1 /* 2 * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 /* 12 * The core AEC algorithm, SSE2 version of speed-critical functions. 13 */ 14 15 #include <emmintrin.h> 16 #include <math.h> 17 #include <string.h> // memset 18 19 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" 20 #include "webrtc/modules/audio_processing/aec/aec_common.h" 21 #include "webrtc/modules/audio_processing/aec/aec_core_internal.h" 22 #include "webrtc/modules/audio_processing/aec/aec_rdft.h" 23 24 __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) { 25 return aRe * bRe - aIm * bIm; 26 } 27 28 __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) { 29 return aRe * bIm + aIm * bRe; 30 } 31 32 static void FilterFarSSE2( 33 int num_partitions, 34 int x_fft_buf_block_pos, 35 float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], 36 float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1], 37 float y_fft[2][PART_LEN1]) { 38 39 int i; 40 for (i = 0; i < num_partitions; i++) { 41 int j; 42 int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; 43 int pos = i * PART_LEN1; 44 // Check for wrap 45 if (i + x_fft_buf_block_pos >= num_partitions) { 46 xPos -= num_partitions * (PART_LEN1); 47 } 48 49 // vectorized code (four at once) 50 for (j = 0; j + 3 < PART_LEN1; j += 4) { 51 const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]); 52 const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]); 53 const __m128 h_fft_buf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]); 54 const __m128 h_fft_buf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]); 55 const __m128 y_fft_re = _mm_loadu_ps(&y_fft[0][j]); 56 const __m128 y_fft_im = _mm_loadu_ps(&y_fft[1][j]); 57 const __m128 a = _mm_mul_ps(x_fft_buf_re, h_fft_buf_re); 58 const __m128 b = _mm_mul_ps(x_fft_buf_im, h_fft_buf_im); 59 const __m128 c = _mm_mul_ps(x_fft_buf_re, h_fft_buf_im); 60 const __m128 d = _mm_mul_ps(x_fft_buf_im, h_fft_buf_re); 61 const __m128 e = _mm_sub_ps(a, b); 62 const __m128 f = _mm_add_ps(c, d); 63 const __m128 g = _mm_add_ps(y_fft_re, e); 64 const __m128 h = _mm_add_ps(y_fft_im, f); 65 _mm_storeu_ps(&y_fft[0][j], g); 66 _mm_storeu_ps(&y_fft[1][j], h); 67 } 68 // scalar code for the remaining items. 69 for (; j < PART_LEN1; j++) { 70 y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], 71 x_fft_buf[1][xPos + j], 72 h_fft_buf[0][pos + j], 73 h_fft_buf[1][pos + j]); 74 y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], 75 x_fft_buf[1][xPos + j], 76 h_fft_buf[0][pos + j], 77 h_fft_buf[1][pos + j]); 78 } 79 } 80 } 81 82 static void ScaleErrorSignalSSE2(int extended_filter_enabled, 83 float normal_mu, 84 float normal_error_threshold, 85 float x_pow[PART_LEN1], 86 float ef[2][PART_LEN1]) { 87 const __m128 k1e_10f = _mm_set1_ps(1e-10f); 88 const __m128 kMu = extended_filter_enabled ? _mm_set1_ps(kExtendedMu) 89 : _mm_set1_ps(normal_mu); 90 const __m128 kThresh = extended_filter_enabled 91 ? _mm_set1_ps(kExtendedErrorThreshold) 92 : _mm_set1_ps(normal_error_threshold); 93 94 int i; 95 // vectorized code (four at once) 96 for (i = 0; i + 3 < PART_LEN1; i += 4) { 97 const __m128 x_pow_local = _mm_loadu_ps(&x_pow[i]); 98 const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]); 99 const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]); 100 101 const __m128 xPowPlus = _mm_add_ps(x_pow_local, k1e_10f); 102 __m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus); 103 __m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus); 104 const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re); 105 const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im); 106 const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2); 107 const __m128 absEf = _mm_sqrt_ps(ef_sum2); 108 const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh); 109 __m128 absEfPlus = _mm_add_ps(absEf, k1e_10f); 110 const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus); 111 __m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv); 112 __m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv); 113 ef_re_if = _mm_and_ps(bigger, ef_re_if); 114 ef_im_if = _mm_and_ps(bigger, ef_im_if); 115 ef_re = _mm_andnot_ps(bigger, ef_re); 116 ef_im = _mm_andnot_ps(bigger, ef_im); 117 ef_re = _mm_or_ps(ef_re, ef_re_if); 118 ef_im = _mm_or_ps(ef_im, ef_im_if); 119 ef_re = _mm_mul_ps(ef_re, kMu); 120 ef_im = _mm_mul_ps(ef_im, kMu); 121 122 _mm_storeu_ps(&ef[0][i], ef_re); 123 _mm_storeu_ps(&ef[1][i], ef_im); 124 } 125 // scalar code for the remaining items. 126 { 127 const float mu = 128 extended_filter_enabled ? kExtendedMu : normal_mu; 129 const float error_threshold = extended_filter_enabled 130 ? kExtendedErrorThreshold 131 : normal_error_threshold; 132 for (; i < (PART_LEN1); i++) { 133 float abs_ef; 134 ef[0][i] /= (x_pow[i] + 1e-10f); 135 ef[1][i] /= (x_pow[i] + 1e-10f); 136 abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); 137 138 if (abs_ef > error_threshold) { 139 abs_ef = error_threshold / (abs_ef + 1e-10f); 140 ef[0][i] *= abs_ef; 141 ef[1][i] *= abs_ef; 142 } 143 144 // Stepsize factor 145 ef[0][i] *= mu; 146 ef[1][i] *= mu; 147 } 148 } 149 } 150 151 static void FilterAdaptationSSE2( 152 int num_partitions, 153 int x_fft_buf_block_pos, 154 float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], 155 float e_fft[2][PART_LEN1], 156 float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) { 157 float fft[PART_LEN2]; 158 int i, j; 159 for (i = 0; i < num_partitions; i++) { 160 int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1); 161 int pos = i * PART_LEN1; 162 // Check for wrap 163 if (i + x_fft_buf_block_pos >= num_partitions) { 164 xPos -= num_partitions * PART_LEN1; 165 } 166 167 // Process the whole array... 168 for (j = 0; j < PART_LEN; j += 4) { 169 // Load x_fft_buf and e_fft. 170 const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]); 171 const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]); 172 const __m128 e_fft_re = _mm_loadu_ps(&e_fft[0][j]); 173 const __m128 e_fft_im = _mm_loadu_ps(&e_fft[1][j]); 174 // Calculate the product of conjugate(x_fft_buf) by e_fft. 175 // re(conjugate(a) * b) = aRe * bRe + aIm * bIm 176 // im(conjugate(a) * b)= aRe * bIm - aIm * bRe 177 const __m128 a = _mm_mul_ps(x_fft_buf_re, e_fft_re); 178 const __m128 b = _mm_mul_ps(x_fft_buf_im, e_fft_im); 179 const __m128 c = _mm_mul_ps(x_fft_buf_re, e_fft_im); 180 const __m128 d = _mm_mul_ps(x_fft_buf_im, e_fft_re); 181 const __m128 e = _mm_add_ps(a, b); 182 const __m128 f = _mm_sub_ps(c, d); 183 // Interleave real and imaginary parts. 184 const __m128 g = _mm_unpacklo_ps(e, f); 185 const __m128 h = _mm_unpackhi_ps(e, f); 186 // Store 187 _mm_storeu_ps(&fft[2 * j + 0], g); 188 _mm_storeu_ps(&fft[2 * j + 4], h); 189 } 190 // ... and fixup the first imaginary entry. 191 fft[1] = MulRe(x_fft_buf[0][xPos + PART_LEN], 192 -x_fft_buf[1][xPos + PART_LEN], 193 e_fft[0][PART_LEN], 194 e_fft[1][PART_LEN]); 195 196 aec_rdft_inverse_128(fft); 197 memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); 198 199 // fft scaling 200 { 201 float scale = 2.0f / PART_LEN2; 202 const __m128 scale_ps = _mm_load_ps1(&scale); 203 for (j = 0; j < PART_LEN; j += 4) { 204 const __m128 fft_ps = _mm_loadu_ps(&fft[j]); 205 const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps); 206 _mm_storeu_ps(&fft[j], fft_scale); 207 } 208 } 209 aec_rdft_forward_128(fft); 210 211 { 212 float wt1 = h_fft_buf[1][pos]; 213 h_fft_buf[0][pos + PART_LEN] += fft[1]; 214 for (j = 0; j < PART_LEN; j += 4) { 215 __m128 wtBuf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]); 216 __m128 wtBuf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]); 217 const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]); 218 const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]); 219 const __m128 fft_re = 220 _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2, 0)); 221 const __m128 fft_im = 222 _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3, 1)); 223 wtBuf_re = _mm_add_ps(wtBuf_re, fft_re); 224 wtBuf_im = _mm_add_ps(wtBuf_im, fft_im); 225 _mm_storeu_ps(&h_fft_buf[0][pos + j], wtBuf_re); 226 _mm_storeu_ps(&h_fft_buf[1][pos + j], wtBuf_im); 227 } 228 h_fft_buf[1][pos] = wt1; 229 } 230 } 231 } 232 233 static __m128 mm_pow_ps(__m128 a, __m128 b) { 234 // a^b = exp2(b * log2(a)) 235 // exp2(x) and log2(x) are calculated using polynomial approximations. 236 __m128 log2_a, b_log2_a, a_exp_b; 237 238 // Calculate log2(x), x = a. 239 { 240 // To calculate log2(x), we decompose x like this: 241 // x = y * 2^n 242 // n is an integer 243 // y is in the [1.0, 2.0) range 244 // 245 // log2(x) = log2(y) + n 246 // n can be evaluated by playing with float representation. 247 // log2(y) in a small range can be approximated, this code uses an order 248 // five polynomial approximation. The coefficients have been 249 // estimated with the Remez algorithm and the resulting 250 // polynomial has a maximum relative error of 0.00086%. 251 252 // Compute n. 253 // This is done by masking the exponent, shifting it into the top bit of 254 // the mantissa, putting eight into the biased exponent (to shift/ 255 // compensate the fact that the exponent has been shifted in the top/ 256 // fractional part and finally getting rid of the implicit leading one 257 // from the mantissa by substracting it out. 258 static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END = { 259 0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000}; 260 static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END = { 261 0x43800000, 0x43800000, 0x43800000, 0x43800000}; 262 static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END = { 263 0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000}; 264 static const int shift_exponent_into_top_mantissa = 8; 265 const __m128 two_n = _mm_and_ps(a, *((__m128*)float_exponent_mask)); 266 const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32( 267 _mm_castps_si128(two_n), shift_exponent_into_top_mantissa)); 268 const __m128 n_0 = _mm_or_ps(n_1, *((__m128*)eight_biased_exponent)); 269 const __m128 n = _mm_sub_ps(n_0, *((__m128*)implicit_leading_one)); 270 271 // Compute y. 272 static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END = { 273 0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF}; 274 static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END = { 275 0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000}; 276 const __m128 mantissa = _mm_and_ps(a, *((__m128*)mantissa_mask)); 277 const __m128 y = 278 _mm_or_ps(mantissa, *((__m128*)zero_biased_exponent_is_one)); 279 280 // Approximate log2(y) ~= (y - 1) * pol5(y). 281 // pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0 282 static const ALIGN16_BEG float ALIGN16_END C5[4] = { 283 -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f}; 284 static const ALIGN16_BEG float ALIGN16_END 285 C4[4] = {3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f}; 286 static const ALIGN16_BEG float ALIGN16_END 287 C3[4] = {-1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f}; 288 static const ALIGN16_BEG float ALIGN16_END 289 C2[4] = {2.5988452f, 2.5988452f, 2.5988452f, 2.5988452f}; 290 static const ALIGN16_BEG float ALIGN16_END 291 C1[4] = {-3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f}; 292 static const ALIGN16_BEG float ALIGN16_END 293 C0[4] = {3.1157899f, 3.1157899f, 3.1157899f, 3.1157899f}; 294 const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128*)C5)); 295 const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128*)C4)); 296 const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y); 297 const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128*)C3)); 298 const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y); 299 const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128*)C2)); 300 const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y); 301 const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128*)C1)); 302 const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y); 303 const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128*)C0)); 304 const __m128 y_minus_one = 305 _mm_sub_ps(y, *((__m128*)zero_biased_exponent_is_one)); 306 const __m128 log2_y = _mm_mul_ps(y_minus_one, pol5_y); 307 308 // Combine parts. 309 log2_a = _mm_add_ps(n, log2_y); 310 } 311 312 // b * log2(a) 313 b_log2_a = _mm_mul_ps(b, log2_a); 314 315 // Calculate exp2(x), x = b * log2(a). 316 { 317 // To calculate 2^x, we decompose x like this: 318 // x = n + y 319 // n is an integer, the value of x - 0.5 rounded down, therefore 320 // y is in the [0.5, 1.5) range 321 // 322 // 2^x = 2^n * 2^y 323 // 2^n can be evaluated by playing with float representation. 324 // 2^y in a small range can be approximated, this code uses an order two 325 // polynomial approximation. The coefficients have been estimated 326 // with the Remez algorithm and the resulting polynomial has a 327 // maximum relative error of 0.17%. 328 329 // To avoid over/underflow, we reduce the range of input to ]-127, 129]. 330 static const ALIGN16_BEG float max_input[4] ALIGN16_END = {129.f, 129.f, 331 129.f, 129.f}; 332 static const ALIGN16_BEG float min_input[4] ALIGN16_END = { 333 -126.99999f, -126.99999f, -126.99999f, -126.99999f}; 334 const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128*)max_input)); 335 const __m128 x_max = _mm_max_ps(x_min, *((__m128*)min_input)); 336 // Compute n. 337 static const ALIGN16_BEG float half[4] ALIGN16_END = {0.5f, 0.5f, 338 0.5f, 0.5f}; 339 const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128*)half)); 340 const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half); 341 // Compute 2^n. 342 static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END = { 343 127, 127, 127, 127}; 344 static const int float_exponent_shift = 23; 345 const __m128i two_n_exponent = 346 _mm_add_epi32(x_minus_half_floor, *((__m128i*)float_exponent_bias)); 347 const __m128 two_n = 348 _mm_castsi128_ps(_mm_slli_epi32(two_n_exponent, float_exponent_shift)); 349 // Compute y. 350 const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor)); 351 // Approximate 2^y ~= C2 * y^2 + C1 * y + C0. 352 static const ALIGN16_BEG float C2[4] ALIGN16_END = { 353 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f}; 354 static const ALIGN16_BEG float C1[4] ALIGN16_END = { 355 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f}; 356 static const ALIGN16_BEG float C0[4] ALIGN16_END = {1.0017247f, 1.0017247f, 357 1.0017247f, 1.0017247f}; 358 const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128*)C2)); 359 const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128*)C1)); 360 const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y); 361 const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128*)C0)); 362 363 // Combine parts. 364 a_exp_b = _mm_mul_ps(exp2_y, two_n); 365 } 366 return a_exp_b; 367 } 368 369 static void OverdriveAndSuppressSSE2(AecCore* aec, 370 float hNl[PART_LEN1], 371 const float hNlFb, 372 float efw[2][PART_LEN1]) { 373 int i; 374 const __m128 vec_hNlFb = _mm_set1_ps(hNlFb); 375 const __m128 vec_one = _mm_set1_ps(1.0f); 376 const __m128 vec_minus_one = _mm_set1_ps(-1.0f); 377 const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm); 378 // vectorized code (four at once) 379 for (i = 0; i + 3 < PART_LEN1; i += 4) { 380 // Weight subbands 381 __m128 vec_hNl = _mm_loadu_ps(&hNl[i]); 382 const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]); 383 const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb); 384 const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(vec_weightCurve, vec_hNlFb); 385 const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve); 386 const __m128 vec_one_weightCurve_hNl = 387 _mm_mul_ps(vec_one_weightCurve, vec_hNl); 388 const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl); 389 const __m128 vec_if1 = _mm_and_ps( 390 bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl)); 391 vec_hNl = _mm_or_ps(vec_if0, vec_if1); 392 393 { 394 const __m128 vec_overDriveCurve = 395 _mm_loadu_ps(&WebRtcAec_overDriveCurve[i]); 396 const __m128 vec_overDriveSm_overDriveCurve = 397 _mm_mul_ps(vec_overDriveSm, vec_overDriveCurve); 398 vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve); 399 _mm_storeu_ps(&hNl[i], vec_hNl); 400 } 401 402 // Suppress error signal 403 { 404 __m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]); 405 __m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]); 406 vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl); 407 vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl); 408 409 // Ooura fft returns incorrect sign on imaginary component. It matters 410 // here because we are making an additive change with comfort noise. 411 vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one); 412 _mm_storeu_ps(&efw[0][i], vec_efw_re); 413 _mm_storeu_ps(&efw[1][i], vec_efw_im); 414 } 415 } 416 // scalar code for the remaining items. 417 for (; i < PART_LEN1; i++) { 418 // Weight subbands 419 if (hNl[i] > hNlFb) { 420 hNl[i] = WebRtcAec_weightCurve[i] * hNlFb + 421 (1 - WebRtcAec_weightCurve[i]) * hNl[i]; 422 } 423 hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]); 424 425 // Suppress error signal 426 efw[0][i] *= hNl[i]; 427 efw[1][i] *= hNl[i]; 428 429 // Ooura fft returns incorrect sign on imaginary component. It matters 430 // here because we are making an additive change with comfort noise. 431 efw[1][i] *= -1; 432 } 433 } 434 435 __inline static void _mm_add_ps_4x1(__m128 sum, float *dst) { 436 // A+B C+D 437 sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(0, 0, 3, 2))); 438 // A+B+C+D A+B+C+D 439 sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 1, 1, 1))); 440 _mm_store_ss(dst, sum); 441 } 442 443 static int PartitionDelaySSE2(const AecCore* aec) { 444 // Measures the energy in each filter partition and returns the partition with 445 // highest energy. 446 // TODO(bjornv): Spread computational cost by computing one partition per 447 // block? 448 float wfEnMax = 0; 449 int i; 450 int delay = 0; 451 452 for (i = 0; i < aec->num_partitions; i++) { 453 int j; 454 int pos = i * PART_LEN1; 455 float wfEn = 0; 456 __m128 vec_wfEn = _mm_set1_ps(0.0f); 457 // vectorized code (four at once) 458 for (j = 0; j + 3 < PART_LEN1; j += 4) { 459 const __m128 vec_wfBuf0 = _mm_loadu_ps(&aec->wfBuf[0][pos + j]); 460 const __m128 vec_wfBuf1 = _mm_loadu_ps(&aec->wfBuf[1][pos + j]); 461 vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf0, vec_wfBuf0)); 462 vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf1, vec_wfBuf1)); 463 } 464 _mm_add_ps_4x1(vec_wfEn, &wfEn); 465 466 // scalar code for the remaining items. 467 for (; j < PART_LEN1; j++) { 468 wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] + 469 aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j]; 470 } 471 472 if (wfEn > wfEnMax) { 473 wfEnMax = wfEn; 474 delay = i; 475 } 476 } 477 return delay; 478 } 479 480 // Updates the following smoothed Power Spectral Densities (PSD): 481 // - sd : near-end 482 // - se : residual echo 483 // - sx : far-end 484 // - sde : cross-PSD of near-end and residual echo 485 // - sxd : cross-PSD of near-end and far-end 486 // 487 // In addition to updating the PSDs, also the filter diverge state is determined 488 // upon actions are taken. 489 static void SmoothedPSD(AecCore* aec, 490 float efw[2][PART_LEN1], 491 float dfw[2][PART_LEN1], 492 float xfw[2][PART_LEN1], 493 int* extreme_filter_divergence) { 494 // Power estimate smoothing coefficients. 495 const float* ptrGCoh = aec->extended_filter_enabled 496 ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1] 497 : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1]; 498 int i; 499 float sdSum = 0, seSum = 0; 500 const __m128 vec_15 = _mm_set1_ps(WebRtcAec_kMinFarendPSD); 501 const __m128 vec_GCoh0 = _mm_set1_ps(ptrGCoh[0]); 502 const __m128 vec_GCoh1 = _mm_set1_ps(ptrGCoh[1]); 503 __m128 vec_sdSum = _mm_set1_ps(0.0f); 504 __m128 vec_seSum = _mm_set1_ps(0.0f); 505 506 for (i = 0; i + 3 < PART_LEN1; i += 4) { 507 const __m128 vec_dfw0 = _mm_loadu_ps(&dfw[0][i]); 508 const __m128 vec_dfw1 = _mm_loadu_ps(&dfw[1][i]); 509 const __m128 vec_efw0 = _mm_loadu_ps(&efw[0][i]); 510 const __m128 vec_efw1 = _mm_loadu_ps(&efw[1][i]); 511 const __m128 vec_xfw0 = _mm_loadu_ps(&xfw[0][i]); 512 const __m128 vec_xfw1 = _mm_loadu_ps(&xfw[1][i]); 513 __m128 vec_sd = _mm_mul_ps(_mm_loadu_ps(&aec->sd[i]), vec_GCoh0); 514 __m128 vec_se = _mm_mul_ps(_mm_loadu_ps(&aec->se[i]), vec_GCoh0); 515 __m128 vec_sx = _mm_mul_ps(_mm_loadu_ps(&aec->sx[i]), vec_GCoh0); 516 __m128 vec_dfw_sumsq = _mm_mul_ps(vec_dfw0, vec_dfw0); 517 __m128 vec_efw_sumsq = _mm_mul_ps(vec_efw0, vec_efw0); 518 __m128 vec_xfw_sumsq = _mm_mul_ps(vec_xfw0, vec_xfw0); 519 vec_dfw_sumsq = _mm_add_ps(vec_dfw_sumsq, _mm_mul_ps(vec_dfw1, vec_dfw1)); 520 vec_efw_sumsq = _mm_add_ps(vec_efw_sumsq, _mm_mul_ps(vec_efw1, vec_efw1)); 521 vec_xfw_sumsq = _mm_add_ps(vec_xfw_sumsq, _mm_mul_ps(vec_xfw1, vec_xfw1)); 522 vec_xfw_sumsq = _mm_max_ps(vec_xfw_sumsq, vec_15); 523 vec_sd = _mm_add_ps(vec_sd, _mm_mul_ps(vec_dfw_sumsq, vec_GCoh1)); 524 vec_se = _mm_add_ps(vec_se, _mm_mul_ps(vec_efw_sumsq, vec_GCoh1)); 525 vec_sx = _mm_add_ps(vec_sx, _mm_mul_ps(vec_xfw_sumsq, vec_GCoh1)); 526 _mm_storeu_ps(&aec->sd[i], vec_sd); 527 _mm_storeu_ps(&aec->se[i], vec_se); 528 _mm_storeu_ps(&aec->sx[i], vec_sx); 529 530 { 531 const __m128 vec_3210 = _mm_loadu_ps(&aec->sde[i][0]); 532 const __m128 vec_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]); 533 __m128 vec_a = _mm_shuffle_ps(vec_3210, vec_7654, 534 _MM_SHUFFLE(2, 0, 2, 0)); 535 __m128 vec_b = _mm_shuffle_ps(vec_3210, vec_7654, 536 _MM_SHUFFLE(3, 1, 3, 1)); 537 __m128 vec_dfwefw0011 = _mm_mul_ps(vec_dfw0, vec_efw0); 538 __m128 vec_dfwefw0110 = _mm_mul_ps(vec_dfw0, vec_efw1); 539 vec_a = _mm_mul_ps(vec_a, vec_GCoh0); 540 vec_b = _mm_mul_ps(vec_b, vec_GCoh0); 541 vec_dfwefw0011 = _mm_add_ps(vec_dfwefw0011, 542 _mm_mul_ps(vec_dfw1, vec_efw1)); 543 vec_dfwefw0110 = _mm_sub_ps(vec_dfwefw0110, 544 _mm_mul_ps(vec_dfw1, vec_efw0)); 545 vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwefw0011, vec_GCoh1)); 546 vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwefw0110, vec_GCoh1)); 547 _mm_storeu_ps(&aec->sde[i][0], _mm_unpacklo_ps(vec_a, vec_b)); 548 _mm_storeu_ps(&aec->sde[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b)); 549 } 550 551 { 552 const __m128 vec_3210 = _mm_loadu_ps(&aec->sxd[i][0]); 553 const __m128 vec_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]); 554 __m128 vec_a = _mm_shuffle_ps(vec_3210, vec_7654, 555 _MM_SHUFFLE(2, 0, 2, 0)); 556 __m128 vec_b = _mm_shuffle_ps(vec_3210, vec_7654, 557 _MM_SHUFFLE(3, 1, 3, 1)); 558 __m128 vec_dfwxfw0011 = _mm_mul_ps(vec_dfw0, vec_xfw0); 559 __m128 vec_dfwxfw0110 = _mm_mul_ps(vec_dfw0, vec_xfw1); 560 vec_a = _mm_mul_ps(vec_a, vec_GCoh0); 561 vec_b = _mm_mul_ps(vec_b, vec_GCoh0); 562 vec_dfwxfw0011 = _mm_add_ps(vec_dfwxfw0011, 563 _mm_mul_ps(vec_dfw1, vec_xfw1)); 564 vec_dfwxfw0110 = _mm_sub_ps(vec_dfwxfw0110, 565 _mm_mul_ps(vec_dfw1, vec_xfw0)); 566 vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwxfw0011, vec_GCoh1)); 567 vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwxfw0110, vec_GCoh1)); 568 _mm_storeu_ps(&aec->sxd[i][0], _mm_unpacklo_ps(vec_a, vec_b)); 569 _mm_storeu_ps(&aec->sxd[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b)); 570 } 571 572 vec_sdSum = _mm_add_ps(vec_sdSum, vec_sd); 573 vec_seSum = _mm_add_ps(vec_seSum, vec_se); 574 } 575 576 _mm_add_ps_4x1(vec_sdSum, &sdSum); 577 _mm_add_ps_4x1(vec_seSum, &seSum); 578 579 for (; i < PART_LEN1; i++) { 580 aec->sd[i] = ptrGCoh[0] * aec->sd[i] + 581 ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]); 582 aec->se[i] = ptrGCoh[0] * aec->se[i] + 583 ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]); 584 // We threshold here to protect against the ill-effects of a zero farend. 585 // The threshold is not arbitrarily chosen, but balances protection and 586 // adverse interaction with the algorithm's tuning. 587 // TODO(bjornv): investigate further why this is so sensitive. 588 aec->sx[i] = 589 ptrGCoh[0] * aec->sx[i] + 590 ptrGCoh[1] * WEBRTC_SPL_MAX( 591 xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i], 592 WebRtcAec_kMinFarendPSD); 593 594 aec->sde[i][0] = 595 ptrGCoh[0] * aec->sde[i][0] + 596 ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]); 597 aec->sde[i][1] = 598 ptrGCoh[0] * aec->sde[i][1] + 599 ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]); 600 601 aec->sxd[i][0] = 602 ptrGCoh[0] * aec->sxd[i][0] + 603 ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]); 604 aec->sxd[i][1] = 605 ptrGCoh[0] * aec->sxd[i][1] + 606 ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]); 607 608 sdSum += aec->sd[i]; 609 seSum += aec->se[i]; 610 } 611 612 // Divergent filter safeguard update. 613 aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum; 614 615 // Signal extreme filter divergence if the error is significantly larger 616 // than the nearend (13 dB). 617 *extreme_filter_divergence = (seSum > (19.95f * sdSum)); 618 } 619 620 // Window time domain data to be used by the fft. 621 static void WindowDataSSE2(float* x_windowed, const float* x) { 622 int i; 623 for (i = 0; i < PART_LEN; i += 4) { 624 const __m128 vec_Buf1 = _mm_loadu_ps(&x[i]); 625 const __m128 vec_Buf2 = _mm_loadu_ps(&x[PART_LEN + i]); 626 const __m128 vec_sqrtHanning = _mm_load_ps(&WebRtcAec_sqrtHanning[i]); 627 // A B C D 628 __m128 vec_sqrtHanning_rev = 629 _mm_loadu_ps(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]); 630 // D C B A 631 vec_sqrtHanning_rev = 632 _mm_shuffle_ps(vec_sqrtHanning_rev, vec_sqrtHanning_rev, 633 _MM_SHUFFLE(0, 1, 2, 3)); 634 _mm_storeu_ps(&x_windowed[i], _mm_mul_ps(vec_Buf1, vec_sqrtHanning)); 635 _mm_storeu_ps(&x_windowed[PART_LEN + i], 636 _mm_mul_ps(vec_Buf2, vec_sqrtHanning_rev)); 637 } 638 } 639 640 // Puts fft output data into a complex valued array. 641 static void StoreAsComplexSSE2(const float* data, 642 float data_complex[2][PART_LEN1]) { 643 int i; 644 for (i = 0; i < PART_LEN; i += 4) { 645 const __m128 vec_fft0 = _mm_loadu_ps(&data[2 * i]); 646 const __m128 vec_fft4 = _mm_loadu_ps(&data[2 * i + 4]); 647 const __m128 vec_a = _mm_shuffle_ps(vec_fft0, vec_fft4, 648 _MM_SHUFFLE(2, 0, 2, 0)); 649 const __m128 vec_b = _mm_shuffle_ps(vec_fft0, vec_fft4, 650 _MM_SHUFFLE(3, 1, 3, 1)); 651 _mm_storeu_ps(&data_complex[0][i], vec_a); 652 _mm_storeu_ps(&data_complex[1][i], vec_b); 653 } 654 // fix beginning/end values 655 data_complex[1][0] = 0; 656 data_complex[1][PART_LEN] = 0; 657 data_complex[0][0] = data[0]; 658 data_complex[0][PART_LEN] = data[1]; 659 } 660 661 static void SubbandCoherenceSSE2(AecCore* aec, 662 float efw[2][PART_LEN1], 663 float dfw[2][PART_LEN1], 664 float xfw[2][PART_LEN1], 665 float* fft, 666 float* cohde, 667 float* cohxd, 668 int* extreme_filter_divergence) { 669 int i; 670 671 SmoothedPSD(aec, efw, dfw, xfw, extreme_filter_divergence); 672 673 { 674 const __m128 vec_1eminus10 = _mm_set1_ps(1e-10f); 675 676 // Subband coherence 677 for (i = 0; i + 3 < PART_LEN1; i += 4) { 678 const __m128 vec_sd = _mm_loadu_ps(&aec->sd[i]); 679 const __m128 vec_se = _mm_loadu_ps(&aec->se[i]); 680 const __m128 vec_sx = _mm_loadu_ps(&aec->sx[i]); 681 const __m128 vec_sdse = _mm_add_ps(vec_1eminus10, 682 _mm_mul_ps(vec_sd, vec_se)); 683 const __m128 vec_sdsx = _mm_add_ps(vec_1eminus10, 684 _mm_mul_ps(vec_sd, vec_sx)); 685 const __m128 vec_sde_3210 = _mm_loadu_ps(&aec->sde[i][0]); 686 const __m128 vec_sde_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]); 687 const __m128 vec_sxd_3210 = _mm_loadu_ps(&aec->sxd[i][0]); 688 const __m128 vec_sxd_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]); 689 const __m128 vec_sde_0 = _mm_shuffle_ps(vec_sde_3210, vec_sde_7654, 690 _MM_SHUFFLE(2, 0, 2, 0)); 691 const __m128 vec_sde_1 = _mm_shuffle_ps(vec_sde_3210, vec_sde_7654, 692 _MM_SHUFFLE(3, 1, 3, 1)); 693 const __m128 vec_sxd_0 = _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654, 694 _MM_SHUFFLE(2, 0, 2, 0)); 695 const __m128 vec_sxd_1 = _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654, 696 _MM_SHUFFLE(3, 1, 3, 1)); 697 __m128 vec_cohde = _mm_mul_ps(vec_sde_0, vec_sde_0); 698 __m128 vec_cohxd = _mm_mul_ps(vec_sxd_0, vec_sxd_0); 699 vec_cohde = _mm_add_ps(vec_cohde, _mm_mul_ps(vec_sde_1, vec_sde_1)); 700 vec_cohde = _mm_div_ps(vec_cohde, vec_sdse); 701 vec_cohxd = _mm_add_ps(vec_cohxd, _mm_mul_ps(vec_sxd_1, vec_sxd_1)); 702 vec_cohxd = _mm_div_ps(vec_cohxd, vec_sdsx); 703 _mm_storeu_ps(&cohde[i], vec_cohde); 704 _mm_storeu_ps(&cohxd[i], vec_cohxd); 705 } 706 707 // scalar code for the remaining items. 708 for (; i < PART_LEN1; i++) { 709 cohde[i] = 710 (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) / 711 (aec->sd[i] * aec->se[i] + 1e-10f); 712 cohxd[i] = 713 (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) / 714 (aec->sx[i] * aec->sd[i] + 1e-10f); 715 } 716 } 717 } 718 719 void WebRtcAec_InitAec_SSE2(void) { 720 WebRtcAec_FilterFar = FilterFarSSE2; 721 WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2; 722 WebRtcAec_FilterAdaptation = FilterAdaptationSSE2; 723 WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2; 724 WebRtcAec_SubbandCoherence = SubbandCoherenceSSE2; 725 WebRtcAec_StoreAsComplex = StoreAsComplexSSE2; 726 WebRtcAec_PartitionDelay = PartitionDelaySSE2; 727 WebRtcAec_WindowData = WindowDataSSE2; 728 } 729