Home | History | Annotate | Download | only in RuntimeDyld
      1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "RuntimeDyldELF.h"
     15 #include "RuntimeDyldCheckerImpl.h"
     16 #include "llvm/ADT/IntervalMap.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/StringRef.h"
     19 #include "llvm/ADT/Triple.h"
     20 #include "llvm/MC/MCStreamer.h"
     21 #include "llvm/Object/ELFObjectFile.h"
     22 #include "llvm/Object/ObjectFile.h"
     23 #include "llvm/Support/ELF.h"
     24 #include "llvm/Support/Endian.h"
     25 #include "llvm/Support/MemoryBuffer.h"
     26 #include "llvm/Support/TargetRegistry.h"
     27 
     28 using namespace llvm;
     29 using namespace llvm::object;
     30 
     31 #define DEBUG_TYPE "dyld"
     32 
     33 static inline std::error_code check(std::error_code Err) {
     34   if (Err) {
     35     report_fatal_error(Err.message());
     36   }
     37   return Err;
     38 }
     39 
     40 namespace {
     41 
     42 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
     43   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
     44 
     45   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
     46   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
     47   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
     48   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
     49 
     50   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
     51 
     52   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
     53 
     54 public:
     55   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
     56 
     57   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
     58 
     59   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
     60 
     61   // Methods for type inquiry through isa, cast and dyn_cast
     62   static inline bool classof(const Binary *v) {
     63     return (isa<ELFObjectFile<ELFT>>(v) &&
     64             classof(cast<ELFObjectFile<ELFT>>(v)));
     65   }
     66   static inline bool classof(const ELFObjectFile<ELFT> *v) {
     67     return v->isDyldType();
     68   }
     69 };
     70 
     71 
     72 
     73 // The MemoryBuffer passed into this constructor is just a wrapper around the
     74 // actual memory.  Ultimately, the Binary parent class will take ownership of
     75 // this MemoryBuffer object but not the underlying memory.
     76 template <class ELFT>
     77 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
     78     : ELFObjectFile<ELFT>(Wrapper, EC) {
     79   this->isDyldELFObject = true;
     80 }
     81 
     82 template <class ELFT>
     83 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
     84                                                uint64_t Addr) {
     85   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
     86   Elf_Shdr *shdr =
     87       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
     88 
     89   // This assumes the address passed in matches the target address bitness
     90   // The template-based type cast handles everything else.
     91   shdr->sh_addr = static_cast<addr_type>(Addr);
     92 }
     93 
     94 template <class ELFT>
     95 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
     96                                               uint64_t Addr) {
     97 
     98   Elf_Sym *sym = const_cast<Elf_Sym *>(
     99       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
    100 
    101   // This assumes the address passed in matches the target address bitness
    102   // The template-based type cast handles everything else.
    103   sym->st_value = static_cast<addr_type>(Addr);
    104 }
    105 
    106 class LoadedELFObjectInfo final
    107     : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
    108 public:
    109   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
    110       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
    111 
    112   OwningBinary<ObjectFile>
    113   getObjectForDebug(const ObjectFile &Obj) const override;
    114 };
    115 
    116 template <typename ELFT>
    117 std::unique_ptr<DyldELFObject<ELFT>>
    118 createRTDyldELFObject(MemoryBufferRef Buffer,
    119                       const ObjectFile &SourceObject,
    120                       const LoadedELFObjectInfo &L,
    121                       std::error_code &ec) {
    122   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
    123   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
    124 
    125   std::unique_ptr<DyldELFObject<ELFT>> Obj =
    126     llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
    127 
    128   // Iterate over all sections in the object.
    129   auto SI = SourceObject.section_begin();
    130   for (const auto &Sec : Obj->sections()) {
    131     StringRef SectionName;
    132     Sec.getName(SectionName);
    133     if (SectionName != "") {
    134       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
    135       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
    136           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
    137 
    138       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
    139         // This assumes that the address passed in matches the target address
    140         // bitness. The template-based type cast handles everything else.
    141         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
    142       }
    143     }
    144     ++SI;
    145   }
    146 
    147   return Obj;
    148 }
    149 
    150 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
    151                                               const LoadedELFObjectInfo &L) {
    152   assert(Obj.isELF() && "Not an ELF object file.");
    153 
    154   std::unique_ptr<MemoryBuffer> Buffer =
    155     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
    156 
    157   std::error_code ec;
    158 
    159   std::unique_ptr<ObjectFile> DebugObj;
    160   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
    161     typedef ELFType<support::little, false> ELF32LE;
    162     DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L,
    163                                               ec);
    164   } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
    165     typedef ELFType<support::big, false> ELF32BE;
    166     DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L,
    167                                               ec);
    168   } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
    169     typedef ELFType<support::big, true> ELF64BE;
    170     DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L,
    171                                               ec);
    172   } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
    173     typedef ELFType<support::little, true> ELF64LE;
    174     DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L,
    175                                               ec);
    176   } else
    177     llvm_unreachable("Unexpected ELF format");
    178 
    179   assert(!ec && "Could not construct copy ELF object file");
    180 
    181   return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
    182 }
    183 
    184 OwningBinary<ObjectFile>
    185 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
    186   return createELFDebugObject(Obj, *this);
    187 }
    188 
    189 } // anonymous namespace
    190 
    191 namespace llvm {
    192 
    193 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
    194                                RuntimeDyld::SymbolResolver &Resolver)
    195     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
    196 RuntimeDyldELF::~RuntimeDyldELF() {}
    197 
    198 void RuntimeDyldELF::registerEHFrames() {
    199   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
    200     SID EHFrameSID = UnregisteredEHFrameSections[i];
    201     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
    202     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
    203     size_t EHFrameSize = Sections[EHFrameSID].getSize();
    204     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
    205     RegisteredEHFrameSections.push_back(EHFrameSID);
    206   }
    207   UnregisteredEHFrameSections.clear();
    208 }
    209 
    210 void RuntimeDyldELF::deregisterEHFrames() {
    211   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
    212     SID EHFrameSID = RegisteredEHFrameSections[i];
    213     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
    214     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
    215     size_t EHFrameSize = Sections[EHFrameSID].getSize();
    216     MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
    217   }
    218   RegisteredEHFrameSections.clear();
    219 }
    220 
    221 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
    222 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
    223   return llvm::make_unique<LoadedELFObjectInfo>(*this, loadObjectImpl(O));
    224 }
    225 
    226 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
    227                                              uint64_t Offset, uint64_t Value,
    228                                              uint32_t Type, int64_t Addend,
    229                                              uint64_t SymOffset) {
    230   switch (Type) {
    231   default:
    232     llvm_unreachable("Relocation type not implemented yet!");
    233     break;
    234   case ELF::R_X86_64_64: {
    235     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
    236         Value + Addend;
    237     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
    238                  << format("%p\n", Section.getAddressWithOffset(Offset)));
    239     break;
    240   }
    241   case ELF::R_X86_64_32:
    242   case ELF::R_X86_64_32S: {
    243     Value += Addend;
    244     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
    245            (Type == ELF::R_X86_64_32S &&
    246             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
    247     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
    248     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
    249         TruncatedAddr;
    250     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
    251                  << format("%p\n", Section.getAddressWithOffset(Offset)));
    252     break;
    253   }
    254   case ELF::R_X86_64_PC8: {
    255     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    256     int64_t RealOffset = Value + Addend - FinalAddress;
    257     assert(isInt<8>(RealOffset));
    258     int8_t TruncOffset = (RealOffset & 0xFF);
    259     Section.getAddress()[Offset] = TruncOffset;
    260     break;
    261   }
    262   case ELF::R_X86_64_PC32: {
    263     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    264     int64_t RealOffset = Value + Addend - FinalAddress;
    265     assert(isInt<32>(RealOffset));
    266     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
    267     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
    268         TruncOffset;
    269     break;
    270   }
    271   case ELF::R_X86_64_PC64: {
    272     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    273     int64_t RealOffset = Value + Addend - FinalAddress;
    274     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
    275         RealOffset;
    276     break;
    277   }
    278   }
    279 }
    280 
    281 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
    282                                           uint64_t Offset, uint32_t Value,
    283                                           uint32_t Type, int32_t Addend) {
    284   switch (Type) {
    285   case ELF::R_386_32: {
    286     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
    287         Value + Addend;
    288     break;
    289   }
    290   case ELF::R_386_PC32: {
    291     uint32_t FinalAddress =
    292         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
    293     uint32_t RealOffset = Value + Addend - FinalAddress;
    294     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
    295         RealOffset;
    296     break;
    297   }
    298   default:
    299     // There are other relocation types, but it appears these are the
    300     // only ones currently used by the LLVM ELF object writer
    301     llvm_unreachable("Relocation type not implemented yet!");
    302     break;
    303   }
    304 }
    305 
    306 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
    307                                               uint64_t Offset, uint64_t Value,
    308                                               uint32_t Type, int64_t Addend) {
    309   uint32_t *TargetPtr =
    310       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
    311   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    312 
    313   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
    314                << format("%llx", Section.getAddressWithOffset(Offset))
    315                << " FinalAddress: 0x" << format("%llx", FinalAddress)
    316                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
    317                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
    318                << "\n");
    319 
    320   switch (Type) {
    321   default:
    322     llvm_unreachable("Relocation type not implemented yet!");
    323     break;
    324   case ELF::R_AARCH64_ABS64: {
    325     uint64_t *TargetPtr =
    326         reinterpret_cast<uint64_t *>(Section.getAddressWithOffset(Offset));
    327     *TargetPtr = Value + Addend;
    328     break;
    329   }
    330   case ELF::R_AARCH64_PREL32: {
    331     uint64_t Result = Value + Addend - FinalAddress;
    332     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
    333            static_cast<int64_t>(Result) <= UINT32_MAX);
    334     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
    335     break;
    336   }
    337   case ELF::R_AARCH64_CALL26: // fallthrough
    338   case ELF::R_AARCH64_JUMP26: {
    339     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
    340     // calculation.
    341     uint64_t BranchImm = Value + Addend - FinalAddress;
    342 
    343     // "Check that -2^27 <= result < 2^27".
    344     assert(isInt<28>(BranchImm));
    345 
    346     // AArch64 code is emitted with .rela relocations. The data already in any
    347     // bits affected by the relocation on entry is garbage.
    348     *TargetPtr &= 0xfc000000U;
    349     // Immediate goes in bits 25:0 of B and BL.
    350     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
    351     break;
    352   }
    353   case ELF::R_AARCH64_MOVW_UABS_G3: {
    354     uint64_t Result = Value + Addend;
    355 
    356     // AArch64 code is emitted with .rela relocations. The data already in any
    357     // bits affected by the relocation on entry is garbage.
    358     *TargetPtr &= 0xffe0001fU;
    359     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    360     *TargetPtr |= Result >> (48 - 5);
    361     // Shift must be "lsl #48", in bits 22:21
    362     assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
    363     break;
    364   }
    365   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
    366     uint64_t Result = Value + Addend;
    367 
    368     // AArch64 code is emitted with .rela relocations. The data already in any
    369     // bits affected by the relocation on entry is garbage.
    370     *TargetPtr &= 0xffe0001fU;
    371     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    372     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
    373     // Shift must be "lsl #32", in bits 22:21
    374     assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
    375     break;
    376   }
    377   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
    378     uint64_t Result = Value + Addend;
    379 
    380     // AArch64 code is emitted with .rela relocations. The data already in any
    381     // bits affected by the relocation on entry is garbage.
    382     *TargetPtr &= 0xffe0001fU;
    383     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    384     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
    385     // Shift must be "lsl #16", in bits 22:2
    386     assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
    387     break;
    388   }
    389   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
    390     uint64_t Result = Value + Addend;
    391 
    392     // AArch64 code is emitted with .rela relocations. The data already in any
    393     // bits affected by the relocation on entry is garbage.
    394     *TargetPtr &= 0xffe0001fU;
    395     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    396     *TargetPtr |= ((Result & 0xffffU) << 5);
    397     // Shift must be "lsl #0", in bits 22:21.
    398     assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
    399     break;
    400   }
    401   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
    402     // Operation: Page(S+A) - Page(P)
    403     uint64_t Result =
    404         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
    405 
    406     // Check that -2^32 <= X < 2^32
    407     assert(isInt<33>(Result) && "overflow check failed for relocation");
    408 
    409     // AArch64 code is emitted with .rela relocations. The data already in any
    410     // bits affected by the relocation on entry is garbage.
    411     *TargetPtr &= 0x9f00001fU;
    412     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
    413     // from bits 32:12 of X.
    414     *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
    415     *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
    416     break;
    417   }
    418   case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
    419     // Operation: S + A
    420     uint64_t Result = Value + Addend;
    421 
    422     // AArch64 code is emitted with .rela relocations. The data already in any
    423     // bits affected by the relocation on entry is garbage.
    424     *TargetPtr &= 0xffc003ffU;
    425     // Immediate goes in bits 21:10 of LD/ST instruction, taken
    426     // from bits 11:2 of X
    427     *TargetPtr |= ((Result & 0xffc) << (10 - 2));
    428     break;
    429   }
    430   case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
    431     // Operation: S + A
    432     uint64_t Result = Value + Addend;
    433 
    434     // AArch64 code is emitted with .rela relocations. The data already in any
    435     // bits affected by the relocation on entry is garbage.
    436     *TargetPtr &= 0xffc003ffU;
    437     // Immediate goes in bits 21:10 of LD/ST instruction, taken
    438     // from bits 11:3 of X
    439     *TargetPtr |= ((Result & 0xff8) << (10 - 3));
    440     break;
    441   }
    442   }
    443 }
    444 
    445 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
    446                                           uint64_t Offset, uint32_t Value,
    447                                           uint32_t Type, int32_t Addend) {
    448   // TODO: Add Thumb relocations.
    449   uint32_t *TargetPtr =
    450       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
    451   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
    452   Value += Addend;
    453 
    454   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
    455                << Section.getAddressWithOffset(Offset)
    456                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
    457                << format("%x", Value) << " Type: " << format("%x", Type)
    458                << " Addend: " << format("%x", Addend) << "\n");
    459 
    460   switch (Type) {
    461   default:
    462     llvm_unreachable("Not implemented relocation type!");
    463 
    464   case ELF::R_ARM_NONE:
    465     break;
    466   case ELF::R_ARM_PREL31:
    467   case ELF::R_ARM_TARGET1:
    468   case ELF::R_ARM_ABS32:
    469     *TargetPtr = Value;
    470     break;
    471     // Write first 16 bit of 32 bit value to the mov instruction.
    472     // Last 4 bit should be shifted.
    473   case ELF::R_ARM_MOVW_ABS_NC:
    474   case ELF::R_ARM_MOVT_ABS:
    475     if (Type == ELF::R_ARM_MOVW_ABS_NC)
    476       Value = Value & 0xFFFF;
    477     else if (Type == ELF::R_ARM_MOVT_ABS)
    478       Value = (Value >> 16) & 0xFFFF;
    479     *TargetPtr &= ~0x000F0FFF;
    480     *TargetPtr |= Value & 0xFFF;
    481     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
    482     break;
    483     // Write 24 bit relative value to the branch instruction.
    484   case ELF::R_ARM_PC24: // Fall through.
    485   case ELF::R_ARM_CALL: // Fall through.
    486   case ELF::R_ARM_JUMP24:
    487     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
    488     RelValue = (RelValue & 0x03FFFFFC) >> 2;
    489     assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
    490     *TargetPtr &= 0xFF000000;
    491     *TargetPtr |= RelValue;
    492     break;
    493   }
    494 }
    495 
    496 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
    497                                            uint64_t Offset, uint32_t Value,
    498                                            uint32_t Type, int32_t Addend) {
    499   uint8_t *TargetPtr = Section.getAddressWithOffset(Offset);
    500   Value += Addend;
    501 
    502   DEBUG(dbgs() << "resolveMIPSRelocation, LocalAddress: "
    503                << Section.getAddressWithOffset(Offset) << " FinalAddress: "
    504                << format("%p", Section.getLoadAddressWithOffset(Offset))
    505                << " Value: " << format("%x", Value)
    506                << " Type: " << format("%x", Type)
    507                << " Addend: " << format("%x", Addend) << "\n");
    508 
    509   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
    510 
    511   switch (Type) {
    512   default:
    513     llvm_unreachable("Not implemented relocation type!");
    514     break;
    515   case ELF::R_MIPS_32:
    516     writeBytesUnaligned(Value, TargetPtr, 4);
    517     break;
    518   case ELF::R_MIPS_26:
    519     Insn &= 0xfc000000;
    520     Insn |= (Value & 0x0fffffff) >> 2;
    521     writeBytesUnaligned(Insn, TargetPtr, 4);
    522     break;
    523   case ELF::R_MIPS_HI16:
    524     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
    525     Insn &= 0xffff0000;
    526     Insn |= ((Value + 0x8000) >> 16) & 0xffff;
    527     writeBytesUnaligned(Insn, TargetPtr, 4);
    528     break;
    529   case ELF::R_MIPS_LO16:
    530     Insn &= 0xffff0000;
    531     Insn |= Value & 0xffff;
    532     writeBytesUnaligned(Insn, TargetPtr, 4);
    533     break;
    534   case ELF::R_MIPS_PC32: {
    535     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    536     writeBytesUnaligned(Value - FinalAddress, (uint8_t *)TargetPtr, 4);
    537     break;
    538   }
    539   case ELF::R_MIPS_PC16: {
    540     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    541     Insn &= 0xffff0000;
    542     Insn |= ((Value - FinalAddress) >> 2) & 0xffff;
    543     writeBytesUnaligned(Insn, TargetPtr, 4);
    544     break;
    545   }
    546   case ELF::R_MIPS_PC19_S2: {
    547     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    548     Insn &= 0xfff80000;
    549     Insn |= ((Value - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
    550     writeBytesUnaligned(Insn, TargetPtr, 4);
    551     break;
    552   }
    553   case ELF::R_MIPS_PC21_S2: {
    554     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    555     Insn &= 0xffe00000;
    556     Insn |= ((Value - FinalAddress) >> 2) & 0x1fffff;
    557     writeBytesUnaligned(Insn, TargetPtr, 4);
    558     break;
    559   }
    560   case ELF::R_MIPS_PC26_S2: {
    561     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    562     Insn &= 0xfc000000;
    563     Insn |= ((Value - FinalAddress) >> 2) & 0x3ffffff;
    564     writeBytesUnaligned(Insn, TargetPtr, 4);
    565     break;
    566   }
    567   case ELF::R_MIPS_PCHI16: {
    568     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    569     Insn &= 0xffff0000;
    570     Insn |= ((Value - FinalAddress + 0x8000) >> 16) & 0xffff;
    571     writeBytesUnaligned(Insn, TargetPtr, 4);
    572     break;
    573   }
    574   case ELF::R_MIPS_PCLO16: {
    575     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    576     Insn &= 0xffff0000;
    577     Insn |= (Value - FinalAddress) & 0xffff;
    578     writeBytesUnaligned(Insn, TargetPtr, 4);
    579     break;
    580   }
    581   }
    582 }
    583 
    584 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
    585   if (Arch == Triple::UnknownArch ||
    586       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
    587     IsMipsO32ABI = false;
    588     IsMipsN64ABI = false;
    589     return;
    590   }
    591   unsigned AbiVariant;
    592   Obj.getPlatformFlags(AbiVariant);
    593   IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
    594   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
    595   if (AbiVariant & ELF::EF_MIPS_ABI2)
    596     llvm_unreachable("Mips N32 ABI is not supported yet");
    597 }
    598 
    599 void RuntimeDyldELF::resolveMIPS64Relocation(const SectionEntry &Section,
    600                                              uint64_t Offset, uint64_t Value,
    601                                              uint32_t Type, int64_t Addend,
    602                                              uint64_t SymOffset,
    603                                              SID SectionID) {
    604   uint32_t r_type = Type & 0xff;
    605   uint32_t r_type2 = (Type >> 8) & 0xff;
    606   uint32_t r_type3 = (Type >> 16) & 0xff;
    607 
    608   // RelType is used to keep information for which relocation type we are
    609   // applying relocation.
    610   uint32_t RelType = r_type;
    611   int64_t CalculatedValue = evaluateMIPS64Relocation(Section, Offset, Value,
    612                                                      RelType, Addend,
    613                                                      SymOffset, SectionID);
    614   if (r_type2 != ELF::R_MIPS_NONE) {
    615     RelType = r_type2;
    616     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
    617                                                CalculatedValue, SymOffset,
    618                                                SectionID);
    619   }
    620   if (r_type3 != ELF::R_MIPS_NONE) {
    621     RelType = r_type3;
    622     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
    623                                                CalculatedValue, SymOffset,
    624                                                SectionID);
    625   }
    626   applyMIPS64Relocation(Section.getAddressWithOffset(Offset), CalculatedValue,
    627                         RelType);
    628 }
    629 
    630 int64_t
    631 RuntimeDyldELF::evaluateMIPS64Relocation(const SectionEntry &Section,
    632                                          uint64_t Offset, uint64_t Value,
    633                                          uint32_t Type, int64_t Addend,
    634                                          uint64_t SymOffset, SID SectionID) {
    635 
    636   DEBUG(dbgs() << "evaluateMIPS64Relocation, LocalAddress: 0x"
    637                << format("%llx", Section.getAddressWithOffset(Offset))
    638                << " FinalAddress: 0x"
    639                << format("%llx", Section.getLoadAddressWithOffset(Offset))
    640                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
    641                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
    642                << " SymOffset: " << format("%x", SymOffset) << "\n");
    643 
    644   switch (Type) {
    645   default:
    646     llvm_unreachable("Not implemented relocation type!");
    647     break;
    648   case ELF::R_MIPS_JALR:
    649   case ELF::R_MIPS_NONE:
    650     break;
    651   case ELF::R_MIPS_32:
    652   case ELF::R_MIPS_64:
    653     return Value + Addend;
    654   case ELF::R_MIPS_26:
    655     return ((Value + Addend) >> 2) & 0x3ffffff;
    656   case ELF::R_MIPS_GPREL16: {
    657     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
    658     return Value + Addend - (GOTAddr + 0x7ff0);
    659   }
    660   case ELF::R_MIPS_SUB:
    661     return Value - Addend;
    662   case ELF::R_MIPS_HI16:
    663     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
    664     return ((Value + Addend + 0x8000) >> 16) & 0xffff;
    665   case ELF::R_MIPS_LO16:
    666     return (Value + Addend) & 0xffff;
    667   case ELF::R_MIPS_CALL16:
    668   case ELF::R_MIPS_GOT_DISP:
    669   case ELF::R_MIPS_GOT_PAGE: {
    670     uint8_t *LocalGOTAddr =
    671         getSectionAddress(SectionToGOTMap[SectionID]) + SymOffset;
    672     uint64_t GOTEntry = readBytesUnaligned(LocalGOTAddr, 8);
    673 
    674     Value += Addend;
    675     if (Type == ELF::R_MIPS_GOT_PAGE)
    676       Value = (Value + 0x8000) & ~0xffff;
    677 
    678     if (GOTEntry)
    679       assert(GOTEntry == Value &&
    680                    "GOT entry has two different addresses.");
    681     else
    682       writeBytesUnaligned(Value, LocalGOTAddr, 8);
    683 
    684     return (SymOffset - 0x7ff0) & 0xffff;
    685   }
    686   case ELF::R_MIPS_GOT_OFST: {
    687     int64_t page = (Value + Addend + 0x8000) & ~0xffff;
    688     return (Value + Addend - page) & 0xffff;
    689   }
    690   case ELF::R_MIPS_GPREL32: {
    691     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
    692     return Value + Addend - (GOTAddr + 0x7ff0);
    693   }
    694   case ELF::R_MIPS_PC16: {
    695     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    696     return ((Value + Addend - FinalAddress) >> 2) & 0xffff;
    697   }
    698   case ELF::R_MIPS_PC32: {
    699     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    700     return Value + Addend - FinalAddress;
    701   }
    702   case ELF::R_MIPS_PC18_S3: {
    703     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    704     return ((Value + Addend - (FinalAddress & ~0x7)) >> 3) & 0x3ffff;
    705   }
    706   case ELF::R_MIPS_PC19_S2: {
    707     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    708     return ((Value + Addend - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
    709   }
    710   case ELF::R_MIPS_PC21_S2: {
    711     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    712     return ((Value + Addend - FinalAddress) >> 2) & 0x1fffff;
    713   }
    714   case ELF::R_MIPS_PC26_S2: {
    715     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    716     return ((Value + Addend - FinalAddress) >> 2) & 0x3ffffff;
    717   }
    718   case ELF::R_MIPS_PCHI16: {
    719     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    720     return ((Value + Addend - FinalAddress + 0x8000) >> 16) & 0xffff;
    721   }
    722   case ELF::R_MIPS_PCLO16: {
    723     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    724     return (Value + Addend - FinalAddress) & 0xffff;
    725   }
    726   }
    727   return 0;
    728 }
    729 
    730 void RuntimeDyldELF::applyMIPS64Relocation(uint8_t *TargetPtr,
    731                                            int64_t CalculatedValue,
    732                                            uint32_t Type) {
    733   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
    734 
    735   switch (Type) {
    736     default:
    737       break;
    738     case ELF::R_MIPS_32:
    739     case ELF::R_MIPS_GPREL32:
    740     case ELF::R_MIPS_PC32:
    741       writeBytesUnaligned(CalculatedValue & 0xffffffff, TargetPtr, 4);
    742       break;
    743     case ELF::R_MIPS_64:
    744     case ELF::R_MIPS_SUB:
    745       writeBytesUnaligned(CalculatedValue, TargetPtr, 8);
    746       break;
    747     case ELF::R_MIPS_26:
    748     case ELF::R_MIPS_PC26_S2:
    749       Insn = (Insn & 0xfc000000) | CalculatedValue;
    750       writeBytesUnaligned(Insn, TargetPtr, 4);
    751       break;
    752     case ELF::R_MIPS_GPREL16:
    753       Insn = (Insn & 0xffff0000) | (CalculatedValue & 0xffff);
    754       writeBytesUnaligned(Insn, TargetPtr, 4);
    755       break;
    756     case ELF::R_MIPS_HI16:
    757     case ELF::R_MIPS_LO16:
    758     case ELF::R_MIPS_PCHI16:
    759     case ELF::R_MIPS_PCLO16:
    760     case ELF::R_MIPS_PC16:
    761     case ELF::R_MIPS_CALL16:
    762     case ELF::R_MIPS_GOT_DISP:
    763     case ELF::R_MIPS_GOT_PAGE:
    764     case ELF::R_MIPS_GOT_OFST:
    765       Insn = (Insn & 0xffff0000) | CalculatedValue;
    766       writeBytesUnaligned(Insn, TargetPtr, 4);
    767       break;
    768     case ELF::R_MIPS_PC18_S3:
    769       Insn = (Insn & 0xfffc0000) | CalculatedValue;
    770       writeBytesUnaligned(Insn, TargetPtr, 4);
    771       break;
    772     case ELF::R_MIPS_PC19_S2:
    773       Insn = (Insn & 0xfff80000) | CalculatedValue;
    774       writeBytesUnaligned(Insn, TargetPtr, 4);
    775       break;
    776     case ELF::R_MIPS_PC21_S2:
    777       Insn = (Insn & 0xffe00000) | CalculatedValue;
    778       writeBytesUnaligned(Insn, TargetPtr, 4);
    779       break;
    780     }
    781 }
    782 
    783 // Return the .TOC. section and offset.
    784 void RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
    785                                          ObjSectionToIDMap &LocalSections,
    786                                          RelocationValueRef &Rel) {
    787   // Set a default SectionID in case we do not find a TOC section below.
    788   // This may happen for references to TOC base base (sym@toc, .odp
    789   // relocation) without a .toc directive.  In this case just use the
    790   // first section (which is usually the .odp) since the code won't
    791   // reference the .toc base directly.
    792   Rel.SymbolName = nullptr;
    793   Rel.SectionID = 0;
    794 
    795   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
    796   // order. The TOC starts where the first of these sections starts.
    797   for (auto &Section: Obj.sections()) {
    798     StringRef SectionName;
    799     check(Section.getName(SectionName));
    800 
    801     if (SectionName == ".got"
    802         || SectionName == ".toc"
    803         || SectionName == ".tocbss"
    804         || SectionName == ".plt") {
    805       Rel.SectionID = findOrEmitSection(Obj, Section, false, LocalSections);
    806       break;
    807     }
    808   }
    809 
    810   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
    811   // thus permitting a full 64 Kbytes segment.
    812   Rel.Addend = 0x8000;
    813 }
    814 
    815 // Returns the sections and offset associated with the ODP entry referenced
    816 // by Symbol.
    817 void RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
    818                                          ObjSectionToIDMap &LocalSections,
    819                                          RelocationValueRef &Rel) {
    820   // Get the ELF symbol value (st_value) to compare with Relocation offset in
    821   // .opd entries
    822   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
    823        si != se; ++si) {
    824     section_iterator RelSecI = si->getRelocatedSection();
    825     if (RelSecI == Obj.section_end())
    826       continue;
    827 
    828     StringRef RelSectionName;
    829     check(RelSecI->getName(RelSectionName));
    830     if (RelSectionName != ".opd")
    831       continue;
    832 
    833     for (elf_relocation_iterator i = si->relocation_begin(),
    834                                  e = si->relocation_end();
    835          i != e;) {
    836       // The R_PPC64_ADDR64 relocation indicates the first field
    837       // of a .opd entry
    838       uint64_t TypeFunc = i->getType();
    839       if (TypeFunc != ELF::R_PPC64_ADDR64) {
    840         ++i;
    841         continue;
    842       }
    843 
    844       uint64_t TargetSymbolOffset = i->getOffset();
    845       symbol_iterator TargetSymbol = i->getSymbol();
    846       ErrorOr<int64_t> AddendOrErr = i->getAddend();
    847       Check(AddendOrErr.getError());
    848       int64_t Addend = *AddendOrErr;
    849 
    850       ++i;
    851       if (i == e)
    852         break;
    853 
    854       // Just check if following relocation is a R_PPC64_TOC
    855       uint64_t TypeTOC = i->getType();
    856       if (TypeTOC != ELF::R_PPC64_TOC)
    857         continue;
    858 
    859       // Finally compares the Symbol value and the target symbol offset
    860       // to check if this .opd entry refers to the symbol the relocation
    861       // points to.
    862       if (Rel.Addend != (int64_t)TargetSymbolOffset)
    863         continue;
    864 
    865       ErrorOr<section_iterator> TSIOrErr = TargetSymbol->getSection();
    866       check(TSIOrErr.getError());
    867       section_iterator tsi = *TSIOrErr;
    868       bool IsCode = tsi->isText();
    869       Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
    870       Rel.Addend = (intptr_t)Addend;
    871       return;
    872     }
    873   }
    874   llvm_unreachable("Attempting to get address of ODP entry!");
    875 }
    876 
    877 // Relocation masks following the #lo(value), #hi(value), #ha(value),
    878 // #higher(value), #highera(value), #highest(value), and #highesta(value)
    879 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
    880 // document.
    881 
    882 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
    883 
    884 static inline uint16_t applyPPChi(uint64_t value) {
    885   return (value >> 16) & 0xffff;
    886 }
    887 
    888 static inline uint16_t applyPPCha (uint64_t value) {
    889   return ((value + 0x8000) >> 16) & 0xffff;
    890 }
    891 
    892 static inline uint16_t applyPPChigher(uint64_t value) {
    893   return (value >> 32) & 0xffff;
    894 }
    895 
    896 static inline uint16_t applyPPChighera (uint64_t value) {
    897   return ((value + 0x8000) >> 32) & 0xffff;
    898 }
    899 
    900 static inline uint16_t applyPPChighest(uint64_t value) {
    901   return (value >> 48) & 0xffff;
    902 }
    903 
    904 static inline uint16_t applyPPChighesta (uint64_t value) {
    905   return ((value + 0x8000) >> 48) & 0xffff;
    906 }
    907 
    908 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
    909                                             uint64_t Offset, uint64_t Value,
    910                                             uint32_t Type, int64_t Addend) {
    911   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
    912   switch (Type) {
    913   default:
    914     llvm_unreachable("Relocation type not implemented yet!");
    915     break;
    916   case ELF::R_PPC_ADDR16_LO:
    917     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    918     break;
    919   case ELF::R_PPC_ADDR16_HI:
    920     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
    921     break;
    922   case ELF::R_PPC_ADDR16_HA:
    923     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
    924     break;
    925   }
    926 }
    927 
    928 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
    929                                             uint64_t Offset, uint64_t Value,
    930                                             uint32_t Type, int64_t Addend) {
    931   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
    932   switch (Type) {
    933   default:
    934     llvm_unreachable("Relocation type not implemented yet!");
    935     break;
    936   case ELF::R_PPC64_ADDR16:
    937     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    938     break;
    939   case ELF::R_PPC64_ADDR16_DS:
    940     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
    941     break;
    942   case ELF::R_PPC64_ADDR16_LO:
    943     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    944     break;
    945   case ELF::R_PPC64_ADDR16_LO_DS:
    946     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
    947     break;
    948   case ELF::R_PPC64_ADDR16_HI:
    949     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
    950     break;
    951   case ELF::R_PPC64_ADDR16_HA:
    952     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
    953     break;
    954   case ELF::R_PPC64_ADDR16_HIGHER:
    955     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
    956     break;
    957   case ELF::R_PPC64_ADDR16_HIGHERA:
    958     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
    959     break;
    960   case ELF::R_PPC64_ADDR16_HIGHEST:
    961     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
    962     break;
    963   case ELF::R_PPC64_ADDR16_HIGHESTA:
    964     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
    965     break;
    966   case ELF::R_PPC64_ADDR14: {
    967     assert(((Value + Addend) & 3) == 0);
    968     // Preserve the AA/LK bits in the branch instruction
    969     uint8_t aalk = *(LocalAddress + 3);
    970     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
    971   } break;
    972   case ELF::R_PPC64_REL16_LO: {
    973     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    974     uint64_t Delta = Value - FinalAddress + Addend;
    975     writeInt16BE(LocalAddress, applyPPClo(Delta));
    976   } break;
    977   case ELF::R_PPC64_REL16_HI: {
    978     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    979     uint64_t Delta = Value - FinalAddress + Addend;
    980     writeInt16BE(LocalAddress, applyPPChi(Delta));
    981   } break;
    982   case ELF::R_PPC64_REL16_HA: {
    983     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    984     uint64_t Delta = Value - FinalAddress + Addend;
    985     writeInt16BE(LocalAddress, applyPPCha(Delta));
    986   } break;
    987   case ELF::R_PPC64_ADDR32: {
    988     int32_t Result = static_cast<int32_t>(Value + Addend);
    989     if (SignExtend32<32>(Result) != Result)
    990       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
    991     writeInt32BE(LocalAddress, Result);
    992   } break;
    993   case ELF::R_PPC64_REL24: {
    994     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    995     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
    996     if (SignExtend32<26>(delta) != delta)
    997       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
    998     // Generates a 'bl <address>' instruction
    999     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
   1000   } break;
   1001   case ELF::R_PPC64_REL32: {
   1002     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
   1003     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
   1004     if (SignExtend32<32>(delta) != delta)
   1005       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
   1006     writeInt32BE(LocalAddress, delta);
   1007   } break;
   1008   case ELF::R_PPC64_REL64: {
   1009     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
   1010     uint64_t Delta = Value - FinalAddress + Addend;
   1011     writeInt64BE(LocalAddress, Delta);
   1012   } break;
   1013   case ELF::R_PPC64_ADDR64:
   1014     writeInt64BE(LocalAddress, Value + Addend);
   1015     break;
   1016   }
   1017 }
   1018 
   1019 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
   1020                                               uint64_t Offset, uint64_t Value,
   1021                                               uint32_t Type, int64_t Addend) {
   1022   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
   1023   switch (Type) {
   1024   default:
   1025     llvm_unreachable("Relocation type not implemented yet!");
   1026     break;
   1027   case ELF::R_390_PC16DBL:
   1028   case ELF::R_390_PLT16DBL: {
   1029     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
   1030     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
   1031     writeInt16BE(LocalAddress, Delta / 2);
   1032     break;
   1033   }
   1034   case ELF::R_390_PC32DBL:
   1035   case ELF::R_390_PLT32DBL: {
   1036     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
   1037     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
   1038     writeInt32BE(LocalAddress, Delta / 2);
   1039     break;
   1040   }
   1041   case ELF::R_390_PC32: {
   1042     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
   1043     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
   1044     writeInt32BE(LocalAddress, Delta);
   1045     break;
   1046   }
   1047   case ELF::R_390_64:
   1048     writeInt64BE(LocalAddress, Value + Addend);
   1049     break;
   1050   }
   1051 }
   1052 
   1053 // The target location for the relocation is described by RE.SectionID and
   1054 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
   1055 // SectionEntry has three members describing its location.
   1056 // SectionEntry::Address is the address at which the section has been loaded
   1057 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
   1058 // address that the section will have in the target process.
   1059 // SectionEntry::ObjAddress is the address of the bits for this section in the
   1060 // original emitted object image (also in the current address space).
   1061 //
   1062 // Relocations will be applied as if the section were loaded at
   1063 // SectionEntry::LoadAddress, but they will be applied at an address based
   1064 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
   1065 // Target memory contents if they are required for value calculations.
   1066 //
   1067 // The Value parameter here is the load address of the symbol for the
   1068 // relocation to be applied.  For relocations which refer to symbols in the
   1069 // current object Value will be the LoadAddress of the section in which
   1070 // the symbol resides (RE.Addend provides additional information about the
   1071 // symbol location).  For external symbols, Value will be the address of the
   1072 // symbol in the target address space.
   1073 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
   1074                                        uint64_t Value) {
   1075   const SectionEntry &Section = Sections[RE.SectionID];
   1076   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
   1077                            RE.SymOffset, RE.SectionID);
   1078 }
   1079 
   1080 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
   1081                                        uint64_t Offset, uint64_t Value,
   1082                                        uint32_t Type, int64_t Addend,
   1083                                        uint64_t SymOffset, SID SectionID) {
   1084   switch (Arch) {
   1085   case Triple::x86_64:
   1086     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
   1087     break;
   1088   case Triple::x86:
   1089     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
   1090                          (uint32_t)(Addend & 0xffffffffL));
   1091     break;
   1092   case Triple::aarch64:
   1093   case Triple::aarch64_be:
   1094     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
   1095     break;
   1096   case Triple::arm: // Fall through.
   1097   case Triple::armeb:
   1098   case Triple::thumb:
   1099   case Triple::thumbeb:
   1100     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
   1101                          (uint32_t)(Addend & 0xffffffffL));
   1102     break;
   1103   case Triple::mips: // Fall through.
   1104   case Triple::mipsel:
   1105   case Triple::mips64:
   1106   case Triple::mips64el:
   1107     if (IsMipsO32ABI)
   1108       resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
   1109                             Type, (uint32_t)(Addend & 0xffffffffL));
   1110     else if (IsMipsN64ABI)
   1111       resolveMIPS64Relocation(Section, Offset, Value, Type, Addend, SymOffset,
   1112                               SectionID);
   1113     else
   1114       llvm_unreachable("Mips ABI not handled");
   1115     break;
   1116   case Triple::ppc:
   1117     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
   1118     break;
   1119   case Triple::ppc64: // Fall through.
   1120   case Triple::ppc64le:
   1121     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
   1122     break;
   1123   case Triple::systemz:
   1124     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
   1125     break;
   1126   default:
   1127     llvm_unreachable("Unsupported CPU type!");
   1128   }
   1129 }
   1130 
   1131 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
   1132   return (void *)(Sections[SectionID].getObjAddress() + Offset);
   1133 }
   1134 
   1135 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
   1136   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
   1137   if (Value.SymbolName)
   1138     addRelocationForSymbol(RE, Value.SymbolName);
   1139   else
   1140     addRelocationForSection(RE, Value.SectionID);
   1141 }
   1142 
   1143 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
   1144                                                  bool IsLocal) const {
   1145   switch (RelType) {
   1146   case ELF::R_MICROMIPS_GOT16:
   1147     if (IsLocal)
   1148       return ELF::R_MICROMIPS_LO16;
   1149     break;
   1150   case ELF::R_MICROMIPS_HI16:
   1151     return ELF::R_MICROMIPS_LO16;
   1152   case ELF::R_MIPS_GOT16:
   1153     if (IsLocal)
   1154       return ELF::R_MIPS_LO16;
   1155     break;
   1156   case ELF::R_MIPS_HI16:
   1157     return ELF::R_MIPS_LO16;
   1158   case ELF::R_MIPS_PCHI16:
   1159     return ELF::R_MIPS_PCLO16;
   1160   default:
   1161     break;
   1162   }
   1163   return ELF::R_MIPS_NONE;
   1164 }
   1165 
   1166 relocation_iterator RuntimeDyldELF::processRelocationRef(
   1167     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
   1168     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
   1169   const auto &Obj = cast<ELFObjectFileBase>(O);
   1170   uint64_t RelType = RelI->getType();
   1171   ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
   1172   int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
   1173   elf_symbol_iterator Symbol = RelI->getSymbol();
   1174 
   1175   // Obtain the symbol name which is referenced in the relocation
   1176   StringRef TargetName;
   1177   if (Symbol != Obj.symbol_end()) {
   1178     ErrorOr<StringRef> TargetNameOrErr = Symbol->getName();
   1179     if (std::error_code EC = TargetNameOrErr.getError())
   1180       report_fatal_error(EC.message());
   1181     TargetName = *TargetNameOrErr;
   1182   }
   1183   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
   1184                << " TargetName: " << TargetName << "\n");
   1185   RelocationValueRef Value;
   1186   // First search for the symbol in the local symbol table
   1187   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
   1188 
   1189   // Search for the symbol in the global symbol table
   1190   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
   1191   if (Symbol != Obj.symbol_end()) {
   1192     gsi = GlobalSymbolTable.find(TargetName.data());
   1193     SymType = Symbol->getType();
   1194   }
   1195   if (gsi != GlobalSymbolTable.end()) {
   1196     const auto &SymInfo = gsi->second;
   1197     Value.SectionID = SymInfo.getSectionID();
   1198     Value.Offset = SymInfo.getOffset();
   1199     Value.Addend = SymInfo.getOffset() + Addend;
   1200   } else {
   1201     switch (SymType) {
   1202     case SymbolRef::ST_Debug: {
   1203       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
   1204       // and can be changed by another developers. Maybe best way is add
   1205       // a new symbol type ST_Section to SymbolRef and use it.
   1206       section_iterator si = *Symbol->getSection();
   1207       if (si == Obj.section_end())
   1208         llvm_unreachable("Symbol section not found, bad object file format!");
   1209       DEBUG(dbgs() << "\t\tThis is section symbol\n");
   1210       bool isCode = si->isText();
   1211       Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
   1212       Value.Addend = Addend;
   1213       break;
   1214     }
   1215     case SymbolRef::ST_Data:
   1216     case SymbolRef::ST_Unknown: {
   1217       Value.SymbolName = TargetName.data();
   1218       Value.Addend = Addend;
   1219 
   1220       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
   1221       // will manifest here as a NULL symbol name.
   1222       // We can set this as a valid (but empty) symbol name, and rely
   1223       // on addRelocationForSymbol to handle this.
   1224       if (!Value.SymbolName)
   1225         Value.SymbolName = "";
   1226       break;
   1227     }
   1228     default:
   1229       llvm_unreachable("Unresolved symbol type!");
   1230       break;
   1231     }
   1232   }
   1233 
   1234   uint64_t Offset = RelI->getOffset();
   1235 
   1236   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
   1237                << "\n");
   1238   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
   1239       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
   1240     // This is an AArch64 branch relocation, need to use a stub function.
   1241     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
   1242     SectionEntry &Section = Sections[SectionID];
   1243 
   1244     // Look for an existing stub.
   1245     StubMap::const_iterator i = Stubs.find(Value);
   1246     if (i != Stubs.end()) {
   1247       resolveRelocation(Section, Offset,
   1248                         (uint64_t)Section.getAddressWithOffset(i->second),
   1249                         RelType, 0);
   1250       DEBUG(dbgs() << " Stub function found\n");
   1251     } else {
   1252       // Create a new stub function.
   1253       DEBUG(dbgs() << " Create a new stub function\n");
   1254       Stubs[Value] = Section.getStubOffset();
   1255       uint8_t *StubTargetAddr = createStubFunction(
   1256           Section.getAddressWithOffset(Section.getStubOffset()));
   1257 
   1258       RelocationEntry REmovz_g3(SectionID,
   1259                                 StubTargetAddr - Section.getAddress(),
   1260                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
   1261       RelocationEntry REmovk_g2(SectionID, StubTargetAddr -
   1262                                                Section.getAddress() + 4,
   1263                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
   1264       RelocationEntry REmovk_g1(SectionID, StubTargetAddr -
   1265                                                Section.getAddress() + 8,
   1266                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
   1267       RelocationEntry REmovk_g0(SectionID, StubTargetAddr -
   1268                                                Section.getAddress() + 12,
   1269                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
   1270 
   1271       if (Value.SymbolName) {
   1272         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
   1273         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
   1274         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
   1275         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
   1276       } else {
   1277         addRelocationForSection(REmovz_g3, Value.SectionID);
   1278         addRelocationForSection(REmovk_g2, Value.SectionID);
   1279         addRelocationForSection(REmovk_g1, Value.SectionID);
   1280         addRelocationForSection(REmovk_g0, Value.SectionID);
   1281       }
   1282       resolveRelocation(Section, Offset,
   1283                         reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
   1284                             Section.getStubOffset())),
   1285                         RelType, 0);
   1286       Section.advanceStubOffset(getMaxStubSize());
   1287     }
   1288   } else if (Arch == Triple::arm) {
   1289     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
   1290       RelType == ELF::R_ARM_JUMP24) {
   1291       // This is an ARM branch relocation, need to use a stub function.
   1292       DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
   1293       SectionEntry &Section = Sections[SectionID];
   1294 
   1295       // Look for an existing stub.
   1296       StubMap::const_iterator i = Stubs.find(Value);
   1297       if (i != Stubs.end()) {
   1298         resolveRelocation(
   1299             Section, Offset,
   1300             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
   1301             RelType, 0);
   1302         DEBUG(dbgs() << " Stub function found\n");
   1303       } else {
   1304         // Create a new stub function.
   1305         DEBUG(dbgs() << " Create a new stub function\n");
   1306         Stubs[Value] = Section.getStubOffset();
   1307         uint8_t *StubTargetAddr = createStubFunction(
   1308             Section.getAddressWithOffset(Section.getStubOffset()));
   1309         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
   1310                            ELF::R_ARM_ABS32, Value.Addend);
   1311         if (Value.SymbolName)
   1312           addRelocationForSymbol(RE, Value.SymbolName);
   1313         else
   1314           addRelocationForSection(RE, Value.SectionID);
   1315 
   1316         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
   1317                                                Section.getAddressWithOffset(
   1318                                                    Section.getStubOffset())),
   1319                           RelType, 0);
   1320         Section.advanceStubOffset(getMaxStubSize());
   1321       }
   1322     } else {
   1323       uint32_t *Placeholder =
   1324         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
   1325       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
   1326           RelType == ELF::R_ARM_ABS32) {
   1327         Value.Addend += *Placeholder;
   1328       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
   1329         // See ELF for ARM documentation
   1330         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
   1331       }
   1332       processSimpleRelocation(SectionID, Offset, RelType, Value);
   1333     }
   1334   } else if (IsMipsO32ABI) {
   1335     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
   1336         computePlaceholderAddress(SectionID, Offset));
   1337     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
   1338     if (RelType == ELF::R_MIPS_26) {
   1339       // This is an Mips branch relocation, need to use a stub function.
   1340       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
   1341       SectionEntry &Section = Sections[SectionID];
   1342 
   1343       // Extract the addend from the instruction.
   1344       // We shift up by two since the Value will be down shifted again
   1345       // when applying the relocation.
   1346       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
   1347 
   1348       Value.Addend += Addend;
   1349 
   1350       //  Look up for existing stub.
   1351       StubMap::const_iterator i = Stubs.find(Value);
   1352       if (i != Stubs.end()) {
   1353         RelocationEntry RE(SectionID, Offset, RelType, i->second);
   1354         addRelocationForSection(RE, SectionID);
   1355         DEBUG(dbgs() << " Stub function found\n");
   1356       } else {
   1357         // Create a new stub function.
   1358         DEBUG(dbgs() << " Create a new stub function\n");
   1359         Stubs[Value] = Section.getStubOffset();
   1360         uint8_t *StubTargetAddr = createStubFunction(
   1361             Section.getAddressWithOffset(Section.getStubOffset()));
   1362 
   1363         // Creating Hi and Lo relocations for the filled stub instructions.
   1364         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
   1365                              ELF::R_MIPS_HI16, Value.Addend);
   1366         RelocationEntry RELo(SectionID,
   1367                              StubTargetAddr - Section.getAddress() + 4,
   1368                              ELF::R_MIPS_LO16, Value.Addend);
   1369 
   1370         if (Value.SymbolName) {
   1371           addRelocationForSymbol(REHi, Value.SymbolName);
   1372           addRelocationForSymbol(RELo, Value.SymbolName);
   1373         }
   1374         else {
   1375           addRelocationForSection(REHi, Value.SectionID);
   1376           addRelocationForSection(RELo, Value.SectionID);
   1377         }
   1378 
   1379         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
   1380         addRelocationForSection(RE, SectionID);
   1381         Section.advanceStubOffset(getMaxStubSize());
   1382       }
   1383     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
   1384       int64_t Addend = (Opcode & 0x0000ffff) << 16;
   1385       RelocationEntry RE(SectionID, Offset, RelType, Addend);
   1386       PendingRelocs.push_back(std::make_pair(Value, RE));
   1387     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
   1388       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
   1389       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
   1390         const RelocationValueRef &MatchingValue = I->first;
   1391         RelocationEntry &Reloc = I->second;
   1392         if (MatchingValue == Value &&
   1393             RelType == getMatchingLoRelocation(Reloc.RelType) &&
   1394             SectionID == Reloc.SectionID) {
   1395           Reloc.Addend += Addend;
   1396           if (Value.SymbolName)
   1397             addRelocationForSymbol(Reloc, Value.SymbolName);
   1398           else
   1399             addRelocationForSection(Reloc, Value.SectionID);
   1400           I = PendingRelocs.erase(I);
   1401         } else
   1402           ++I;
   1403       }
   1404       RelocationEntry RE(SectionID, Offset, RelType, Addend);
   1405       if (Value.SymbolName)
   1406         addRelocationForSymbol(RE, Value.SymbolName);
   1407       else
   1408         addRelocationForSection(RE, Value.SectionID);
   1409     } else {
   1410       if (RelType == ELF::R_MIPS_32)
   1411         Value.Addend += Opcode;
   1412       else if (RelType == ELF::R_MIPS_PC16)
   1413         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
   1414       else if (RelType == ELF::R_MIPS_PC19_S2)
   1415         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
   1416       else if (RelType == ELF::R_MIPS_PC21_S2)
   1417         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
   1418       else if (RelType == ELF::R_MIPS_PC26_S2)
   1419         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
   1420       processSimpleRelocation(SectionID, Offset, RelType, Value);
   1421     }
   1422   } else if (IsMipsN64ABI) {
   1423     uint32_t r_type = RelType & 0xff;
   1424     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
   1425     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
   1426         || r_type == ELF::R_MIPS_GOT_DISP) {
   1427       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
   1428       if (i != GOTSymbolOffsets.end())
   1429         RE.SymOffset = i->second;
   1430       else {
   1431         RE.SymOffset = allocateGOTEntries(SectionID, 1);
   1432         GOTSymbolOffsets[TargetName] = RE.SymOffset;
   1433       }
   1434     }
   1435     if (Value.SymbolName)
   1436       addRelocationForSymbol(RE, Value.SymbolName);
   1437     else
   1438       addRelocationForSection(RE, Value.SectionID);
   1439   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
   1440     if (RelType == ELF::R_PPC64_REL24) {
   1441       // Determine ABI variant in use for this object.
   1442       unsigned AbiVariant;
   1443       Obj.getPlatformFlags(AbiVariant);
   1444       AbiVariant &= ELF::EF_PPC64_ABI;
   1445       // A PPC branch relocation will need a stub function if the target is
   1446       // an external symbol (Symbol::ST_Unknown) or if the target address
   1447       // is not within the signed 24-bits branch address.
   1448       SectionEntry &Section = Sections[SectionID];
   1449       uint8_t *Target = Section.getAddressWithOffset(Offset);
   1450       bool RangeOverflow = false;
   1451       if (SymType != SymbolRef::ST_Unknown) {
   1452         if (AbiVariant != 2) {
   1453           // In the ELFv1 ABI, a function call may point to the .opd entry,
   1454           // so the final symbol value is calculated based on the relocation
   1455           // values in the .opd section.
   1456           findOPDEntrySection(Obj, ObjSectionToID, Value);
   1457         } else {
   1458           // In the ELFv2 ABI, a function symbol may provide a local entry
   1459           // point, which must be used for direct calls.
   1460           uint8_t SymOther = Symbol->getOther();
   1461           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
   1462         }
   1463         uint8_t *RelocTarget =
   1464             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
   1465         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
   1466         // If it is within 26-bits branch range, just set the branch target
   1467         if (SignExtend32<26>(delta) == delta) {
   1468           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
   1469           if (Value.SymbolName)
   1470             addRelocationForSymbol(RE, Value.SymbolName);
   1471           else
   1472             addRelocationForSection(RE, Value.SectionID);
   1473         } else {
   1474           RangeOverflow = true;
   1475         }
   1476       }
   1477       if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
   1478         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
   1479         // larger than 24-bits.
   1480         StubMap::const_iterator i = Stubs.find(Value);
   1481         if (i != Stubs.end()) {
   1482           // Symbol function stub already created, just relocate to it
   1483           resolveRelocation(Section, Offset,
   1484                             reinterpret_cast<uint64_t>(
   1485                                 Section.getAddressWithOffset(i->second)),
   1486                             RelType, 0);
   1487           DEBUG(dbgs() << " Stub function found\n");
   1488         } else {
   1489           // Create a new stub function.
   1490           DEBUG(dbgs() << " Create a new stub function\n");
   1491           Stubs[Value] = Section.getStubOffset();
   1492           uint8_t *StubTargetAddr = createStubFunction(
   1493               Section.getAddressWithOffset(Section.getStubOffset()),
   1494               AbiVariant);
   1495           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
   1496                              ELF::R_PPC64_ADDR64, Value.Addend);
   1497 
   1498           // Generates the 64-bits address loads as exemplified in section
   1499           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
   1500           // apply to the low part of the instructions, so we have to update
   1501           // the offset according to the target endianness.
   1502           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
   1503           if (!IsTargetLittleEndian)
   1504             StubRelocOffset += 2;
   1505 
   1506           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
   1507                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
   1508           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
   1509                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
   1510           RelocationEntry REh(SectionID, StubRelocOffset + 12,
   1511                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
   1512           RelocationEntry REl(SectionID, StubRelocOffset + 16,
   1513                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
   1514 
   1515           if (Value.SymbolName) {
   1516             addRelocationForSymbol(REhst, Value.SymbolName);
   1517             addRelocationForSymbol(REhr, Value.SymbolName);
   1518             addRelocationForSymbol(REh, Value.SymbolName);
   1519             addRelocationForSymbol(REl, Value.SymbolName);
   1520           } else {
   1521             addRelocationForSection(REhst, Value.SectionID);
   1522             addRelocationForSection(REhr, Value.SectionID);
   1523             addRelocationForSection(REh, Value.SectionID);
   1524             addRelocationForSection(REl, Value.SectionID);
   1525           }
   1526 
   1527           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
   1528                                                  Section.getAddressWithOffset(
   1529                                                      Section.getStubOffset())),
   1530                             RelType, 0);
   1531           Section.advanceStubOffset(getMaxStubSize());
   1532         }
   1533         if (SymType == SymbolRef::ST_Unknown) {
   1534           // Restore the TOC for external calls
   1535           if (AbiVariant == 2)
   1536             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
   1537           else
   1538             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
   1539         }
   1540       }
   1541     } else if (RelType == ELF::R_PPC64_TOC16 ||
   1542                RelType == ELF::R_PPC64_TOC16_DS ||
   1543                RelType == ELF::R_PPC64_TOC16_LO ||
   1544                RelType == ELF::R_PPC64_TOC16_LO_DS ||
   1545                RelType == ELF::R_PPC64_TOC16_HI ||
   1546                RelType == ELF::R_PPC64_TOC16_HA) {
   1547       // These relocations are supposed to subtract the TOC address from
   1548       // the final value.  This does not fit cleanly into the RuntimeDyld
   1549       // scheme, since there may be *two* sections involved in determining
   1550       // the relocation value (the section of the symbol referred to by the
   1551       // relocation, and the TOC section associated with the current module).
   1552       //
   1553       // Fortunately, these relocations are currently only ever generated
   1554       // referring to symbols that themselves reside in the TOC, which means
   1555       // that the two sections are actually the same.  Thus they cancel out
   1556       // and we can immediately resolve the relocation right now.
   1557       switch (RelType) {
   1558       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
   1559       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
   1560       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
   1561       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
   1562       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
   1563       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
   1564       default: llvm_unreachable("Wrong relocation type.");
   1565       }
   1566 
   1567       RelocationValueRef TOCValue;
   1568       findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
   1569       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
   1570         llvm_unreachable("Unsupported TOC relocation.");
   1571       Value.Addend -= TOCValue.Addend;
   1572       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
   1573     } else {
   1574       // There are two ways to refer to the TOC address directly: either
   1575       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
   1576       // ignored), or via any relocation that refers to the magic ".TOC."
   1577       // symbols (in which case the addend is respected).
   1578       if (RelType == ELF::R_PPC64_TOC) {
   1579         RelType = ELF::R_PPC64_ADDR64;
   1580         findPPC64TOCSection(Obj, ObjSectionToID, Value);
   1581       } else if (TargetName == ".TOC.") {
   1582         findPPC64TOCSection(Obj, ObjSectionToID, Value);
   1583         Value.Addend += Addend;
   1584       }
   1585 
   1586       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
   1587 
   1588       if (Value.SymbolName)
   1589         addRelocationForSymbol(RE, Value.SymbolName);
   1590       else
   1591         addRelocationForSection(RE, Value.SectionID);
   1592     }
   1593   } else if (Arch == Triple::systemz &&
   1594              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
   1595     // Create function stubs for both PLT and GOT references, regardless of
   1596     // whether the GOT reference is to data or code.  The stub contains the
   1597     // full address of the symbol, as needed by GOT references, and the
   1598     // executable part only adds an overhead of 8 bytes.
   1599     //
   1600     // We could try to conserve space by allocating the code and data
   1601     // parts of the stub separately.  However, as things stand, we allocate
   1602     // a stub for every relocation, so using a GOT in JIT code should be
   1603     // no less space efficient than using an explicit constant pool.
   1604     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
   1605     SectionEntry &Section = Sections[SectionID];
   1606 
   1607     // Look for an existing stub.
   1608     StubMap::const_iterator i = Stubs.find(Value);
   1609     uintptr_t StubAddress;
   1610     if (i != Stubs.end()) {
   1611       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
   1612       DEBUG(dbgs() << " Stub function found\n");
   1613     } else {
   1614       // Create a new stub function.
   1615       DEBUG(dbgs() << " Create a new stub function\n");
   1616 
   1617       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
   1618       uintptr_t StubAlignment = getStubAlignment();
   1619       StubAddress =
   1620           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
   1621           -StubAlignment;
   1622       unsigned StubOffset = StubAddress - BaseAddress;
   1623 
   1624       Stubs[Value] = StubOffset;
   1625       createStubFunction((uint8_t *)StubAddress);
   1626       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
   1627                          Value.Offset);
   1628       if (Value.SymbolName)
   1629         addRelocationForSymbol(RE, Value.SymbolName);
   1630       else
   1631         addRelocationForSection(RE, Value.SectionID);
   1632       Section.advanceStubOffset(getMaxStubSize());
   1633     }
   1634 
   1635     if (RelType == ELF::R_390_GOTENT)
   1636       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
   1637                         Addend);
   1638     else
   1639       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
   1640   } else if (Arch == Triple::x86_64) {
   1641     if (RelType == ELF::R_X86_64_PLT32) {
   1642       // The way the PLT relocations normally work is that the linker allocates
   1643       // the
   1644       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
   1645       // entry will then jump to an address provided by the GOT.  On first call,
   1646       // the
   1647       // GOT address will point back into PLT code that resolves the symbol. After
   1648       // the first call, the GOT entry points to the actual function.
   1649       //
   1650       // For local functions we're ignoring all of that here and just replacing
   1651       // the PLT32 relocation type with PC32, which will translate the relocation
   1652       // into a PC-relative call directly to the function. For external symbols we
   1653       // can't be sure the function will be within 2^32 bytes of the call site, so
   1654       // we need to create a stub, which calls into the GOT.  This case is
   1655       // equivalent to the usual PLT implementation except that we use the stub
   1656       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
   1657       // rather than allocating a PLT section.
   1658       if (Value.SymbolName) {
   1659         // This is a call to an external function.
   1660         // Look for an existing stub.
   1661         SectionEntry &Section = Sections[SectionID];
   1662         StubMap::const_iterator i = Stubs.find(Value);
   1663         uintptr_t StubAddress;
   1664         if (i != Stubs.end()) {
   1665           StubAddress = uintptr_t(Section.getAddress()) + i->second;
   1666           DEBUG(dbgs() << " Stub function found\n");
   1667         } else {
   1668           // Create a new stub function (equivalent to a PLT entry).
   1669           DEBUG(dbgs() << " Create a new stub function\n");
   1670 
   1671           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
   1672           uintptr_t StubAlignment = getStubAlignment();
   1673           StubAddress =
   1674               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
   1675               -StubAlignment;
   1676           unsigned StubOffset = StubAddress - BaseAddress;
   1677           Stubs[Value] = StubOffset;
   1678           createStubFunction((uint8_t *)StubAddress);
   1679 
   1680           // Bump our stub offset counter
   1681           Section.advanceStubOffset(getMaxStubSize());
   1682 
   1683           // Allocate a GOT Entry
   1684           uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
   1685 
   1686           // The load of the GOT address has an addend of -4
   1687           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
   1688 
   1689           // Fill in the value of the symbol we're targeting into the GOT
   1690           addRelocationForSymbol(
   1691               computeGOTOffsetRE(SectionID, GOTOffset, 0, ELF::R_X86_64_64),
   1692               Value.SymbolName);
   1693         }
   1694 
   1695         // Make the target call a call into the stub table.
   1696         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
   1697                           Addend);
   1698       } else {
   1699         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
   1700                   Value.Offset);
   1701         addRelocationForSection(RE, Value.SectionID);
   1702       }
   1703     } else if (RelType == ELF::R_X86_64_GOTPCREL) {
   1704       uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
   1705       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
   1706 
   1707       // Fill in the value of the symbol we're targeting into the GOT
   1708       RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
   1709       if (Value.SymbolName)
   1710         addRelocationForSymbol(RE, Value.SymbolName);
   1711       else
   1712         addRelocationForSection(RE, Value.SectionID);
   1713     } else if (RelType == ELF::R_X86_64_PC32) {
   1714       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
   1715       processSimpleRelocation(SectionID, Offset, RelType, Value);
   1716     } else if (RelType == ELF::R_X86_64_PC64) {
   1717       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
   1718       processSimpleRelocation(SectionID, Offset, RelType, Value);
   1719     } else {
   1720       processSimpleRelocation(SectionID, Offset, RelType, Value);
   1721     }
   1722   } else {
   1723     if (Arch == Triple::x86) {
   1724       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
   1725     }
   1726     processSimpleRelocation(SectionID, Offset, RelType, Value);
   1727   }
   1728   return ++RelI;
   1729 }
   1730 
   1731 size_t RuntimeDyldELF::getGOTEntrySize() {
   1732   // We don't use the GOT in all of these cases, but it's essentially free
   1733   // to put them all here.
   1734   size_t Result = 0;
   1735   switch (Arch) {
   1736   case Triple::x86_64:
   1737   case Triple::aarch64:
   1738   case Triple::aarch64_be:
   1739   case Triple::ppc64:
   1740   case Triple::ppc64le:
   1741   case Triple::systemz:
   1742     Result = sizeof(uint64_t);
   1743     break;
   1744   case Triple::x86:
   1745   case Triple::arm:
   1746   case Triple::thumb:
   1747     Result = sizeof(uint32_t);
   1748     break;
   1749   case Triple::mips:
   1750   case Triple::mipsel:
   1751   case Triple::mips64:
   1752   case Triple::mips64el:
   1753     if (IsMipsO32ABI)
   1754       Result = sizeof(uint32_t);
   1755     else if (IsMipsN64ABI)
   1756       Result = sizeof(uint64_t);
   1757     else
   1758       llvm_unreachable("Mips ABI not handled");
   1759     break;
   1760   default:
   1761     llvm_unreachable("Unsupported CPU type!");
   1762   }
   1763   return Result;
   1764 }
   1765 
   1766 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
   1767 {
   1768   (void)SectionID; // The GOT Section is the same for all section in the object file
   1769   if (GOTSectionID == 0) {
   1770     GOTSectionID = Sections.size();
   1771     // Reserve a section id. We'll allocate the section later
   1772     // once we know the total size
   1773     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
   1774   }
   1775   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
   1776   CurrentGOTIndex += no;
   1777   return StartOffset;
   1778 }
   1779 
   1780 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
   1781 {
   1782   // Fill in the relative address of the GOT Entry into the stub
   1783   RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
   1784   addRelocationForSection(GOTRE, GOTSectionID);
   1785 }
   1786 
   1787 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
   1788                                                    uint32_t Type)
   1789 {
   1790   (void)SectionID; // The GOT Section is the same for all section in the object file
   1791   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
   1792 }
   1793 
   1794 void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
   1795                                   ObjSectionToIDMap &SectionMap) {
   1796   if (IsMipsO32ABI)
   1797     if (!PendingRelocs.empty())
   1798       report_fatal_error("Can't find matching LO16 reloc");
   1799 
   1800   // If necessary, allocate the global offset table
   1801   if (GOTSectionID != 0) {
   1802     // Allocate memory for the section
   1803     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
   1804     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
   1805                                                 GOTSectionID, ".got", false);
   1806     if (!Addr)
   1807       report_fatal_error("Unable to allocate memory for GOT!");
   1808 
   1809     Sections[GOTSectionID] =
   1810         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
   1811 
   1812     if (Checker)
   1813       Checker->registerSection(Obj.getFileName(), GOTSectionID);
   1814 
   1815     // For now, initialize all GOT entries to zero.  We'll fill them in as
   1816     // needed when GOT-based relocations are applied.
   1817     memset(Addr, 0, TotalSize);
   1818     if (IsMipsN64ABI) {
   1819       // To correctly resolve Mips GOT relocations, we need a mapping from
   1820       // object's sections to GOTs.
   1821       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
   1822            SI != SE; ++SI) {
   1823         if (SI->relocation_begin() != SI->relocation_end()) {
   1824           section_iterator RelocatedSection = SI->getRelocatedSection();
   1825           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
   1826           assert (i != SectionMap.end());
   1827           SectionToGOTMap[i->second] = GOTSectionID;
   1828         }
   1829       }
   1830       GOTSymbolOffsets.clear();
   1831     }
   1832   }
   1833 
   1834   // Look for and record the EH frame section.
   1835   ObjSectionToIDMap::iterator i, e;
   1836   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
   1837     const SectionRef &Section = i->first;
   1838     StringRef Name;
   1839     Section.getName(Name);
   1840     if (Name == ".eh_frame") {
   1841       UnregisteredEHFrameSections.push_back(i->second);
   1842       break;
   1843     }
   1844   }
   1845 
   1846   GOTSectionID = 0;
   1847   CurrentGOTIndex = 0;
   1848 }
   1849 
   1850 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
   1851   return Obj.isELF();
   1852 }
   1853 
   1854 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
   1855   if (Arch != Triple::x86_64)
   1856     return true;  // Conservative answer
   1857 
   1858   switch (R.getType()) {
   1859   default:
   1860     return true;  // Conservative answer
   1861 
   1862 
   1863   case ELF::R_X86_64_GOTPCREL:
   1864   case ELF::R_X86_64_PC32:
   1865   case ELF::R_X86_64_PC64:
   1866   case ELF::R_X86_64_64:
   1867     // We know that these reloation types won't need a stub function.  This list
   1868     // can be extended as needed.
   1869     return false;
   1870   }
   1871 }
   1872 
   1873 } // namespace llvm
   1874