1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of ELF support for the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RuntimeDyldELF.h" 15 #include "RuntimeDyldCheckerImpl.h" 16 #include "llvm/ADT/IntervalMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/MC/MCStreamer.h" 21 #include "llvm/Object/ELFObjectFile.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/ELF.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 #include "llvm/Support/TargetRegistry.h" 27 28 using namespace llvm; 29 using namespace llvm::object; 30 31 #define DEBUG_TYPE "dyld" 32 33 static inline std::error_code check(std::error_code Err) { 34 if (Err) { 35 report_fatal_error(Err.message()); 36 } 37 return Err; 38 } 39 40 namespace { 41 42 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> { 43 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 44 45 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr; 46 typedef Elf_Sym_Impl<ELFT> Elf_Sym; 47 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel; 48 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela; 49 50 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr; 51 52 typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type; 53 54 public: 55 DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec); 56 57 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); 58 59 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr); 60 61 // Methods for type inquiry through isa, cast and dyn_cast 62 static inline bool classof(const Binary *v) { 63 return (isa<ELFObjectFile<ELFT>>(v) && 64 classof(cast<ELFObjectFile<ELFT>>(v))); 65 } 66 static inline bool classof(const ELFObjectFile<ELFT> *v) { 67 return v->isDyldType(); 68 } 69 }; 70 71 72 73 // The MemoryBuffer passed into this constructor is just a wrapper around the 74 // actual memory. Ultimately, the Binary parent class will take ownership of 75 // this MemoryBuffer object but not the underlying memory. 76 template <class ELFT> 77 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC) 78 : ELFObjectFile<ELFT>(Wrapper, EC) { 79 this->isDyldELFObject = true; 80 } 81 82 template <class ELFT> 83 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec, 84 uint64_t Addr) { 85 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 86 Elf_Shdr *shdr = 87 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 88 89 // This assumes the address passed in matches the target address bitness 90 // The template-based type cast handles everything else. 91 shdr->sh_addr = static_cast<addr_type>(Addr); 92 } 93 94 template <class ELFT> 95 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef, 96 uint64_t Addr) { 97 98 Elf_Sym *sym = const_cast<Elf_Sym *>( 99 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl())); 100 101 // This assumes the address passed in matches the target address bitness 102 // The template-based type cast handles everything else. 103 sym->st_value = static_cast<addr_type>(Addr); 104 } 105 106 class LoadedELFObjectInfo final 107 : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> { 108 public: 109 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap) 110 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {} 111 112 OwningBinary<ObjectFile> 113 getObjectForDebug(const ObjectFile &Obj) const override; 114 }; 115 116 template <typename ELFT> 117 std::unique_ptr<DyldELFObject<ELFT>> 118 createRTDyldELFObject(MemoryBufferRef Buffer, 119 const ObjectFile &SourceObject, 120 const LoadedELFObjectInfo &L, 121 std::error_code &ec) { 122 typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; 123 typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type; 124 125 std::unique_ptr<DyldELFObject<ELFT>> Obj = 126 llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec); 127 128 // Iterate over all sections in the object. 129 auto SI = SourceObject.section_begin(); 130 for (const auto &Sec : Obj->sections()) { 131 StringRef SectionName; 132 Sec.getName(SectionName); 133 if (SectionName != "") { 134 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 135 Elf_Shdr *shdr = const_cast<Elf_Shdr *>( 136 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 137 138 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) { 139 // This assumes that the address passed in matches the target address 140 // bitness. The template-based type cast handles everything else. 141 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr); 142 } 143 } 144 ++SI; 145 } 146 147 return Obj; 148 } 149 150 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj, 151 const LoadedELFObjectInfo &L) { 152 assert(Obj.isELF() && "Not an ELF object file."); 153 154 std::unique_ptr<MemoryBuffer> Buffer = 155 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName()); 156 157 std::error_code ec; 158 159 std::unique_ptr<ObjectFile> DebugObj; 160 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) { 161 typedef ELFType<support::little, false> ELF32LE; 162 DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L, 163 ec); 164 } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) { 165 typedef ELFType<support::big, false> ELF32BE; 166 DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L, 167 ec); 168 } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) { 169 typedef ELFType<support::big, true> ELF64BE; 170 DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L, 171 ec); 172 } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) { 173 typedef ELFType<support::little, true> ELF64LE; 174 DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L, 175 ec); 176 } else 177 llvm_unreachable("Unexpected ELF format"); 178 179 assert(!ec && "Could not construct copy ELF object file"); 180 181 return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer)); 182 } 183 184 OwningBinary<ObjectFile> 185 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const { 186 return createELFDebugObject(Obj, *this); 187 } 188 189 } // anonymous namespace 190 191 namespace llvm { 192 193 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, 194 RuntimeDyld::SymbolResolver &Resolver) 195 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {} 196 RuntimeDyldELF::~RuntimeDyldELF() {} 197 198 void RuntimeDyldELF::registerEHFrames() { 199 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) { 200 SID EHFrameSID = UnregisteredEHFrameSections[i]; 201 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress(); 202 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress(); 203 size_t EHFrameSize = Sections[EHFrameSID].getSize(); 204 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); 205 RegisteredEHFrameSections.push_back(EHFrameSID); 206 } 207 UnregisteredEHFrameSections.clear(); 208 } 209 210 void RuntimeDyldELF::deregisterEHFrames() { 211 for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) { 212 SID EHFrameSID = RegisteredEHFrameSections[i]; 213 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress(); 214 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress(); 215 size_t EHFrameSize = Sections[EHFrameSID].getSize(); 216 MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); 217 } 218 RegisteredEHFrameSections.clear(); 219 } 220 221 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 222 RuntimeDyldELF::loadObject(const object::ObjectFile &O) { 223 return llvm::make_unique<LoadedELFObjectInfo>(*this, loadObjectImpl(O)); 224 } 225 226 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, 227 uint64_t Offset, uint64_t Value, 228 uint32_t Type, int64_t Addend, 229 uint64_t SymOffset) { 230 switch (Type) { 231 default: 232 llvm_unreachable("Relocation type not implemented yet!"); 233 break; 234 case ELF::R_X86_64_64: { 235 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 236 Value + Addend; 237 DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " 238 << format("%p\n", Section.getAddressWithOffset(Offset))); 239 break; 240 } 241 case ELF::R_X86_64_32: 242 case ELF::R_X86_64_32S: { 243 Value += Addend; 244 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || 245 (Type == ELF::R_X86_64_32S && 246 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); 247 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); 248 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 249 TruncatedAddr; 250 DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " 251 << format("%p\n", Section.getAddressWithOffset(Offset))); 252 break; 253 } 254 case ELF::R_X86_64_PC8: { 255 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 256 int64_t RealOffset = Value + Addend - FinalAddress; 257 assert(isInt<8>(RealOffset)); 258 int8_t TruncOffset = (RealOffset & 0xFF); 259 Section.getAddress()[Offset] = TruncOffset; 260 break; 261 } 262 case ELF::R_X86_64_PC32: { 263 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 264 int64_t RealOffset = Value + Addend - FinalAddress; 265 assert(isInt<32>(RealOffset)); 266 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); 267 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 268 TruncOffset; 269 break; 270 } 271 case ELF::R_X86_64_PC64: { 272 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 273 int64_t RealOffset = Value + Addend - FinalAddress; 274 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 275 RealOffset; 276 break; 277 } 278 } 279 } 280 281 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, 282 uint64_t Offset, uint32_t Value, 283 uint32_t Type, int32_t Addend) { 284 switch (Type) { 285 case ELF::R_386_32: { 286 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 287 Value + Addend; 288 break; 289 } 290 case ELF::R_386_PC32: { 291 uint32_t FinalAddress = 292 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; 293 uint32_t RealOffset = Value + Addend - FinalAddress; 294 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 295 RealOffset; 296 break; 297 } 298 default: 299 // There are other relocation types, but it appears these are the 300 // only ones currently used by the LLVM ELF object writer 301 llvm_unreachable("Relocation type not implemented yet!"); 302 break; 303 } 304 } 305 306 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, 307 uint64_t Offset, uint64_t Value, 308 uint32_t Type, int64_t Addend) { 309 uint32_t *TargetPtr = 310 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset)); 311 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 312 313 DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" 314 << format("%llx", Section.getAddressWithOffset(Offset)) 315 << " FinalAddress: 0x" << format("%llx", FinalAddress) 316 << " Value: 0x" << format("%llx", Value) << " Type: 0x" 317 << format("%x", Type) << " Addend: 0x" << format("%llx", Addend) 318 << "\n"); 319 320 switch (Type) { 321 default: 322 llvm_unreachable("Relocation type not implemented yet!"); 323 break; 324 case ELF::R_AARCH64_ABS64: { 325 uint64_t *TargetPtr = 326 reinterpret_cast<uint64_t *>(Section.getAddressWithOffset(Offset)); 327 *TargetPtr = Value + Addend; 328 break; 329 } 330 case ELF::R_AARCH64_PREL32: { 331 uint64_t Result = Value + Addend - FinalAddress; 332 assert(static_cast<int64_t>(Result) >= INT32_MIN && 333 static_cast<int64_t>(Result) <= UINT32_MAX); 334 *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU); 335 break; 336 } 337 case ELF::R_AARCH64_CALL26: // fallthrough 338 case ELF::R_AARCH64_JUMP26: { 339 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the 340 // calculation. 341 uint64_t BranchImm = Value + Addend - FinalAddress; 342 343 // "Check that -2^27 <= result < 2^27". 344 assert(isInt<28>(BranchImm)); 345 346 // AArch64 code is emitted with .rela relocations. The data already in any 347 // bits affected by the relocation on entry is garbage. 348 *TargetPtr &= 0xfc000000U; 349 // Immediate goes in bits 25:0 of B and BL. 350 *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2; 351 break; 352 } 353 case ELF::R_AARCH64_MOVW_UABS_G3: { 354 uint64_t Result = Value + Addend; 355 356 // AArch64 code is emitted with .rela relocations. The data already in any 357 // bits affected by the relocation on entry is garbage. 358 *TargetPtr &= 0xffe0001fU; 359 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction 360 *TargetPtr |= Result >> (48 - 5); 361 // Shift must be "lsl #48", in bits 22:21 362 assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation"); 363 break; 364 } 365 case ELF::R_AARCH64_MOVW_UABS_G2_NC: { 366 uint64_t Result = Value + Addend; 367 368 // AArch64 code is emitted with .rela relocations. The data already in any 369 // bits affected by the relocation on entry is garbage. 370 *TargetPtr &= 0xffe0001fU; 371 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction 372 *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5)); 373 // Shift must be "lsl #32", in bits 22:21 374 assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation"); 375 break; 376 } 377 case ELF::R_AARCH64_MOVW_UABS_G1_NC: { 378 uint64_t Result = Value + Addend; 379 380 // AArch64 code is emitted with .rela relocations. The data already in any 381 // bits affected by the relocation on entry is garbage. 382 *TargetPtr &= 0xffe0001fU; 383 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction 384 *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5)); 385 // Shift must be "lsl #16", in bits 22:2 386 assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation"); 387 break; 388 } 389 case ELF::R_AARCH64_MOVW_UABS_G0_NC: { 390 uint64_t Result = Value + Addend; 391 392 // AArch64 code is emitted with .rela relocations. The data already in any 393 // bits affected by the relocation on entry is garbage. 394 *TargetPtr &= 0xffe0001fU; 395 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction 396 *TargetPtr |= ((Result & 0xffffU) << 5); 397 // Shift must be "lsl #0", in bits 22:21. 398 assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation"); 399 break; 400 } 401 case ELF::R_AARCH64_ADR_PREL_PG_HI21: { 402 // Operation: Page(S+A) - Page(P) 403 uint64_t Result = 404 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); 405 406 // Check that -2^32 <= X < 2^32 407 assert(isInt<33>(Result) && "overflow check failed for relocation"); 408 409 // AArch64 code is emitted with .rela relocations. The data already in any 410 // bits affected by the relocation on entry is garbage. 411 *TargetPtr &= 0x9f00001fU; 412 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken 413 // from bits 32:12 of X. 414 *TargetPtr |= ((Result & 0x3000U) << (29 - 12)); 415 *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5)); 416 break; 417 } 418 case ELF::R_AARCH64_LDST32_ABS_LO12_NC: { 419 // Operation: S + A 420 uint64_t Result = Value + Addend; 421 422 // AArch64 code is emitted with .rela relocations. The data already in any 423 // bits affected by the relocation on entry is garbage. 424 *TargetPtr &= 0xffc003ffU; 425 // Immediate goes in bits 21:10 of LD/ST instruction, taken 426 // from bits 11:2 of X 427 *TargetPtr |= ((Result & 0xffc) << (10 - 2)); 428 break; 429 } 430 case ELF::R_AARCH64_LDST64_ABS_LO12_NC: { 431 // Operation: S + A 432 uint64_t Result = Value + Addend; 433 434 // AArch64 code is emitted with .rela relocations. The data already in any 435 // bits affected by the relocation on entry is garbage. 436 *TargetPtr &= 0xffc003ffU; 437 // Immediate goes in bits 21:10 of LD/ST instruction, taken 438 // from bits 11:3 of X 439 *TargetPtr |= ((Result & 0xff8) << (10 - 3)); 440 break; 441 } 442 } 443 } 444 445 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, 446 uint64_t Offset, uint32_t Value, 447 uint32_t Type, int32_t Addend) { 448 // TODO: Add Thumb relocations. 449 uint32_t *TargetPtr = 450 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset)); 451 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; 452 Value += Addend; 453 454 DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " 455 << Section.getAddressWithOffset(Offset) 456 << " FinalAddress: " << format("%p", FinalAddress) << " Value: " 457 << format("%x", Value) << " Type: " << format("%x", Type) 458 << " Addend: " << format("%x", Addend) << "\n"); 459 460 switch (Type) { 461 default: 462 llvm_unreachable("Not implemented relocation type!"); 463 464 case ELF::R_ARM_NONE: 465 break; 466 case ELF::R_ARM_PREL31: 467 case ELF::R_ARM_TARGET1: 468 case ELF::R_ARM_ABS32: 469 *TargetPtr = Value; 470 break; 471 // Write first 16 bit of 32 bit value to the mov instruction. 472 // Last 4 bit should be shifted. 473 case ELF::R_ARM_MOVW_ABS_NC: 474 case ELF::R_ARM_MOVT_ABS: 475 if (Type == ELF::R_ARM_MOVW_ABS_NC) 476 Value = Value & 0xFFFF; 477 else if (Type == ELF::R_ARM_MOVT_ABS) 478 Value = (Value >> 16) & 0xFFFF; 479 *TargetPtr &= ~0x000F0FFF; 480 *TargetPtr |= Value & 0xFFF; 481 *TargetPtr |= ((Value >> 12) & 0xF) << 16; 482 break; 483 // Write 24 bit relative value to the branch instruction. 484 case ELF::R_ARM_PC24: // Fall through. 485 case ELF::R_ARM_CALL: // Fall through. 486 case ELF::R_ARM_JUMP24: 487 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8); 488 RelValue = (RelValue & 0x03FFFFFC) >> 2; 489 assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE); 490 *TargetPtr &= 0xFF000000; 491 *TargetPtr |= RelValue; 492 break; 493 } 494 } 495 496 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section, 497 uint64_t Offset, uint32_t Value, 498 uint32_t Type, int32_t Addend) { 499 uint8_t *TargetPtr = Section.getAddressWithOffset(Offset); 500 Value += Addend; 501 502 DEBUG(dbgs() << "resolveMIPSRelocation, LocalAddress: " 503 << Section.getAddressWithOffset(Offset) << " FinalAddress: " 504 << format("%p", Section.getLoadAddressWithOffset(Offset)) 505 << " Value: " << format("%x", Value) 506 << " Type: " << format("%x", Type) 507 << " Addend: " << format("%x", Addend) << "\n"); 508 509 uint32_t Insn = readBytesUnaligned(TargetPtr, 4); 510 511 switch (Type) { 512 default: 513 llvm_unreachable("Not implemented relocation type!"); 514 break; 515 case ELF::R_MIPS_32: 516 writeBytesUnaligned(Value, TargetPtr, 4); 517 break; 518 case ELF::R_MIPS_26: 519 Insn &= 0xfc000000; 520 Insn |= (Value & 0x0fffffff) >> 2; 521 writeBytesUnaligned(Insn, TargetPtr, 4); 522 break; 523 case ELF::R_MIPS_HI16: 524 // Get the higher 16-bits. Also add 1 if bit 15 is 1. 525 Insn &= 0xffff0000; 526 Insn |= ((Value + 0x8000) >> 16) & 0xffff; 527 writeBytesUnaligned(Insn, TargetPtr, 4); 528 break; 529 case ELF::R_MIPS_LO16: 530 Insn &= 0xffff0000; 531 Insn |= Value & 0xffff; 532 writeBytesUnaligned(Insn, TargetPtr, 4); 533 break; 534 case ELF::R_MIPS_PC32: { 535 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 536 writeBytesUnaligned(Value - FinalAddress, (uint8_t *)TargetPtr, 4); 537 break; 538 } 539 case ELF::R_MIPS_PC16: { 540 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 541 Insn &= 0xffff0000; 542 Insn |= ((Value - FinalAddress) >> 2) & 0xffff; 543 writeBytesUnaligned(Insn, TargetPtr, 4); 544 break; 545 } 546 case ELF::R_MIPS_PC19_S2: { 547 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 548 Insn &= 0xfff80000; 549 Insn |= ((Value - (FinalAddress & ~0x3)) >> 2) & 0x7ffff; 550 writeBytesUnaligned(Insn, TargetPtr, 4); 551 break; 552 } 553 case ELF::R_MIPS_PC21_S2: { 554 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 555 Insn &= 0xffe00000; 556 Insn |= ((Value - FinalAddress) >> 2) & 0x1fffff; 557 writeBytesUnaligned(Insn, TargetPtr, 4); 558 break; 559 } 560 case ELF::R_MIPS_PC26_S2: { 561 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 562 Insn &= 0xfc000000; 563 Insn |= ((Value - FinalAddress) >> 2) & 0x3ffffff; 564 writeBytesUnaligned(Insn, TargetPtr, 4); 565 break; 566 } 567 case ELF::R_MIPS_PCHI16: { 568 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 569 Insn &= 0xffff0000; 570 Insn |= ((Value - FinalAddress + 0x8000) >> 16) & 0xffff; 571 writeBytesUnaligned(Insn, TargetPtr, 4); 572 break; 573 } 574 case ELF::R_MIPS_PCLO16: { 575 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 576 Insn &= 0xffff0000; 577 Insn |= (Value - FinalAddress) & 0xffff; 578 writeBytesUnaligned(Insn, TargetPtr, 4); 579 break; 580 } 581 } 582 } 583 584 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) { 585 if (Arch == Triple::UnknownArch || 586 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) { 587 IsMipsO32ABI = false; 588 IsMipsN64ABI = false; 589 return; 590 } 591 unsigned AbiVariant; 592 Obj.getPlatformFlags(AbiVariant); 593 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32; 594 IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips"); 595 if (AbiVariant & ELF::EF_MIPS_ABI2) 596 llvm_unreachable("Mips N32 ABI is not supported yet"); 597 } 598 599 void RuntimeDyldELF::resolveMIPS64Relocation(const SectionEntry &Section, 600 uint64_t Offset, uint64_t Value, 601 uint32_t Type, int64_t Addend, 602 uint64_t SymOffset, 603 SID SectionID) { 604 uint32_t r_type = Type & 0xff; 605 uint32_t r_type2 = (Type >> 8) & 0xff; 606 uint32_t r_type3 = (Type >> 16) & 0xff; 607 608 // RelType is used to keep information for which relocation type we are 609 // applying relocation. 610 uint32_t RelType = r_type; 611 int64_t CalculatedValue = evaluateMIPS64Relocation(Section, Offset, Value, 612 RelType, Addend, 613 SymOffset, SectionID); 614 if (r_type2 != ELF::R_MIPS_NONE) { 615 RelType = r_type2; 616 CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType, 617 CalculatedValue, SymOffset, 618 SectionID); 619 } 620 if (r_type3 != ELF::R_MIPS_NONE) { 621 RelType = r_type3; 622 CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType, 623 CalculatedValue, SymOffset, 624 SectionID); 625 } 626 applyMIPS64Relocation(Section.getAddressWithOffset(Offset), CalculatedValue, 627 RelType); 628 } 629 630 int64_t 631 RuntimeDyldELF::evaluateMIPS64Relocation(const SectionEntry &Section, 632 uint64_t Offset, uint64_t Value, 633 uint32_t Type, int64_t Addend, 634 uint64_t SymOffset, SID SectionID) { 635 636 DEBUG(dbgs() << "evaluateMIPS64Relocation, LocalAddress: 0x" 637 << format("%llx", Section.getAddressWithOffset(Offset)) 638 << " FinalAddress: 0x" 639 << format("%llx", Section.getLoadAddressWithOffset(Offset)) 640 << " Value: 0x" << format("%llx", Value) << " Type: 0x" 641 << format("%x", Type) << " Addend: 0x" << format("%llx", Addend) 642 << " SymOffset: " << format("%x", SymOffset) << "\n"); 643 644 switch (Type) { 645 default: 646 llvm_unreachable("Not implemented relocation type!"); 647 break; 648 case ELF::R_MIPS_JALR: 649 case ELF::R_MIPS_NONE: 650 break; 651 case ELF::R_MIPS_32: 652 case ELF::R_MIPS_64: 653 return Value + Addend; 654 case ELF::R_MIPS_26: 655 return ((Value + Addend) >> 2) & 0x3ffffff; 656 case ELF::R_MIPS_GPREL16: { 657 uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]); 658 return Value + Addend - (GOTAddr + 0x7ff0); 659 } 660 case ELF::R_MIPS_SUB: 661 return Value - Addend; 662 case ELF::R_MIPS_HI16: 663 // Get the higher 16-bits. Also add 1 if bit 15 is 1. 664 return ((Value + Addend + 0x8000) >> 16) & 0xffff; 665 case ELF::R_MIPS_LO16: 666 return (Value + Addend) & 0xffff; 667 case ELF::R_MIPS_CALL16: 668 case ELF::R_MIPS_GOT_DISP: 669 case ELF::R_MIPS_GOT_PAGE: { 670 uint8_t *LocalGOTAddr = 671 getSectionAddress(SectionToGOTMap[SectionID]) + SymOffset; 672 uint64_t GOTEntry = readBytesUnaligned(LocalGOTAddr, 8); 673 674 Value += Addend; 675 if (Type == ELF::R_MIPS_GOT_PAGE) 676 Value = (Value + 0x8000) & ~0xffff; 677 678 if (GOTEntry) 679 assert(GOTEntry == Value && 680 "GOT entry has two different addresses."); 681 else 682 writeBytesUnaligned(Value, LocalGOTAddr, 8); 683 684 return (SymOffset - 0x7ff0) & 0xffff; 685 } 686 case ELF::R_MIPS_GOT_OFST: { 687 int64_t page = (Value + Addend + 0x8000) & ~0xffff; 688 return (Value + Addend - page) & 0xffff; 689 } 690 case ELF::R_MIPS_GPREL32: { 691 uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]); 692 return Value + Addend - (GOTAddr + 0x7ff0); 693 } 694 case ELF::R_MIPS_PC16: { 695 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 696 return ((Value + Addend - FinalAddress) >> 2) & 0xffff; 697 } 698 case ELF::R_MIPS_PC32: { 699 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 700 return Value + Addend - FinalAddress; 701 } 702 case ELF::R_MIPS_PC18_S3: { 703 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 704 return ((Value + Addend - (FinalAddress & ~0x7)) >> 3) & 0x3ffff; 705 } 706 case ELF::R_MIPS_PC19_S2: { 707 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 708 return ((Value + Addend - (FinalAddress & ~0x3)) >> 2) & 0x7ffff; 709 } 710 case ELF::R_MIPS_PC21_S2: { 711 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 712 return ((Value + Addend - FinalAddress) >> 2) & 0x1fffff; 713 } 714 case ELF::R_MIPS_PC26_S2: { 715 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 716 return ((Value + Addend - FinalAddress) >> 2) & 0x3ffffff; 717 } 718 case ELF::R_MIPS_PCHI16: { 719 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 720 return ((Value + Addend - FinalAddress + 0x8000) >> 16) & 0xffff; 721 } 722 case ELF::R_MIPS_PCLO16: { 723 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 724 return (Value + Addend - FinalAddress) & 0xffff; 725 } 726 } 727 return 0; 728 } 729 730 void RuntimeDyldELF::applyMIPS64Relocation(uint8_t *TargetPtr, 731 int64_t CalculatedValue, 732 uint32_t Type) { 733 uint32_t Insn = readBytesUnaligned(TargetPtr, 4); 734 735 switch (Type) { 736 default: 737 break; 738 case ELF::R_MIPS_32: 739 case ELF::R_MIPS_GPREL32: 740 case ELF::R_MIPS_PC32: 741 writeBytesUnaligned(CalculatedValue & 0xffffffff, TargetPtr, 4); 742 break; 743 case ELF::R_MIPS_64: 744 case ELF::R_MIPS_SUB: 745 writeBytesUnaligned(CalculatedValue, TargetPtr, 8); 746 break; 747 case ELF::R_MIPS_26: 748 case ELF::R_MIPS_PC26_S2: 749 Insn = (Insn & 0xfc000000) | CalculatedValue; 750 writeBytesUnaligned(Insn, TargetPtr, 4); 751 break; 752 case ELF::R_MIPS_GPREL16: 753 Insn = (Insn & 0xffff0000) | (CalculatedValue & 0xffff); 754 writeBytesUnaligned(Insn, TargetPtr, 4); 755 break; 756 case ELF::R_MIPS_HI16: 757 case ELF::R_MIPS_LO16: 758 case ELF::R_MIPS_PCHI16: 759 case ELF::R_MIPS_PCLO16: 760 case ELF::R_MIPS_PC16: 761 case ELF::R_MIPS_CALL16: 762 case ELF::R_MIPS_GOT_DISP: 763 case ELF::R_MIPS_GOT_PAGE: 764 case ELF::R_MIPS_GOT_OFST: 765 Insn = (Insn & 0xffff0000) | CalculatedValue; 766 writeBytesUnaligned(Insn, TargetPtr, 4); 767 break; 768 case ELF::R_MIPS_PC18_S3: 769 Insn = (Insn & 0xfffc0000) | CalculatedValue; 770 writeBytesUnaligned(Insn, TargetPtr, 4); 771 break; 772 case ELF::R_MIPS_PC19_S2: 773 Insn = (Insn & 0xfff80000) | CalculatedValue; 774 writeBytesUnaligned(Insn, TargetPtr, 4); 775 break; 776 case ELF::R_MIPS_PC21_S2: 777 Insn = (Insn & 0xffe00000) | CalculatedValue; 778 writeBytesUnaligned(Insn, TargetPtr, 4); 779 break; 780 } 781 } 782 783 // Return the .TOC. section and offset. 784 void RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj, 785 ObjSectionToIDMap &LocalSections, 786 RelocationValueRef &Rel) { 787 // Set a default SectionID in case we do not find a TOC section below. 788 // This may happen for references to TOC base base (sym@toc, .odp 789 // relocation) without a .toc directive. In this case just use the 790 // first section (which is usually the .odp) since the code won't 791 // reference the .toc base directly. 792 Rel.SymbolName = nullptr; 793 Rel.SectionID = 0; 794 795 // The TOC consists of sections .got, .toc, .tocbss, .plt in that 796 // order. The TOC starts where the first of these sections starts. 797 for (auto &Section: Obj.sections()) { 798 StringRef SectionName; 799 check(Section.getName(SectionName)); 800 801 if (SectionName == ".got" 802 || SectionName == ".toc" 803 || SectionName == ".tocbss" 804 || SectionName == ".plt") { 805 Rel.SectionID = findOrEmitSection(Obj, Section, false, LocalSections); 806 break; 807 } 808 } 809 810 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 811 // thus permitting a full 64 Kbytes segment. 812 Rel.Addend = 0x8000; 813 } 814 815 // Returns the sections and offset associated with the ODP entry referenced 816 // by Symbol. 817 void RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj, 818 ObjSectionToIDMap &LocalSections, 819 RelocationValueRef &Rel) { 820 // Get the ELF symbol value (st_value) to compare with Relocation offset in 821 // .opd entries 822 for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); 823 si != se; ++si) { 824 section_iterator RelSecI = si->getRelocatedSection(); 825 if (RelSecI == Obj.section_end()) 826 continue; 827 828 StringRef RelSectionName; 829 check(RelSecI->getName(RelSectionName)); 830 if (RelSectionName != ".opd") 831 continue; 832 833 for (elf_relocation_iterator i = si->relocation_begin(), 834 e = si->relocation_end(); 835 i != e;) { 836 // The R_PPC64_ADDR64 relocation indicates the first field 837 // of a .opd entry 838 uint64_t TypeFunc = i->getType(); 839 if (TypeFunc != ELF::R_PPC64_ADDR64) { 840 ++i; 841 continue; 842 } 843 844 uint64_t TargetSymbolOffset = i->getOffset(); 845 symbol_iterator TargetSymbol = i->getSymbol(); 846 ErrorOr<int64_t> AddendOrErr = i->getAddend(); 847 Check(AddendOrErr.getError()); 848 int64_t Addend = *AddendOrErr; 849 850 ++i; 851 if (i == e) 852 break; 853 854 // Just check if following relocation is a R_PPC64_TOC 855 uint64_t TypeTOC = i->getType(); 856 if (TypeTOC != ELF::R_PPC64_TOC) 857 continue; 858 859 // Finally compares the Symbol value and the target symbol offset 860 // to check if this .opd entry refers to the symbol the relocation 861 // points to. 862 if (Rel.Addend != (int64_t)TargetSymbolOffset) 863 continue; 864 865 ErrorOr<section_iterator> TSIOrErr = TargetSymbol->getSection(); 866 check(TSIOrErr.getError()); 867 section_iterator tsi = *TSIOrErr; 868 bool IsCode = tsi->isText(); 869 Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections); 870 Rel.Addend = (intptr_t)Addend; 871 return; 872 } 873 } 874 llvm_unreachable("Attempting to get address of ODP entry!"); 875 } 876 877 // Relocation masks following the #lo(value), #hi(value), #ha(value), 878 // #higher(value), #highera(value), #highest(value), and #highesta(value) 879 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 880 // document. 881 882 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } 883 884 static inline uint16_t applyPPChi(uint64_t value) { 885 return (value >> 16) & 0xffff; 886 } 887 888 static inline uint16_t applyPPCha (uint64_t value) { 889 return ((value + 0x8000) >> 16) & 0xffff; 890 } 891 892 static inline uint16_t applyPPChigher(uint64_t value) { 893 return (value >> 32) & 0xffff; 894 } 895 896 static inline uint16_t applyPPChighera (uint64_t value) { 897 return ((value + 0x8000) >> 32) & 0xffff; 898 } 899 900 static inline uint16_t applyPPChighest(uint64_t value) { 901 return (value >> 48) & 0xffff; 902 } 903 904 static inline uint16_t applyPPChighesta (uint64_t value) { 905 return ((value + 0x8000) >> 48) & 0xffff; 906 } 907 908 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section, 909 uint64_t Offset, uint64_t Value, 910 uint32_t Type, int64_t Addend) { 911 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 912 switch (Type) { 913 default: 914 llvm_unreachable("Relocation type not implemented yet!"); 915 break; 916 case ELF::R_PPC_ADDR16_LO: 917 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 918 break; 919 case ELF::R_PPC_ADDR16_HI: 920 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 921 break; 922 case ELF::R_PPC_ADDR16_HA: 923 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 924 break; 925 } 926 } 927 928 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, 929 uint64_t Offset, uint64_t Value, 930 uint32_t Type, int64_t Addend) { 931 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 932 switch (Type) { 933 default: 934 llvm_unreachable("Relocation type not implemented yet!"); 935 break; 936 case ELF::R_PPC64_ADDR16: 937 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 938 break; 939 case ELF::R_PPC64_ADDR16_DS: 940 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 941 break; 942 case ELF::R_PPC64_ADDR16_LO: 943 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 944 break; 945 case ELF::R_PPC64_ADDR16_LO_DS: 946 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 947 break; 948 case ELF::R_PPC64_ADDR16_HI: 949 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 950 break; 951 case ELF::R_PPC64_ADDR16_HA: 952 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 953 break; 954 case ELF::R_PPC64_ADDR16_HIGHER: 955 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend)); 956 break; 957 case ELF::R_PPC64_ADDR16_HIGHERA: 958 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend)); 959 break; 960 case ELF::R_PPC64_ADDR16_HIGHEST: 961 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend)); 962 break; 963 case ELF::R_PPC64_ADDR16_HIGHESTA: 964 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend)); 965 break; 966 case ELF::R_PPC64_ADDR14: { 967 assert(((Value + Addend) & 3) == 0); 968 // Preserve the AA/LK bits in the branch instruction 969 uint8_t aalk = *(LocalAddress + 3); 970 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc)); 971 } break; 972 case ELF::R_PPC64_REL16_LO: { 973 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 974 uint64_t Delta = Value - FinalAddress + Addend; 975 writeInt16BE(LocalAddress, applyPPClo(Delta)); 976 } break; 977 case ELF::R_PPC64_REL16_HI: { 978 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 979 uint64_t Delta = Value - FinalAddress + Addend; 980 writeInt16BE(LocalAddress, applyPPChi(Delta)); 981 } break; 982 case ELF::R_PPC64_REL16_HA: { 983 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 984 uint64_t Delta = Value - FinalAddress + Addend; 985 writeInt16BE(LocalAddress, applyPPCha(Delta)); 986 } break; 987 case ELF::R_PPC64_ADDR32: { 988 int32_t Result = static_cast<int32_t>(Value + Addend); 989 if (SignExtend32<32>(Result) != Result) 990 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow"); 991 writeInt32BE(LocalAddress, Result); 992 } break; 993 case ELF::R_PPC64_REL24: { 994 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 995 int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend); 996 if (SignExtend32<26>(delta) != delta) 997 llvm_unreachable("Relocation R_PPC64_REL24 overflow"); 998 // Generates a 'bl <address>' instruction 999 writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC)); 1000 } break; 1001 case ELF::R_PPC64_REL32: { 1002 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 1003 int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend); 1004 if (SignExtend32<32>(delta) != delta) 1005 llvm_unreachable("Relocation R_PPC64_REL32 overflow"); 1006 writeInt32BE(LocalAddress, delta); 1007 } break; 1008 case ELF::R_PPC64_REL64: { 1009 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 1010 uint64_t Delta = Value - FinalAddress + Addend; 1011 writeInt64BE(LocalAddress, Delta); 1012 } break; 1013 case ELF::R_PPC64_ADDR64: 1014 writeInt64BE(LocalAddress, Value + Addend); 1015 break; 1016 } 1017 } 1018 1019 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, 1020 uint64_t Offset, uint64_t Value, 1021 uint32_t Type, int64_t Addend) { 1022 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 1023 switch (Type) { 1024 default: 1025 llvm_unreachable("Relocation type not implemented yet!"); 1026 break; 1027 case ELF::R_390_PC16DBL: 1028 case ELF::R_390_PLT16DBL: { 1029 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 1030 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow"); 1031 writeInt16BE(LocalAddress, Delta / 2); 1032 break; 1033 } 1034 case ELF::R_390_PC32DBL: 1035 case ELF::R_390_PLT32DBL: { 1036 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 1037 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow"); 1038 writeInt32BE(LocalAddress, Delta / 2); 1039 break; 1040 } 1041 case ELF::R_390_PC32: { 1042 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 1043 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow"); 1044 writeInt32BE(LocalAddress, Delta); 1045 break; 1046 } 1047 case ELF::R_390_64: 1048 writeInt64BE(LocalAddress, Value + Addend); 1049 break; 1050 } 1051 } 1052 1053 // The target location for the relocation is described by RE.SectionID and 1054 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each 1055 // SectionEntry has three members describing its location. 1056 // SectionEntry::Address is the address at which the section has been loaded 1057 // into memory in the current (host) process. SectionEntry::LoadAddress is the 1058 // address that the section will have in the target process. 1059 // SectionEntry::ObjAddress is the address of the bits for this section in the 1060 // original emitted object image (also in the current address space). 1061 // 1062 // Relocations will be applied as if the section were loaded at 1063 // SectionEntry::LoadAddress, but they will be applied at an address based 1064 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to 1065 // Target memory contents if they are required for value calculations. 1066 // 1067 // The Value parameter here is the load address of the symbol for the 1068 // relocation to be applied. For relocations which refer to symbols in the 1069 // current object Value will be the LoadAddress of the section in which 1070 // the symbol resides (RE.Addend provides additional information about the 1071 // symbol location). For external symbols, Value will be the address of the 1072 // symbol in the target address space. 1073 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, 1074 uint64_t Value) { 1075 const SectionEntry &Section = Sections[RE.SectionID]; 1076 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend, 1077 RE.SymOffset, RE.SectionID); 1078 } 1079 1080 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, 1081 uint64_t Offset, uint64_t Value, 1082 uint32_t Type, int64_t Addend, 1083 uint64_t SymOffset, SID SectionID) { 1084 switch (Arch) { 1085 case Triple::x86_64: 1086 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); 1087 break; 1088 case Triple::x86: 1089 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 1090 (uint32_t)(Addend & 0xffffffffL)); 1091 break; 1092 case Triple::aarch64: 1093 case Triple::aarch64_be: 1094 resolveAArch64Relocation(Section, Offset, Value, Type, Addend); 1095 break; 1096 case Triple::arm: // Fall through. 1097 case Triple::armeb: 1098 case Triple::thumb: 1099 case Triple::thumbeb: 1100 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 1101 (uint32_t)(Addend & 0xffffffffL)); 1102 break; 1103 case Triple::mips: // Fall through. 1104 case Triple::mipsel: 1105 case Triple::mips64: 1106 case Triple::mips64el: 1107 if (IsMipsO32ABI) 1108 resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), 1109 Type, (uint32_t)(Addend & 0xffffffffL)); 1110 else if (IsMipsN64ABI) 1111 resolveMIPS64Relocation(Section, Offset, Value, Type, Addend, SymOffset, 1112 SectionID); 1113 else 1114 llvm_unreachable("Mips ABI not handled"); 1115 break; 1116 case Triple::ppc: 1117 resolvePPC32Relocation(Section, Offset, Value, Type, Addend); 1118 break; 1119 case Triple::ppc64: // Fall through. 1120 case Triple::ppc64le: 1121 resolvePPC64Relocation(Section, Offset, Value, Type, Addend); 1122 break; 1123 case Triple::systemz: 1124 resolveSystemZRelocation(Section, Offset, Value, Type, Addend); 1125 break; 1126 default: 1127 llvm_unreachable("Unsupported CPU type!"); 1128 } 1129 } 1130 1131 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const { 1132 return (void *)(Sections[SectionID].getObjAddress() + Offset); 1133 } 1134 1135 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) { 1136 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset); 1137 if (Value.SymbolName) 1138 addRelocationForSymbol(RE, Value.SymbolName); 1139 else 1140 addRelocationForSection(RE, Value.SectionID); 1141 } 1142 1143 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType, 1144 bool IsLocal) const { 1145 switch (RelType) { 1146 case ELF::R_MICROMIPS_GOT16: 1147 if (IsLocal) 1148 return ELF::R_MICROMIPS_LO16; 1149 break; 1150 case ELF::R_MICROMIPS_HI16: 1151 return ELF::R_MICROMIPS_LO16; 1152 case ELF::R_MIPS_GOT16: 1153 if (IsLocal) 1154 return ELF::R_MIPS_LO16; 1155 break; 1156 case ELF::R_MIPS_HI16: 1157 return ELF::R_MIPS_LO16; 1158 case ELF::R_MIPS_PCHI16: 1159 return ELF::R_MIPS_PCLO16; 1160 default: 1161 break; 1162 } 1163 return ELF::R_MIPS_NONE; 1164 } 1165 1166 relocation_iterator RuntimeDyldELF::processRelocationRef( 1167 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O, 1168 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) { 1169 const auto &Obj = cast<ELFObjectFileBase>(O); 1170 uint64_t RelType = RelI->getType(); 1171 ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend(); 1172 int64_t Addend = AddendOrErr ? *AddendOrErr : 0; 1173 elf_symbol_iterator Symbol = RelI->getSymbol(); 1174 1175 // Obtain the symbol name which is referenced in the relocation 1176 StringRef TargetName; 1177 if (Symbol != Obj.symbol_end()) { 1178 ErrorOr<StringRef> TargetNameOrErr = Symbol->getName(); 1179 if (std::error_code EC = TargetNameOrErr.getError()) 1180 report_fatal_error(EC.message()); 1181 TargetName = *TargetNameOrErr; 1182 } 1183 DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend 1184 << " TargetName: " << TargetName << "\n"); 1185 RelocationValueRef Value; 1186 // First search for the symbol in the local symbol table 1187 SymbolRef::Type SymType = SymbolRef::ST_Unknown; 1188 1189 // Search for the symbol in the global symbol table 1190 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end(); 1191 if (Symbol != Obj.symbol_end()) { 1192 gsi = GlobalSymbolTable.find(TargetName.data()); 1193 SymType = Symbol->getType(); 1194 } 1195 if (gsi != GlobalSymbolTable.end()) { 1196 const auto &SymInfo = gsi->second; 1197 Value.SectionID = SymInfo.getSectionID(); 1198 Value.Offset = SymInfo.getOffset(); 1199 Value.Addend = SymInfo.getOffset() + Addend; 1200 } else { 1201 switch (SymType) { 1202 case SymbolRef::ST_Debug: { 1203 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously 1204 // and can be changed by another developers. Maybe best way is add 1205 // a new symbol type ST_Section to SymbolRef and use it. 1206 section_iterator si = *Symbol->getSection(); 1207 if (si == Obj.section_end()) 1208 llvm_unreachable("Symbol section not found, bad object file format!"); 1209 DEBUG(dbgs() << "\t\tThis is section symbol\n"); 1210 bool isCode = si->isText(); 1211 Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID); 1212 Value.Addend = Addend; 1213 break; 1214 } 1215 case SymbolRef::ST_Data: 1216 case SymbolRef::ST_Unknown: { 1217 Value.SymbolName = TargetName.data(); 1218 Value.Addend = Addend; 1219 1220 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which 1221 // will manifest here as a NULL symbol name. 1222 // We can set this as a valid (but empty) symbol name, and rely 1223 // on addRelocationForSymbol to handle this. 1224 if (!Value.SymbolName) 1225 Value.SymbolName = ""; 1226 break; 1227 } 1228 default: 1229 llvm_unreachable("Unresolved symbol type!"); 1230 break; 1231 } 1232 } 1233 1234 uint64_t Offset = RelI->getOffset(); 1235 1236 DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset 1237 << "\n"); 1238 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) && 1239 (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) { 1240 // This is an AArch64 branch relocation, need to use a stub function. 1241 DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation."); 1242 SectionEntry &Section = Sections[SectionID]; 1243 1244 // Look for an existing stub. 1245 StubMap::const_iterator i = Stubs.find(Value); 1246 if (i != Stubs.end()) { 1247 resolveRelocation(Section, Offset, 1248 (uint64_t)Section.getAddressWithOffset(i->second), 1249 RelType, 0); 1250 DEBUG(dbgs() << " Stub function found\n"); 1251 } else { 1252 // Create a new stub function. 1253 DEBUG(dbgs() << " Create a new stub function\n"); 1254 Stubs[Value] = Section.getStubOffset(); 1255 uint8_t *StubTargetAddr = createStubFunction( 1256 Section.getAddressWithOffset(Section.getStubOffset())); 1257 1258 RelocationEntry REmovz_g3(SectionID, 1259 StubTargetAddr - Section.getAddress(), 1260 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); 1261 RelocationEntry REmovk_g2(SectionID, StubTargetAddr - 1262 Section.getAddress() + 4, 1263 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); 1264 RelocationEntry REmovk_g1(SectionID, StubTargetAddr - 1265 Section.getAddress() + 8, 1266 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); 1267 RelocationEntry REmovk_g0(SectionID, StubTargetAddr - 1268 Section.getAddress() + 12, 1269 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend); 1270 1271 if (Value.SymbolName) { 1272 addRelocationForSymbol(REmovz_g3, Value.SymbolName); 1273 addRelocationForSymbol(REmovk_g2, Value.SymbolName); 1274 addRelocationForSymbol(REmovk_g1, Value.SymbolName); 1275 addRelocationForSymbol(REmovk_g0, Value.SymbolName); 1276 } else { 1277 addRelocationForSection(REmovz_g3, Value.SectionID); 1278 addRelocationForSection(REmovk_g2, Value.SectionID); 1279 addRelocationForSection(REmovk_g1, Value.SectionID); 1280 addRelocationForSection(REmovk_g0, Value.SectionID); 1281 } 1282 resolveRelocation(Section, Offset, 1283 reinterpret_cast<uint64_t>(Section.getAddressWithOffset( 1284 Section.getStubOffset())), 1285 RelType, 0); 1286 Section.advanceStubOffset(getMaxStubSize()); 1287 } 1288 } else if (Arch == Triple::arm) { 1289 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || 1290 RelType == ELF::R_ARM_JUMP24) { 1291 // This is an ARM branch relocation, need to use a stub function. 1292 DEBUG(dbgs() << "\t\tThis is an ARM branch relocation."); 1293 SectionEntry &Section = Sections[SectionID]; 1294 1295 // Look for an existing stub. 1296 StubMap::const_iterator i = Stubs.find(Value); 1297 if (i != Stubs.end()) { 1298 resolveRelocation( 1299 Section, Offset, 1300 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)), 1301 RelType, 0); 1302 DEBUG(dbgs() << " Stub function found\n"); 1303 } else { 1304 // Create a new stub function. 1305 DEBUG(dbgs() << " Create a new stub function\n"); 1306 Stubs[Value] = Section.getStubOffset(); 1307 uint8_t *StubTargetAddr = createStubFunction( 1308 Section.getAddressWithOffset(Section.getStubOffset())); 1309 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), 1310 ELF::R_ARM_ABS32, Value.Addend); 1311 if (Value.SymbolName) 1312 addRelocationForSymbol(RE, Value.SymbolName); 1313 else 1314 addRelocationForSection(RE, Value.SectionID); 1315 1316 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>( 1317 Section.getAddressWithOffset( 1318 Section.getStubOffset())), 1319 RelType, 0); 1320 Section.advanceStubOffset(getMaxStubSize()); 1321 } 1322 } else { 1323 uint32_t *Placeholder = 1324 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset)); 1325 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 || 1326 RelType == ELF::R_ARM_ABS32) { 1327 Value.Addend += *Placeholder; 1328 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) { 1329 // See ELF for ARM documentation 1330 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12)); 1331 } 1332 processSimpleRelocation(SectionID, Offset, RelType, Value); 1333 } 1334 } else if (IsMipsO32ABI) { 1335 uint8_t *Placeholder = reinterpret_cast<uint8_t *>( 1336 computePlaceholderAddress(SectionID, Offset)); 1337 uint32_t Opcode = readBytesUnaligned(Placeholder, 4); 1338 if (RelType == ELF::R_MIPS_26) { 1339 // This is an Mips branch relocation, need to use a stub function. 1340 DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); 1341 SectionEntry &Section = Sections[SectionID]; 1342 1343 // Extract the addend from the instruction. 1344 // We shift up by two since the Value will be down shifted again 1345 // when applying the relocation. 1346 uint32_t Addend = (Opcode & 0x03ffffff) << 2; 1347 1348 Value.Addend += Addend; 1349 1350 // Look up for existing stub. 1351 StubMap::const_iterator i = Stubs.find(Value); 1352 if (i != Stubs.end()) { 1353 RelocationEntry RE(SectionID, Offset, RelType, i->second); 1354 addRelocationForSection(RE, SectionID); 1355 DEBUG(dbgs() << " Stub function found\n"); 1356 } else { 1357 // Create a new stub function. 1358 DEBUG(dbgs() << " Create a new stub function\n"); 1359 Stubs[Value] = Section.getStubOffset(); 1360 uint8_t *StubTargetAddr = createStubFunction( 1361 Section.getAddressWithOffset(Section.getStubOffset())); 1362 1363 // Creating Hi and Lo relocations for the filled stub instructions. 1364 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), 1365 ELF::R_MIPS_HI16, Value.Addend); 1366 RelocationEntry RELo(SectionID, 1367 StubTargetAddr - Section.getAddress() + 4, 1368 ELF::R_MIPS_LO16, Value.Addend); 1369 1370 if (Value.SymbolName) { 1371 addRelocationForSymbol(REHi, Value.SymbolName); 1372 addRelocationForSymbol(RELo, Value.SymbolName); 1373 } 1374 else { 1375 addRelocationForSection(REHi, Value.SectionID); 1376 addRelocationForSection(RELo, Value.SectionID); 1377 } 1378 1379 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); 1380 addRelocationForSection(RE, SectionID); 1381 Section.advanceStubOffset(getMaxStubSize()); 1382 } 1383 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) { 1384 int64_t Addend = (Opcode & 0x0000ffff) << 16; 1385 RelocationEntry RE(SectionID, Offset, RelType, Addend); 1386 PendingRelocs.push_back(std::make_pair(Value, RE)); 1387 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) { 1388 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff); 1389 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) { 1390 const RelocationValueRef &MatchingValue = I->first; 1391 RelocationEntry &Reloc = I->second; 1392 if (MatchingValue == Value && 1393 RelType == getMatchingLoRelocation(Reloc.RelType) && 1394 SectionID == Reloc.SectionID) { 1395 Reloc.Addend += Addend; 1396 if (Value.SymbolName) 1397 addRelocationForSymbol(Reloc, Value.SymbolName); 1398 else 1399 addRelocationForSection(Reloc, Value.SectionID); 1400 I = PendingRelocs.erase(I); 1401 } else 1402 ++I; 1403 } 1404 RelocationEntry RE(SectionID, Offset, RelType, Addend); 1405 if (Value.SymbolName) 1406 addRelocationForSymbol(RE, Value.SymbolName); 1407 else 1408 addRelocationForSection(RE, Value.SectionID); 1409 } else { 1410 if (RelType == ELF::R_MIPS_32) 1411 Value.Addend += Opcode; 1412 else if (RelType == ELF::R_MIPS_PC16) 1413 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2); 1414 else if (RelType == ELF::R_MIPS_PC19_S2) 1415 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2); 1416 else if (RelType == ELF::R_MIPS_PC21_S2) 1417 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2); 1418 else if (RelType == ELF::R_MIPS_PC26_S2) 1419 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2); 1420 processSimpleRelocation(SectionID, Offset, RelType, Value); 1421 } 1422 } else if (IsMipsN64ABI) { 1423 uint32_t r_type = RelType & 0xff; 1424 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1425 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE 1426 || r_type == ELF::R_MIPS_GOT_DISP) { 1427 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName); 1428 if (i != GOTSymbolOffsets.end()) 1429 RE.SymOffset = i->second; 1430 else { 1431 RE.SymOffset = allocateGOTEntries(SectionID, 1); 1432 GOTSymbolOffsets[TargetName] = RE.SymOffset; 1433 } 1434 } 1435 if (Value.SymbolName) 1436 addRelocationForSymbol(RE, Value.SymbolName); 1437 else 1438 addRelocationForSection(RE, Value.SectionID); 1439 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 1440 if (RelType == ELF::R_PPC64_REL24) { 1441 // Determine ABI variant in use for this object. 1442 unsigned AbiVariant; 1443 Obj.getPlatformFlags(AbiVariant); 1444 AbiVariant &= ELF::EF_PPC64_ABI; 1445 // A PPC branch relocation will need a stub function if the target is 1446 // an external symbol (Symbol::ST_Unknown) or if the target address 1447 // is not within the signed 24-bits branch address. 1448 SectionEntry &Section = Sections[SectionID]; 1449 uint8_t *Target = Section.getAddressWithOffset(Offset); 1450 bool RangeOverflow = false; 1451 if (SymType != SymbolRef::ST_Unknown) { 1452 if (AbiVariant != 2) { 1453 // In the ELFv1 ABI, a function call may point to the .opd entry, 1454 // so the final symbol value is calculated based on the relocation 1455 // values in the .opd section. 1456 findOPDEntrySection(Obj, ObjSectionToID, Value); 1457 } else { 1458 // In the ELFv2 ABI, a function symbol may provide a local entry 1459 // point, which must be used for direct calls. 1460 uint8_t SymOther = Symbol->getOther(); 1461 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther); 1462 } 1463 uint8_t *RelocTarget = 1464 Sections[Value.SectionID].getAddressWithOffset(Value.Addend); 1465 int32_t delta = static_cast<int32_t>(Target - RelocTarget); 1466 // If it is within 26-bits branch range, just set the branch target 1467 if (SignExtend32<26>(delta) == delta) { 1468 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1469 if (Value.SymbolName) 1470 addRelocationForSymbol(RE, Value.SymbolName); 1471 else 1472 addRelocationForSection(RE, Value.SectionID); 1473 } else { 1474 RangeOverflow = true; 1475 } 1476 } 1477 if (SymType == SymbolRef::ST_Unknown || RangeOverflow) { 1478 // It is an external symbol (SymbolRef::ST_Unknown) or within a range 1479 // larger than 24-bits. 1480 StubMap::const_iterator i = Stubs.find(Value); 1481 if (i != Stubs.end()) { 1482 // Symbol function stub already created, just relocate to it 1483 resolveRelocation(Section, Offset, 1484 reinterpret_cast<uint64_t>( 1485 Section.getAddressWithOffset(i->second)), 1486 RelType, 0); 1487 DEBUG(dbgs() << " Stub function found\n"); 1488 } else { 1489 // Create a new stub function. 1490 DEBUG(dbgs() << " Create a new stub function\n"); 1491 Stubs[Value] = Section.getStubOffset(); 1492 uint8_t *StubTargetAddr = createStubFunction( 1493 Section.getAddressWithOffset(Section.getStubOffset()), 1494 AbiVariant); 1495 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), 1496 ELF::R_PPC64_ADDR64, Value.Addend); 1497 1498 // Generates the 64-bits address loads as exemplified in section 1499 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to 1500 // apply to the low part of the instructions, so we have to update 1501 // the offset according to the target endianness. 1502 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress(); 1503 if (!IsTargetLittleEndian) 1504 StubRelocOffset += 2; 1505 1506 RelocationEntry REhst(SectionID, StubRelocOffset + 0, 1507 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); 1508 RelocationEntry REhr(SectionID, StubRelocOffset + 4, 1509 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); 1510 RelocationEntry REh(SectionID, StubRelocOffset + 12, 1511 ELF::R_PPC64_ADDR16_HI, Value.Addend); 1512 RelocationEntry REl(SectionID, StubRelocOffset + 16, 1513 ELF::R_PPC64_ADDR16_LO, Value.Addend); 1514 1515 if (Value.SymbolName) { 1516 addRelocationForSymbol(REhst, Value.SymbolName); 1517 addRelocationForSymbol(REhr, Value.SymbolName); 1518 addRelocationForSymbol(REh, Value.SymbolName); 1519 addRelocationForSymbol(REl, Value.SymbolName); 1520 } else { 1521 addRelocationForSection(REhst, Value.SectionID); 1522 addRelocationForSection(REhr, Value.SectionID); 1523 addRelocationForSection(REh, Value.SectionID); 1524 addRelocationForSection(REl, Value.SectionID); 1525 } 1526 1527 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>( 1528 Section.getAddressWithOffset( 1529 Section.getStubOffset())), 1530 RelType, 0); 1531 Section.advanceStubOffset(getMaxStubSize()); 1532 } 1533 if (SymType == SymbolRef::ST_Unknown) { 1534 // Restore the TOC for external calls 1535 if (AbiVariant == 2) 1536 writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1) 1537 else 1538 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) 1539 } 1540 } 1541 } else if (RelType == ELF::R_PPC64_TOC16 || 1542 RelType == ELF::R_PPC64_TOC16_DS || 1543 RelType == ELF::R_PPC64_TOC16_LO || 1544 RelType == ELF::R_PPC64_TOC16_LO_DS || 1545 RelType == ELF::R_PPC64_TOC16_HI || 1546 RelType == ELF::R_PPC64_TOC16_HA) { 1547 // These relocations are supposed to subtract the TOC address from 1548 // the final value. This does not fit cleanly into the RuntimeDyld 1549 // scheme, since there may be *two* sections involved in determining 1550 // the relocation value (the section of the symbol referred to by the 1551 // relocation, and the TOC section associated with the current module). 1552 // 1553 // Fortunately, these relocations are currently only ever generated 1554 // referring to symbols that themselves reside in the TOC, which means 1555 // that the two sections are actually the same. Thus they cancel out 1556 // and we can immediately resolve the relocation right now. 1557 switch (RelType) { 1558 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; 1559 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; 1560 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; 1561 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; 1562 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; 1563 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; 1564 default: llvm_unreachable("Wrong relocation type."); 1565 } 1566 1567 RelocationValueRef TOCValue; 1568 findPPC64TOCSection(Obj, ObjSectionToID, TOCValue); 1569 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) 1570 llvm_unreachable("Unsupported TOC relocation."); 1571 Value.Addend -= TOCValue.Addend; 1572 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0); 1573 } else { 1574 // There are two ways to refer to the TOC address directly: either 1575 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are 1576 // ignored), or via any relocation that refers to the magic ".TOC." 1577 // symbols (in which case the addend is respected). 1578 if (RelType == ELF::R_PPC64_TOC) { 1579 RelType = ELF::R_PPC64_ADDR64; 1580 findPPC64TOCSection(Obj, ObjSectionToID, Value); 1581 } else if (TargetName == ".TOC.") { 1582 findPPC64TOCSection(Obj, ObjSectionToID, Value); 1583 Value.Addend += Addend; 1584 } 1585 1586 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1587 1588 if (Value.SymbolName) 1589 addRelocationForSymbol(RE, Value.SymbolName); 1590 else 1591 addRelocationForSection(RE, Value.SectionID); 1592 } 1593 } else if (Arch == Triple::systemz && 1594 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { 1595 // Create function stubs for both PLT and GOT references, regardless of 1596 // whether the GOT reference is to data or code. The stub contains the 1597 // full address of the symbol, as needed by GOT references, and the 1598 // executable part only adds an overhead of 8 bytes. 1599 // 1600 // We could try to conserve space by allocating the code and data 1601 // parts of the stub separately. However, as things stand, we allocate 1602 // a stub for every relocation, so using a GOT in JIT code should be 1603 // no less space efficient than using an explicit constant pool. 1604 DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation."); 1605 SectionEntry &Section = Sections[SectionID]; 1606 1607 // Look for an existing stub. 1608 StubMap::const_iterator i = Stubs.find(Value); 1609 uintptr_t StubAddress; 1610 if (i != Stubs.end()) { 1611 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second)); 1612 DEBUG(dbgs() << " Stub function found\n"); 1613 } else { 1614 // Create a new stub function. 1615 DEBUG(dbgs() << " Create a new stub function\n"); 1616 1617 uintptr_t BaseAddress = uintptr_t(Section.getAddress()); 1618 uintptr_t StubAlignment = getStubAlignment(); 1619 StubAddress = 1620 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) & 1621 -StubAlignment; 1622 unsigned StubOffset = StubAddress - BaseAddress; 1623 1624 Stubs[Value] = StubOffset; 1625 createStubFunction((uint8_t *)StubAddress); 1626 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, 1627 Value.Offset); 1628 if (Value.SymbolName) 1629 addRelocationForSymbol(RE, Value.SymbolName); 1630 else 1631 addRelocationForSection(RE, Value.SectionID); 1632 Section.advanceStubOffset(getMaxStubSize()); 1633 } 1634 1635 if (RelType == ELF::R_390_GOTENT) 1636 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL, 1637 Addend); 1638 else 1639 resolveRelocation(Section, Offset, StubAddress, RelType, Addend); 1640 } else if (Arch == Triple::x86_64) { 1641 if (RelType == ELF::R_X86_64_PLT32) { 1642 // The way the PLT relocations normally work is that the linker allocates 1643 // the 1644 // PLT and this relocation makes a PC-relative call into the PLT. The PLT 1645 // entry will then jump to an address provided by the GOT. On first call, 1646 // the 1647 // GOT address will point back into PLT code that resolves the symbol. After 1648 // the first call, the GOT entry points to the actual function. 1649 // 1650 // For local functions we're ignoring all of that here and just replacing 1651 // the PLT32 relocation type with PC32, which will translate the relocation 1652 // into a PC-relative call directly to the function. For external symbols we 1653 // can't be sure the function will be within 2^32 bytes of the call site, so 1654 // we need to create a stub, which calls into the GOT. This case is 1655 // equivalent to the usual PLT implementation except that we use the stub 1656 // mechanism in RuntimeDyld (which puts stubs at the end of the section) 1657 // rather than allocating a PLT section. 1658 if (Value.SymbolName) { 1659 // This is a call to an external function. 1660 // Look for an existing stub. 1661 SectionEntry &Section = Sections[SectionID]; 1662 StubMap::const_iterator i = Stubs.find(Value); 1663 uintptr_t StubAddress; 1664 if (i != Stubs.end()) { 1665 StubAddress = uintptr_t(Section.getAddress()) + i->second; 1666 DEBUG(dbgs() << " Stub function found\n"); 1667 } else { 1668 // Create a new stub function (equivalent to a PLT entry). 1669 DEBUG(dbgs() << " Create a new stub function\n"); 1670 1671 uintptr_t BaseAddress = uintptr_t(Section.getAddress()); 1672 uintptr_t StubAlignment = getStubAlignment(); 1673 StubAddress = 1674 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) & 1675 -StubAlignment; 1676 unsigned StubOffset = StubAddress - BaseAddress; 1677 Stubs[Value] = StubOffset; 1678 createStubFunction((uint8_t *)StubAddress); 1679 1680 // Bump our stub offset counter 1681 Section.advanceStubOffset(getMaxStubSize()); 1682 1683 // Allocate a GOT Entry 1684 uint64_t GOTOffset = allocateGOTEntries(SectionID, 1); 1685 1686 // The load of the GOT address has an addend of -4 1687 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4); 1688 1689 // Fill in the value of the symbol we're targeting into the GOT 1690 addRelocationForSymbol( 1691 computeGOTOffsetRE(SectionID, GOTOffset, 0, ELF::R_X86_64_64), 1692 Value.SymbolName); 1693 } 1694 1695 // Make the target call a call into the stub table. 1696 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32, 1697 Addend); 1698 } else { 1699 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend, 1700 Value.Offset); 1701 addRelocationForSection(RE, Value.SectionID); 1702 } 1703 } else if (RelType == ELF::R_X86_64_GOTPCREL) { 1704 uint64_t GOTOffset = allocateGOTEntries(SectionID, 1); 1705 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend); 1706 1707 // Fill in the value of the symbol we're targeting into the GOT 1708 RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64); 1709 if (Value.SymbolName) 1710 addRelocationForSymbol(RE, Value.SymbolName); 1711 else 1712 addRelocationForSection(RE, Value.SectionID); 1713 } else if (RelType == ELF::R_X86_64_PC32) { 1714 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); 1715 processSimpleRelocation(SectionID, Offset, RelType, Value); 1716 } else if (RelType == ELF::R_X86_64_PC64) { 1717 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset)); 1718 processSimpleRelocation(SectionID, Offset, RelType, Value); 1719 } else { 1720 processSimpleRelocation(SectionID, Offset, RelType, Value); 1721 } 1722 } else { 1723 if (Arch == Triple::x86) { 1724 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); 1725 } 1726 processSimpleRelocation(SectionID, Offset, RelType, Value); 1727 } 1728 return ++RelI; 1729 } 1730 1731 size_t RuntimeDyldELF::getGOTEntrySize() { 1732 // We don't use the GOT in all of these cases, but it's essentially free 1733 // to put them all here. 1734 size_t Result = 0; 1735 switch (Arch) { 1736 case Triple::x86_64: 1737 case Triple::aarch64: 1738 case Triple::aarch64_be: 1739 case Triple::ppc64: 1740 case Triple::ppc64le: 1741 case Triple::systemz: 1742 Result = sizeof(uint64_t); 1743 break; 1744 case Triple::x86: 1745 case Triple::arm: 1746 case Triple::thumb: 1747 Result = sizeof(uint32_t); 1748 break; 1749 case Triple::mips: 1750 case Triple::mipsel: 1751 case Triple::mips64: 1752 case Triple::mips64el: 1753 if (IsMipsO32ABI) 1754 Result = sizeof(uint32_t); 1755 else if (IsMipsN64ABI) 1756 Result = sizeof(uint64_t); 1757 else 1758 llvm_unreachable("Mips ABI not handled"); 1759 break; 1760 default: 1761 llvm_unreachable("Unsupported CPU type!"); 1762 } 1763 return Result; 1764 } 1765 1766 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no) 1767 { 1768 (void)SectionID; // The GOT Section is the same for all section in the object file 1769 if (GOTSectionID == 0) { 1770 GOTSectionID = Sections.size(); 1771 // Reserve a section id. We'll allocate the section later 1772 // once we know the total size 1773 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0)); 1774 } 1775 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize(); 1776 CurrentGOTIndex += no; 1777 return StartOffset; 1778 } 1779 1780 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset) 1781 { 1782 // Fill in the relative address of the GOT Entry into the stub 1783 RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset); 1784 addRelocationForSection(GOTRE, GOTSectionID); 1785 } 1786 1787 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset, 1788 uint32_t Type) 1789 { 1790 (void)SectionID; // The GOT Section is the same for all section in the object file 1791 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset); 1792 } 1793 1794 void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj, 1795 ObjSectionToIDMap &SectionMap) { 1796 if (IsMipsO32ABI) 1797 if (!PendingRelocs.empty()) 1798 report_fatal_error("Can't find matching LO16 reloc"); 1799 1800 // If necessary, allocate the global offset table 1801 if (GOTSectionID != 0) { 1802 // Allocate memory for the section 1803 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize(); 1804 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(), 1805 GOTSectionID, ".got", false); 1806 if (!Addr) 1807 report_fatal_error("Unable to allocate memory for GOT!"); 1808 1809 Sections[GOTSectionID] = 1810 SectionEntry(".got", Addr, TotalSize, TotalSize, 0); 1811 1812 if (Checker) 1813 Checker->registerSection(Obj.getFileName(), GOTSectionID); 1814 1815 // For now, initialize all GOT entries to zero. We'll fill them in as 1816 // needed when GOT-based relocations are applied. 1817 memset(Addr, 0, TotalSize); 1818 if (IsMipsN64ABI) { 1819 // To correctly resolve Mips GOT relocations, we need a mapping from 1820 // object's sections to GOTs. 1821 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 1822 SI != SE; ++SI) { 1823 if (SI->relocation_begin() != SI->relocation_end()) { 1824 section_iterator RelocatedSection = SI->getRelocatedSection(); 1825 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection); 1826 assert (i != SectionMap.end()); 1827 SectionToGOTMap[i->second] = GOTSectionID; 1828 } 1829 } 1830 GOTSymbolOffsets.clear(); 1831 } 1832 } 1833 1834 // Look for and record the EH frame section. 1835 ObjSectionToIDMap::iterator i, e; 1836 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { 1837 const SectionRef &Section = i->first; 1838 StringRef Name; 1839 Section.getName(Name); 1840 if (Name == ".eh_frame") { 1841 UnregisteredEHFrameSections.push_back(i->second); 1842 break; 1843 } 1844 } 1845 1846 GOTSectionID = 0; 1847 CurrentGOTIndex = 0; 1848 } 1849 1850 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const { 1851 return Obj.isELF(); 1852 } 1853 1854 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const { 1855 if (Arch != Triple::x86_64) 1856 return true; // Conservative answer 1857 1858 switch (R.getType()) { 1859 default: 1860 return true; // Conservative answer 1861 1862 1863 case ELF::R_X86_64_GOTPCREL: 1864 case ELF::R_X86_64_PC32: 1865 case ELF::R_X86_64_PC64: 1866 case ELF::R_X86_64_64: 1867 // We know that these reloation types won't need a stub function. This list 1868 // can be extended as needed. 1869 return false; 1870 } 1871 } 1872 1873 } // namespace llvm 1874