick_is_interpreted;
   2292       const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
   2293       copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
   2294 
   2295       // JNI entrypoint:
   2296       if (orig->IsNative()) {
   2297         // The native method's pointer is set to a stub to lookup via dlsym.
   2298         // Note this is not the code_ pointer, that is handled above.
   2299         copy->SetEntryPointFromJniPtrSize(
   2300             GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_);
   2301       }
   2302     }
   2303   }
   2304 }
   2305 
   2306 size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const {
   2307   DCHECK_LE(up_to, kBinSize);
   2308   return std::accumulate(&image_info.bin_slot_sizes_[0],
   2309                          &image_info.bin_slot_sizes_[up_to],
   2310                          /*init*/0);
   2311 }
   2312 
   2313 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
   2314   // These values may need to get updated if more bins are added to the enum Bin
   2315   static_assert(kBinBits == 3, "wrong number of bin bits");
   2316   static_assert(kBinShift == 27, "wrong number of shift");
   2317   static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
   2318 
   2319   DCHECK_LT(GetBin(), kBinSize);
   2320   DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
   2321 }
   2322 
   2323 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
   2324     : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
   2325   DCHECK_EQ(index, GetIndex());
   2326 }
   2327 
   2328 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
   2329   return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
   2330 }
   2331 
   2332 uint32_t ImageWriter::BinSlot::GetIndex() const {
   2333   return lockword_ & ~kBinMask;
   2334 }
   2335 
   2336 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
   2337   switch (type) {
   2338     case kNativeObjectRelocationTypeArtField:
   2339     case kNativeObjectRelocationTypeArtFieldArray:
   2340       return kBinArtField;
   2341     case kNativeObjectRelocationTypeArtMethodClean:
   2342     case kNativeObjectRelocationTypeArtMethodArrayClean:
   2343       return kBinArtMethodClean;
   2344     case kNativeObjectRelocationTypeArtMethodDirty:
   2345     case kNativeObjectRelocationTypeArtMethodArrayDirty:
   2346       return kBinArtMethodDirty;
   2347     case kNativeObjectRelocationTypeDexCacheArray:
   2348       return kBinDexCacheArray;
   2349     case kNativeObjectRelocationTypeRuntimeMethod:
   2350       return kBinRuntimeMethod;
   2351     case kNativeObjectRelocationTypeIMTable:
   2352       return kBinImTable;
   2353     case kNativeObjectRelocationTypeIMTConflictTable:
   2354       return kBinIMTConflictTable;
   2355   }
   2356   UNREACHABLE();
   2357 }
   2358 
   2359 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
   2360   if (!IsMultiImage()) {
   2361     return GetDefaultOatIndex();
   2362   }
   2363   auto it = oat_index_map_.find(obj);
   2364   DCHECK(it != oat_index_map_.end());
   2365   return it->second;
   2366 }
   2367 
   2368 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
   2369   if (!IsMultiImage()) {
   2370     return GetDefaultOatIndex();
   2371   }
   2372   auto it = dex_file_oat_index_map_.find(dex_file);
   2373   DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
   2374   return it->second;
   2375 }
   2376 
   2377 size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const {
   2378   if (dex_cache == nullptr) {
   2379     return GetDefaultOatIndex();
   2380   } else {
   2381     return GetOatIndexForDexFile(dex_cache->GetDexFile());
   2382   }
   2383 }
   2384 
   2385 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
   2386                                       size_t oat_loaded_size,
   2387                                       size_t oat_data_offset,
   2388                                       size_t oat_data_size) {
   2389   const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
   2390   for (const ImageInfo& info : image_infos_) {
   2391     DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
   2392   }
   2393   DCHECK(images_end != nullptr);  // Image space must be ready.
   2394 
   2395   ImageInfo& cur_image_info = GetImageInfo(oat_index);
   2396   cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
   2397   cur_image_info.oat_loaded_size_ = oat_loaded_size;
   2398   cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
   2399   cur_image_info.oat_size_ = oat_data_size;
   2400 
   2401   if (compile_app_image_) {
   2402     CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
   2403     return;
   2404   }
   2405 
   2406   // Update the oat_offset of the next image info.
   2407   if (oat_index + 1u != oat_filenames_.size()) {
   2408     // There is a following one.
   2409     ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
   2410     next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
   2411   }
   2412 }
   2413 
   2414 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
   2415   ImageInfo& cur_image_info = GetImageInfo(oat_index);
   2416   cur_image_info.oat_checksum_ = oat_header.GetChecksum();
   2417 
   2418   if (oat_index == GetDefaultOatIndex()) {
   2419     // Primary oat file, read the trampolines.
   2420     cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] =
   2421         oat_header.GetInterpreterToInterpreterBridgeOffset();
   2422     cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] =
   2423         oat_header.GetInterpreterToCompiledCodeBridgeOffset();
   2424     cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] =
   2425         oat_header.GetJniDlsymLookupOffset();
   2426     cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] =
   2427         oat_header.GetQuickGenericJniTrampolineOffset();
   2428     cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] =
   2429         oat_header.GetQuickImtConflictTrampolineOffset();
   2430     cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] =
   2431         oat_header.GetQuickResolutionTrampolineOffset();
   2432     cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] =
   2433         oat_header.GetQuickToInterpreterBridgeOffset();
   2434   }
   2435 }
   2436 
   2437 ImageWriter::ImageWriter(
   2438     const CompilerDriver& compiler_driver,
   2439     uintptr_t image_begin,
   2440     bool compile_pic,
   2441     bool compile_app_image,
   2442     ImageHeader::StorageMode image_storage_mode,
   2443     const std::vector<const char*>& oat_filenames,
   2444     const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map)
   2445     : compiler_driver_(compiler_driver),
   2446       global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
   2447       image_objects_offset_begin_(0),
   2448       compile_pic_(compile_pic),
   2449       compile_app_image_(compile_app_image),
   2450       target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())),
   2451       image_infos_(oat_filenames.size()),
   2452       dirty_methods_(0u),
   2453       clean_methods_(0u),
   2454       image_storage_mode_(image_storage_mode),
   2455       oat_filenames_(oat_filenames),
   2456       dex_file_oat_index_map_(dex_file_oat_index_map) {
   2457   CHECK_NE(image_begin, 0U);
   2458   std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
   2459   CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
   2460       << "Compiling a boot image should occur iff there are no boot image spaces loaded";
   2461 }
   2462 
   2463 ImageWriter::ImageInfo::ImageInfo()
   2464     : intern_table_(new InternTable),
   2465       class_table_(new ClassTable) {}
   2466 
   2467 }  // namespace art
   2468