Home | History | Annotate | Download | only in enc
      1 // Copyright 2012 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // main entry for the lossless encoder.
     11 //
     12 // Author: Vikas Arora (vikaas.arora (at) gmail.com)
     13 //
     14 
     15 #include <assert.h>
     16 #include <stdlib.h>
     17 
     18 #include "./backward_references.h"
     19 #include "./histogram.h"
     20 #include "./vp8enci.h"
     21 #include "./vp8li.h"
     22 #include "../dsp/lossless.h"
     23 #include "../utils/bit_writer.h"
     24 #include "../utils/huffman_encode.h"
     25 #include "../utils/utils.h"
     26 #include "../webp/format_constants.h"
     27 
     28 #include "./delta_palettization.h"
     29 
     30 #define PALETTE_KEY_RIGHT_SHIFT   22  // Key for 1K buffer.
     31 // Maximum number of histogram images (sub-blocks).
     32 #define MAX_HUFF_IMAGE_SIZE       2600
     33 
     34 // Palette reordering for smaller sum of deltas (and for smaller storage).
     35 
     36 static int PaletteCompareColorsForQsort(const void* p1, const void* p2) {
     37   const uint32_t a = WebPMemToUint32(p1);
     38   const uint32_t b = WebPMemToUint32(p2);
     39   assert(a != b);
     40   return (a < b) ? -1 : 1;
     41 }
     42 
     43 static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) {
     44   return (v <= 128) ? v : (256 - v);
     45 }
     46 
     47 // Computes a value that is related to the entropy created by the
     48 // palette entry diff.
     49 //
     50 // Note that the last & 0xff is a no-operation in the next statement, but
     51 // removed by most compilers and is here only for regularity of the code.
     52 static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) {
     53   const uint32_t diff = VP8LSubPixels(col1, col2);
     54   const int kMoreWeightForRGBThanForAlpha = 9;
     55   uint32_t score;
     56   score =  PaletteComponentDistance((diff >>  0) & 0xff);
     57   score += PaletteComponentDistance((diff >>  8) & 0xff);
     58   score += PaletteComponentDistance((diff >> 16) & 0xff);
     59   score *= kMoreWeightForRGBThanForAlpha;
     60   score += PaletteComponentDistance((diff >> 24) & 0xff);
     61   return score;
     62 }
     63 
     64 static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) {
     65   const uint32_t tmp = *col1;
     66   *col1 = *col2;
     67   *col2 = tmp;
     68 }
     69 
     70 static void GreedyMinimizeDeltas(uint32_t palette[], int num_colors) {
     71   // Find greedily always the closest color of the predicted color to minimize
     72   // deltas in the palette. This reduces storage needs since the
     73   // palette is stored with delta encoding.
     74   uint32_t predict = 0x00000000;
     75   int i, k;
     76   for (i = 0; i < num_colors; ++i) {
     77     int best_ix = i;
     78     uint32_t best_score = ~0U;
     79     for (k = i; k < num_colors; ++k) {
     80       const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
     81       if (best_score > cur_score) {
     82         best_score = cur_score;
     83         best_ix = k;
     84       }
     85     }
     86     SwapColor(&palette[best_ix], &palette[i]);
     87     predict = palette[i];
     88   }
     89 }
     90 
     91 // The palette has been sorted by alpha. This function checks if the other
     92 // components of the palette have a monotonic development with regards to
     93 // position in the palette. If all have monotonic development, there is
     94 // no benefit to re-organize them greedily. A monotonic development
     95 // would be spotted in green-only situations (like lossy alpha) or gray-scale
     96 // images.
     97 static int PaletteHasNonMonotonousDeltas(uint32_t palette[], int num_colors) {
     98   uint32_t predict = 0x000000;
     99   int i;
    100   uint8_t sign_found = 0x00;
    101   for (i = 0; i < num_colors; ++i) {
    102     const uint32_t diff = VP8LSubPixels(palette[i], predict);
    103     const uint8_t rd = (diff >> 16) & 0xff;
    104     const uint8_t gd = (diff >>  8) & 0xff;
    105     const uint8_t bd = (diff >>  0) & 0xff;
    106     if (rd != 0x00) {
    107       sign_found |= (rd < 0x80) ? 1 : 2;
    108     }
    109     if (gd != 0x00) {
    110       sign_found |= (gd < 0x80) ? 8 : 16;
    111     }
    112     if (bd != 0x00) {
    113       sign_found |= (bd < 0x80) ? 64 : 128;
    114     }
    115     predict = palette[i];
    116   }
    117   return (sign_found & (sign_found << 1)) != 0;  // two consequent signs.
    118 }
    119 
    120 // -----------------------------------------------------------------------------
    121 // Palette
    122 
    123 // If number of colors in the image is less than or equal to MAX_PALETTE_SIZE,
    124 // creates a palette and returns true, else returns false.
    125 static int AnalyzeAndCreatePalette(const WebPPicture* const pic,
    126                                    int low_effort,
    127                                    uint32_t palette[MAX_PALETTE_SIZE],
    128                                    int* const palette_size) {
    129   int i, x, y, key;
    130   int num_colors = 0;
    131   uint8_t in_use[MAX_PALETTE_SIZE * 4] = { 0 };
    132   uint32_t colors[MAX_PALETTE_SIZE * 4];
    133   static const uint32_t kHashMul = 0x1e35a7bd;
    134   const uint32_t* argb = pic->argb;
    135   const int width = pic->width;
    136   const int height = pic->height;
    137   uint32_t last_pix = ~argb[0];   // so we're sure that last_pix != argb[0]
    138 
    139   for (y = 0; y < height; ++y) {
    140     for (x = 0; x < width; ++x) {
    141       if (argb[x] == last_pix) {
    142         continue;
    143       }
    144       last_pix = argb[x];
    145       key = (kHashMul * last_pix) >> PALETTE_KEY_RIGHT_SHIFT;
    146       while (1) {
    147         if (!in_use[key]) {
    148           colors[key] = last_pix;
    149           in_use[key] = 1;
    150           ++num_colors;
    151           if (num_colors > MAX_PALETTE_SIZE) {
    152             return 0;
    153           }
    154           break;
    155         } else if (colors[key] == last_pix) {
    156           // The color is already there.
    157           break;
    158         } else {
    159           // Some other color sits there.
    160           // Do linear conflict resolution.
    161           ++key;
    162           key &= (MAX_PALETTE_SIZE * 4 - 1);  // key mask for 1K buffer.
    163         }
    164       }
    165     }
    166     argb += pic->argb_stride;
    167   }
    168 
    169   // TODO(skal): could we reuse in_use[] to speed up EncodePalette()?
    170   num_colors = 0;
    171   for (i = 0; i < (int)(sizeof(in_use) / sizeof(in_use[0])); ++i) {
    172     if (in_use[i]) {
    173       palette[num_colors] = colors[i];
    174       ++num_colors;
    175     }
    176   }
    177   *palette_size = num_colors;
    178   qsort(palette, num_colors, sizeof(*palette), PaletteCompareColorsForQsort);
    179   if (!low_effort && PaletteHasNonMonotonousDeltas(palette, num_colors)) {
    180     GreedyMinimizeDeltas(palette, num_colors);
    181   }
    182   return 1;
    183 }
    184 
    185 // These five modes are evaluated and their respective entropy is computed.
    186 typedef enum {
    187   kDirect = 0,
    188   kSpatial = 1,
    189   kSubGreen = 2,
    190   kSpatialSubGreen = 3,
    191   kPalette = 4,
    192   kNumEntropyIx = 5
    193 } EntropyIx;
    194 
    195 typedef enum {
    196   kHistoAlpha = 0,
    197   kHistoAlphaPred,
    198   kHistoGreen,
    199   kHistoGreenPred,
    200   kHistoRed,
    201   kHistoRedPred,
    202   kHistoBlue,
    203   kHistoBluePred,
    204   kHistoRedSubGreen,
    205   kHistoRedPredSubGreen,
    206   kHistoBlueSubGreen,
    207   kHistoBluePredSubGreen,
    208   kHistoPalette,
    209   kHistoTotal  // Must be last.
    210 } HistoIx;
    211 
    212 static void AddSingleSubGreen(uint32_t p, uint32_t* r, uint32_t* b) {
    213   const uint32_t green = p >> 8;  // The upper bits are masked away later.
    214   ++r[((p >> 16) - green) & 0xff];
    215   ++b[(p - green) & 0xff];
    216 }
    217 
    218 static void AddSingle(uint32_t p,
    219                       uint32_t* a, uint32_t* r, uint32_t* g, uint32_t* b) {
    220   ++a[p >> 24];
    221   ++r[(p >> 16) & 0xff];
    222   ++g[(p >> 8) & 0xff];
    223   ++b[(p & 0xff)];
    224 }
    225 
    226 static int AnalyzeEntropy(const uint32_t* argb,
    227                           int width, int height, int argb_stride,
    228                           int use_palette,
    229                           EntropyIx* const min_entropy_ix,
    230                           int* const red_and_blue_always_zero) {
    231   // Allocate histogram set with cache_bits = 0.
    232   uint32_t* const histo =
    233       (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256);
    234   if (histo != NULL) {
    235     int i, x, y;
    236     const uint32_t* prev_row = argb;
    237     const uint32_t* curr_row = argb + argb_stride;
    238     for (y = 1; y < height; ++y) {
    239       uint32_t prev_pix = curr_row[0];
    240       for (x = 1; x < width; ++x) {
    241         const uint32_t pix = curr_row[x];
    242         const uint32_t pix_diff = VP8LSubPixels(pix, prev_pix);
    243         if ((pix_diff == 0) || (pix == prev_row[x])) continue;
    244         prev_pix = pix;
    245         AddSingle(pix,
    246                   &histo[kHistoAlpha * 256],
    247                   &histo[kHistoRed * 256],
    248                   &histo[kHistoGreen * 256],
    249                   &histo[kHistoBlue * 256]);
    250         AddSingle(pix_diff,
    251                   &histo[kHistoAlphaPred * 256],
    252                   &histo[kHistoRedPred * 256],
    253                   &histo[kHistoGreenPred * 256],
    254                   &histo[kHistoBluePred * 256]);
    255         AddSingleSubGreen(pix,
    256                           &histo[kHistoRedSubGreen * 256],
    257                           &histo[kHistoBlueSubGreen * 256]);
    258         AddSingleSubGreen(pix_diff,
    259                           &histo[kHistoRedPredSubGreen * 256],
    260                           &histo[kHistoBluePredSubGreen * 256]);
    261         {
    262           // Approximate the palette by the entropy of the multiplicative hash.
    263           const int hash = ((pix + (pix >> 19)) * 0x39c5fba7) >> 24;
    264           ++histo[kHistoPalette * 256 + (hash & 0xff)];
    265         }
    266       }
    267       prev_row = curr_row;
    268       curr_row += argb_stride;
    269     }
    270     {
    271       double entropy_comp[kHistoTotal];
    272       double entropy[kNumEntropyIx];
    273       EntropyIx k;
    274       EntropyIx last_mode_to_analyze =
    275           use_palette ? kPalette : kSpatialSubGreen;
    276       int j;
    277       // Let's add one zero to the predicted histograms. The zeros are removed
    278       // too efficiently by the pix_diff == 0 comparison, at least one of the
    279       // zeros is likely to exist.
    280       ++histo[kHistoRedPredSubGreen * 256];
    281       ++histo[kHistoBluePredSubGreen * 256];
    282       ++histo[kHistoRedPred * 256];
    283       ++histo[kHistoGreenPred * 256];
    284       ++histo[kHistoBluePred * 256];
    285       ++histo[kHistoAlphaPred * 256];
    286 
    287       for (j = 0; j < kHistoTotal; ++j) {
    288         entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256, NULL);
    289       }
    290       entropy[kDirect] = entropy_comp[kHistoAlpha] +
    291           entropy_comp[kHistoRed] +
    292           entropy_comp[kHistoGreen] +
    293           entropy_comp[kHistoBlue];
    294       entropy[kSpatial] = entropy_comp[kHistoAlphaPred] +
    295           entropy_comp[kHistoRedPred] +
    296           entropy_comp[kHistoGreenPred] +
    297           entropy_comp[kHistoBluePred];
    298       entropy[kSubGreen] = entropy_comp[kHistoAlpha] +
    299           entropy_comp[kHistoRedSubGreen] +
    300           entropy_comp[kHistoGreen] +
    301           entropy_comp[kHistoBlueSubGreen];
    302       entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] +
    303           entropy_comp[kHistoRedPredSubGreen] +
    304           entropy_comp[kHistoGreenPred] +
    305           entropy_comp[kHistoBluePredSubGreen];
    306       // Palette mode seems more efficient in a breakeven case. Bias with 1.0.
    307       entropy[kPalette] = entropy_comp[kHistoPalette] - 1.0;
    308 
    309       *min_entropy_ix = kDirect;
    310       for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) {
    311         if (entropy[*min_entropy_ix] > entropy[k]) {
    312           *min_entropy_ix = k;
    313         }
    314       }
    315       *red_and_blue_always_zero = 1;
    316       // Let's check if the histogram of the chosen entropy mode has
    317       // non-zero red and blue values. If all are zero, we can later skip
    318       // the cross color optimization.
    319       {
    320         static const uint8_t kHistoPairs[5][2] = {
    321           { kHistoRed, kHistoBlue },
    322           { kHistoRedPred, kHistoBluePred },
    323           { kHistoRedSubGreen, kHistoBlueSubGreen },
    324           { kHistoRedPredSubGreen, kHistoBluePredSubGreen },
    325           { kHistoRed, kHistoBlue }
    326         };
    327         const uint32_t* const red_histo =
    328             &histo[256 * kHistoPairs[*min_entropy_ix][0]];
    329         const uint32_t* const blue_histo =
    330             &histo[256 * kHistoPairs[*min_entropy_ix][1]];
    331         for (i = 1; i < 256; ++i) {
    332           if ((red_histo[i] | blue_histo[i]) != 0) {
    333             *red_and_blue_always_zero = 0;
    334             break;
    335           }
    336         }
    337       }
    338     }
    339     free(histo);
    340     return 1;
    341   } else {
    342     return 0;
    343   }
    344 }
    345 
    346 static int GetHistoBits(int method, int use_palette, int width, int height) {
    347   // Make tile size a function of encoding method (Range: 0 to 6).
    348   int histo_bits = (use_palette ? 9 : 7) - method;
    349   while (1) {
    350     const int huff_image_size = VP8LSubSampleSize(width, histo_bits) *
    351                                 VP8LSubSampleSize(height, histo_bits);
    352     if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break;
    353     ++histo_bits;
    354   }
    355   return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS :
    356          (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits;
    357 }
    358 
    359 static int GetTransformBits(int method, int histo_bits) {
    360   const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5;
    361   return (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits;
    362 }
    363 
    364 static int AnalyzeAndInit(VP8LEncoder* const enc) {
    365   const WebPPicture* const pic = enc->pic_;
    366   const int width = pic->width;
    367   const int height = pic->height;
    368   const int pix_cnt = width * height;
    369   const WebPConfig* const config = enc->config_;
    370   const int method = config->method;
    371   const int low_effort = (config->method == 0);
    372   // we round the block size up, so we're guaranteed to have
    373   // at max MAX_REFS_BLOCK_PER_IMAGE blocks used:
    374   int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1;
    375   assert(pic != NULL && pic->argb != NULL);
    376 
    377   enc->use_cross_color_ = 0;
    378   enc->use_predict_ = 0;
    379   enc->use_subtract_green_ = 0;
    380   enc->use_palette_ =
    381       AnalyzeAndCreatePalette(pic, low_effort,
    382                               enc->palette_, &enc->palette_size_);
    383 
    384   // TODO(jyrki): replace the decision to be based on an actual estimate
    385   // of entropy, or even spatial variance of entropy.
    386   enc->histo_bits_ = GetHistoBits(method, enc->use_palette_,
    387                                   pic->width, pic->height);
    388   enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_);
    389 
    390   if (low_effort) {
    391     // AnalyzeEntropy is somewhat slow.
    392     enc->use_predict_ = !enc->use_palette_;
    393     enc->use_subtract_green_ = !enc->use_palette_;
    394     enc->use_cross_color_ = 0;
    395   } else {
    396     int red_and_blue_always_zero;
    397     EntropyIx min_entropy_ix;
    398     if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride,
    399                         enc->use_palette_, &min_entropy_ix,
    400                         &red_and_blue_always_zero)) {
    401       return 0;
    402     }
    403     enc->use_palette_ = (min_entropy_ix == kPalette);
    404     enc->use_subtract_green_ =
    405         (min_entropy_ix == kSubGreen) || (min_entropy_ix == kSpatialSubGreen);
    406     enc->use_predict_ =
    407         (min_entropy_ix == kSpatial) || (min_entropy_ix == kSpatialSubGreen);
    408     enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_;
    409   }
    410 
    411   if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0;
    412 
    413   // palette-friendly input typically uses less literals
    414   //  -> reduce block size a bit
    415   if (enc->use_palette_) refs_block_size /= 2;
    416   VP8LBackwardRefsInit(&enc->refs_[0], refs_block_size);
    417   VP8LBackwardRefsInit(&enc->refs_[1], refs_block_size);
    418 
    419   return 1;
    420 }
    421 
    422 // Returns false in case of memory error.
    423 static int GetHuffBitLengthsAndCodes(
    424     const VP8LHistogramSet* const histogram_image,
    425     HuffmanTreeCode* const huffman_codes) {
    426   int i, k;
    427   int ok = 0;
    428   uint64_t total_length_size = 0;
    429   uint8_t* mem_buf = NULL;
    430   const int histogram_image_size = histogram_image->size;
    431   int max_num_symbols = 0;
    432   uint8_t* buf_rle = NULL;
    433   HuffmanTree* huff_tree = NULL;
    434 
    435   // Iterate over all histograms and get the aggregate number of codes used.
    436   for (i = 0; i < histogram_image_size; ++i) {
    437     const VP8LHistogram* const histo = histogram_image->histograms[i];
    438     HuffmanTreeCode* const codes = &huffman_codes[5 * i];
    439     for (k = 0; k < 5; ++k) {
    440       const int num_symbols =
    441           (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) :
    442           (k == 4) ? NUM_DISTANCE_CODES : 256;
    443       codes[k].num_symbols = num_symbols;
    444       total_length_size += num_symbols;
    445     }
    446   }
    447 
    448   // Allocate and Set Huffman codes.
    449   {
    450     uint16_t* codes;
    451     uint8_t* lengths;
    452     mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size,
    453                                        sizeof(*lengths) + sizeof(*codes));
    454     if (mem_buf == NULL) goto End;
    455 
    456     codes = (uint16_t*)mem_buf;
    457     lengths = (uint8_t*)&codes[total_length_size];
    458     for (i = 0; i < 5 * histogram_image_size; ++i) {
    459       const int bit_length = huffman_codes[i].num_symbols;
    460       huffman_codes[i].codes = codes;
    461       huffman_codes[i].code_lengths = lengths;
    462       codes += bit_length;
    463       lengths += bit_length;
    464       if (max_num_symbols < bit_length) {
    465         max_num_symbols = bit_length;
    466       }
    467     }
    468   }
    469 
    470   buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols);
    471   huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols,
    472                                            sizeof(*huff_tree));
    473   if (buf_rle == NULL || huff_tree == NULL) goto End;
    474 
    475   // Create Huffman trees.
    476   for (i = 0; i < histogram_image_size; ++i) {
    477     HuffmanTreeCode* const codes = &huffman_codes[5 * i];
    478     VP8LHistogram* const histo = histogram_image->histograms[i];
    479     VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0);
    480     VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1);
    481     VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2);
    482     VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3);
    483     VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4);
    484   }
    485   ok = 1;
    486  End:
    487   WebPSafeFree(huff_tree);
    488   WebPSafeFree(buf_rle);
    489   if (!ok) {
    490     WebPSafeFree(mem_buf);
    491     memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes));
    492   }
    493   return ok;
    494 }
    495 
    496 static void StoreHuffmanTreeOfHuffmanTreeToBitMask(
    497     VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) {
    498   // RFC 1951 will calm you down if you are worried about this funny sequence.
    499   // This sequence is tuned from that, but more weighted for lower symbol count,
    500   // and more spiking histograms.
    501   static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = {
    502     17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
    503   };
    504   int i;
    505   // Throw away trailing zeros:
    506   int codes_to_store = CODE_LENGTH_CODES;
    507   for (; codes_to_store > 4; --codes_to_store) {
    508     if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
    509       break;
    510     }
    511   }
    512   VP8LPutBits(bw, codes_to_store - 4, 4);
    513   for (i = 0; i < codes_to_store; ++i) {
    514     VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3);
    515   }
    516 }
    517 
    518 static void ClearHuffmanTreeIfOnlyOneSymbol(
    519     HuffmanTreeCode* const huffman_code) {
    520   int k;
    521   int count = 0;
    522   for (k = 0; k < huffman_code->num_symbols; ++k) {
    523     if (huffman_code->code_lengths[k] != 0) {
    524       ++count;
    525       if (count > 1) return;
    526     }
    527   }
    528   for (k = 0; k < huffman_code->num_symbols; ++k) {
    529     huffman_code->code_lengths[k] = 0;
    530     huffman_code->codes[k] = 0;
    531   }
    532 }
    533 
    534 static void StoreHuffmanTreeToBitMask(
    535     VP8LBitWriter* const bw,
    536     const HuffmanTreeToken* const tokens, const int num_tokens,
    537     const HuffmanTreeCode* const huffman_code) {
    538   int i;
    539   for (i = 0; i < num_tokens; ++i) {
    540     const int ix = tokens[i].code;
    541     const int extra_bits = tokens[i].extra_bits;
    542     VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]);
    543     switch (ix) {
    544       case 16:
    545         VP8LPutBits(bw, extra_bits, 2);
    546         break;
    547       case 17:
    548         VP8LPutBits(bw, extra_bits, 3);
    549         break;
    550       case 18:
    551         VP8LPutBits(bw, extra_bits, 7);
    552         break;
    553     }
    554   }
    555 }
    556 
    557 // 'huff_tree' and 'tokens' are pre-alloacted buffers.
    558 static void StoreFullHuffmanCode(VP8LBitWriter* const bw,
    559                                  HuffmanTree* const huff_tree,
    560                                  HuffmanTreeToken* const tokens,
    561                                  const HuffmanTreeCode* const tree) {
    562   uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 };
    563   uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 };
    564   const int max_tokens = tree->num_symbols;
    565   int num_tokens;
    566   HuffmanTreeCode huffman_code;
    567   huffman_code.num_symbols = CODE_LENGTH_CODES;
    568   huffman_code.code_lengths = code_length_bitdepth;
    569   huffman_code.codes = code_length_bitdepth_symbols;
    570 
    571   VP8LPutBits(bw, 0, 1);
    572   num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens);
    573   {
    574     uint32_t histogram[CODE_LENGTH_CODES] = { 0 };
    575     uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 };
    576     int i;
    577     for (i = 0; i < num_tokens; ++i) {
    578       ++histogram[tokens[i].code];
    579     }
    580 
    581     VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code);
    582   }
    583 
    584   StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth);
    585   ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code);
    586   {
    587     int trailing_zero_bits = 0;
    588     int trimmed_length = num_tokens;
    589     int write_trimmed_length;
    590     int length;
    591     int i = num_tokens;
    592     while (i-- > 0) {
    593       const int ix = tokens[i].code;
    594       if (ix == 0 || ix == 17 || ix == 18) {
    595         --trimmed_length;   // discount trailing zeros
    596         trailing_zero_bits += code_length_bitdepth[ix];
    597         if (ix == 17) {
    598           trailing_zero_bits += 3;
    599         } else if (ix == 18) {
    600           trailing_zero_bits += 7;
    601         }
    602       } else {
    603         break;
    604       }
    605     }
    606     write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12);
    607     length = write_trimmed_length ? trimmed_length : num_tokens;
    608     VP8LPutBits(bw, write_trimmed_length, 1);
    609     if (write_trimmed_length) {
    610       const int nbits = VP8LBitsLog2Ceiling(trimmed_length - 1);
    611       const int nbitpairs = (nbits == 0) ? 1 : (nbits + 1) / 2;
    612       VP8LPutBits(bw, nbitpairs - 1, 3);
    613       assert(trimmed_length >= 2);
    614       VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2);
    615     }
    616     StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code);
    617   }
    618 }
    619 
    620 // 'huff_tree' and 'tokens' are pre-alloacted buffers.
    621 static void StoreHuffmanCode(VP8LBitWriter* const bw,
    622                              HuffmanTree* const huff_tree,
    623                              HuffmanTreeToken* const tokens,
    624                              const HuffmanTreeCode* const huffman_code) {
    625   int i;
    626   int count = 0;
    627   int symbols[2] = { 0, 0 };
    628   const int kMaxBits = 8;
    629   const int kMaxSymbol = 1 << kMaxBits;
    630 
    631   // Check whether it's a small tree.
    632   for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) {
    633     if (huffman_code->code_lengths[i] != 0) {
    634       if (count < 2) symbols[count] = i;
    635       ++count;
    636     }
    637   }
    638 
    639   if (count == 0) {   // emit minimal tree for empty cases
    640     // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0
    641     VP8LPutBits(bw, 0x01, 4);
    642   } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) {
    643     VP8LPutBits(bw, 1, 1);  // Small tree marker to encode 1 or 2 symbols.
    644     VP8LPutBits(bw, count - 1, 1);
    645     if (symbols[0] <= 1) {
    646       VP8LPutBits(bw, 0, 1);  // Code bit for small (1 bit) symbol value.
    647       VP8LPutBits(bw, symbols[0], 1);
    648     } else {
    649       VP8LPutBits(bw, 1, 1);
    650       VP8LPutBits(bw, symbols[0], 8);
    651     }
    652     if (count == 2) {
    653       VP8LPutBits(bw, symbols[1], 8);
    654     }
    655   } else {
    656     StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code);
    657   }
    658 }
    659 
    660 static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw,
    661                              const HuffmanTreeCode* const code,
    662                              int code_index) {
    663   const int depth = code->code_lengths[code_index];
    664   const int symbol = code->codes[code_index];
    665   VP8LPutBits(bw, symbol, depth);
    666 }
    667 
    668 static WEBP_INLINE void WriteHuffmanCodeWithExtraBits(
    669     VP8LBitWriter* const bw,
    670     const HuffmanTreeCode* const code,
    671     int code_index,
    672     int bits,
    673     int n_bits) {
    674   const int depth = code->code_lengths[code_index];
    675   const int symbol = code->codes[code_index];
    676   VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits);
    677 }
    678 
    679 static WebPEncodingError StoreImageToBitMask(
    680     VP8LBitWriter* const bw, int width, int histo_bits,
    681     VP8LBackwardRefs* const refs,
    682     const uint16_t* histogram_symbols,
    683     const HuffmanTreeCode* const huffman_codes) {
    684   const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1;
    685   const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits);
    686   // x and y trace the position in the image.
    687   int x = 0;
    688   int y = 0;
    689   int tile_x = x & tile_mask;
    690   int tile_y = y & tile_mask;
    691   int histogram_ix = histogram_symbols[0];
    692   const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix;
    693   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
    694   while (VP8LRefsCursorOk(&c)) {
    695     const PixOrCopy* const v = c.cur_pos;
    696     if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) {
    697       tile_x = x & tile_mask;
    698       tile_y = y & tile_mask;
    699       histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize +
    700                                        (x >> histo_bits)];
    701       codes = huffman_codes + 5 * histogram_ix;
    702     }
    703     if (PixOrCopyIsLiteral(v)) {
    704       static const int order[] = { 1, 2, 0, 3 };
    705       int k;
    706       for (k = 0; k < 4; ++k) {
    707         const int code = PixOrCopyLiteral(v, order[k]);
    708         WriteHuffmanCode(bw, codes + k, code);
    709       }
    710     } else if (PixOrCopyIsCacheIdx(v)) {
    711       const int code = PixOrCopyCacheIdx(v);
    712       const int literal_ix = 256 + NUM_LENGTH_CODES + code;
    713       WriteHuffmanCode(bw, codes, literal_ix);
    714     } else {
    715       int bits, n_bits;
    716       int code;
    717 
    718       const int distance = PixOrCopyDistance(v);
    719       VP8LPrefixEncode(v->len, &code, &n_bits, &bits);
    720       WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits);
    721 
    722       // Don't write the distance with the extra bits code since
    723       // the distance can be up to 18 bits of extra bits, and the prefix
    724       // 15 bits, totaling to 33, and our PutBits only supports up to 32 bits.
    725       // TODO(jyrki): optimize this further.
    726       VP8LPrefixEncode(distance, &code, &n_bits, &bits);
    727       WriteHuffmanCode(bw, codes + 4, code);
    728       VP8LPutBits(bw, bits, n_bits);
    729     }
    730     x += PixOrCopyLength(v);
    731     while (x >= width) {
    732       x -= width;
    733       ++y;
    734     }
    735     VP8LRefsCursorNext(&c);
    736   }
    737   return bw->error_ ? VP8_ENC_ERROR_OUT_OF_MEMORY : VP8_ENC_OK;
    738 }
    739 
    740 // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31
    741 static WebPEncodingError EncodeImageNoHuffman(VP8LBitWriter* const bw,
    742                                               const uint32_t* const argb,
    743                                               VP8LHashChain* const hash_chain,
    744                                               VP8LBackwardRefs refs_array[2],
    745                                               int width, int height,
    746                                               int quality) {
    747   int i;
    748   int max_tokens = 0;
    749   WebPEncodingError err = VP8_ENC_OK;
    750   VP8LBackwardRefs* refs;
    751   HuffmanTreeToken* tokens = NULL;
    752   HuffmanTreeCode huffman_codes[5] = { { 0, NULL, NULL } };
    753   const uint16_t histogram_symbols[1] = { 0 };    // only one tree, one symbol
    754   int cache_bits = 0;
    755   VP8LHistogramSet* histogram_image = NULL;
    756   HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
    757         3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
    758   if (huff_tree == NULL) {
    759     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    760     goto Error;
    761   }
    762 
    763   // Calculate backward references from ARGB image.
    764   refs = VP8LGetBackwardReferences(width, height, argb, quality, 0, &cache_bits,
    765                                    hash_chain, refs_array);
    766   if (refs == NULL) {
    767     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    768     goto Error;
    769   }
    770   histogram_image = VP8LAllocateHistogramSet(1, cache_bits);
    771   if (histogram_image == NULL) {
    772     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    773     goto Error;
    774   }
    775 
    776   // Build histogram image and symbols from backward references.
    777   VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]);
    778 
    779   // Create Huffman bit lengths and codes for each histogram image.
    780   assert(histogram_image->size == 1);
    781   if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
    782     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    783     goto Error;
    784   }
    785 
    786   // No color cache, no Huffman image.
    787   VP8LPutBits(bw, 0, 1);
    788 
    789   // Find maximum number of symbols for the huffman tree-set.
    790   for (i = 0; i < 5; ++i) {
    791     HuffmanTreeCode* const codes = &huffman_codes[i];
    792     if (max_tokens < codes->num_symbols) {
    793       max_tokens = codes->num_symbols;
    794     }
    795   }
    796 
    797   tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
    798   if (tokens == NULL) {
    799     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    800     goto Error;
    801   }
    802 
    803   // Store Huffman codes.
    804   for (i = 0; i < 5; ++i) {
    805     HuffmanTreeCode* const codes = &huffman_codes[i];
    806     StoreHuffmanCode(bw, huff_tree, tokens, codes);
    807     ClearHuffmanTreeIfOnlyOneSymbol(codes);
    808   }
    809 
    810   // Store actual literals.
    811   err = StoreImageToBitMask(bw, width, 0, refs, histogram_symbols,
    812                             huffman_codes);
    813 
    814  Error:
    815   WebPSafeFree(tokens);
    816   WebPSafeFree(huff_tree);
    817   VP8LFreeHistogramSet(histogram_image);
    818   WebPSafeFree(huffman_codes[0].codes);
    819   return err;
    820 }
    821 
    822 static WebPEncodingError EncodeImageInternal(VP8LBitWriter* const bw,
    823                                              const uint32_t* const argb,
    824                                              VP8LHashChain* const hash_chain,
    825                                              VP8LBackwardRefs refs_array[2],
    826                                              int width, int height, int quality,
    827                                              int low_effort, int* cache_bits,
    828                                              int histogram_bits,
    829                                              size_t init_byte_position,
    830                                              int* const hdr_size,
    831                                              int* const data_size) {
    832   WebPEncodingError err = VP8_ENC_OK;
    833   const uint32_t histogram_image_xysize =
    834       VP8LSubSampleSize(width, histogram_bits) *
    835       VP8LSubSampleSize(height, histogram_bits);
    836   VP8LHistogramSet* histogram_image = NULL;
    837   VP8LHistogramSet* tmp_histos = NULL;
    838   int histogram_image_size = 0;
    839   size_t bit_array_size = 0;
    840   HuffmanTree* huff_tree = NULL;
    841   HuffmanTreeToken* tokens = NULL;
    842   HuffmanTreeCode* huffman_codes = NULL;
    843   VP8LBackwardRefs refs;
    844   VP8LBackwardRefs* best_refs;
    845   uint16_t* const histogram_symbols =
    846       (uint16_t*)WebPSafeMalloc(histogram_image_xysize,
    847                                 sizeof(*histogram_symbols));
    848   assert(histogram_bits >= MIN_HUFFMAN_BITS);
    849   assert(histogram_bits <= MAX_HUFFMAN_BITS);
    850   assert(hdr_size != NULL);
    851   assert(data_size != NULL);
    852 
    853   VP8LBackwardRefsInit(&refs, refs_array[0].block_size_);
    854   if (histogram_symbols == NULL) {
    855     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    856     goto Error;
    857   }
    858 
    859   *cache_bits = MAX_COLOR_CACHE_BITS;
    860   // 'best_refs' is the reference to the best backward refs and points to one
    861   // of refs_array[0] or refs_array[1].
    862   // Calculate backward references from ARGB image.
    863   best_refs = VP8LGetBackwardReferences(width, height, argb, quality,
    864                                         low_effort, cache_bits, hash_chain,
    865                                         refs_array);
    866   if (best_refs == NULL || !VP8LBackwardRefsCopy(best_refs, &refs)) {
    867     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    868     goto Error;
    869   }
    870   histogram_image =
    871       VP8LAllocateHistogramSet(histogram_image_xysize, *cache_bits);
    872   tmp_histos = VP8LAllocateHistogramSet(2, *cache_bits);
    873   if (histogram_image == NULL || tmp_histos == NULL) {
    874     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    875     goto Error;
    876   }
    877 
    878   // Build histogram image and symbols from backward references.
    879   if (!VP8LGetHistoImageSymbols(width, height, &refs, quality, low_effort,
    880                                 histogram_bits, *cache_bits, histogram_image,
    881                                 tmp_histos, histogram_symbols)) {
    882     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    883     goto Error;
    884   }
    885   // Create Huffman bit lengths and codes for each histogram image.
    886   histogram_image_size = histogram_image->size;
    887   bit_array_size = 5 * histogram_image_size;
    888   huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size,
    889                                                    sizeof(*huffman_codes));
    890   // Note: some histogram_image entries may point to tmp_histos[], so the latter
    891   // need to outlive the following call to GetHuffBitLengthsAndCodes().
    892   if (huffman_codes == NULL ||
    893       !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
    894     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    895     goto Error;
    896   }
    897   // Free combined histograms.
    898   VP8LFreeHistogramSet(histogram_image);
    899   histogram_image = NULL;
    900 
    901   // Free scratch histograms.
    902   VP8LFreeHistogramSet(tmp_histos);
    903   tmp_histos = NULL;
    904 
    905   // Color Cache parameters.
    906   if (*cache_bits > 0) {
    907     VP8LPutBits(bw, 1, 1);
    908     VP8LPutBits(bw, *cache_bits, 4);
    909   } else {
    910     VP8LPutBits(bw, 0, 1);
    911   }
    912 
    913   // Huffman image + meta huffman.
    914   {
    915     const int write_histogram_image = (histogram_image_size > 1);
    916     VP8LPutBits(bw, write_histogram_image, 1);
    917     if (write_histogram_image) {
    918       uint32_t* const histogram_argb =
    919           (uint32_t*)WebPSafeMalloc(histogram_image_xysize,
    920                                     sizeof(*histogram_argb));
    921       int max_index = 0;
    922       uint32_t i;
    923       if (histogram_argb == NULL) {
    924         err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    925         goto Error;
    926       }
    927       for (i = 0; i < histogram_image_xysize; ++i) {
    928         const int symbol_index = histogram_symbols[i] & 0xffff;
    929         histogram_argb[i] = (symbol_index << 8);
    930         if (symbol_index >= max_index) {
    931           max_index = symbol_index + 1;
    932         }
    933       }
    934       histogram_image_size = max_index;
    935 
    936       VP8LPutBits(bw, histogram_bits - 2, 3);
    937       err = EncodeImageNoHuffman(bw, histogram_argb, hash_chain, refs_array,
    938                                  VP8LSubSampleSize(width, histogram_bits),
    939                                  VP8LSubSampleSize(height, histogram_bits),
    940                                  quality);
    941       WebPSafeFree(histogram_argb);
    942       if (err != VP8_ENC_OK) goto Error;
    943     }
    944   }
    945 
    946   // Store Huffman codes.
    947   {
    948     int i;
    949     int max_tokens = 0;
    950     huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * CODE_LENGTH_CODES,
    951                                              sizeof(*huff_tree));
    952     if (huff_tree == NULL) {
    953       err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    954       goto Error;
    955     }
    956     // Find maximum number of symbols for the huffman tree-set.
    957     for (i = 0; i < 5 * histogram_image_size; ++i) {
    958       HuffmanTreeCode* const codes = &huffman_codes[i];
    959       if (max_tokens < codes->num_symbols) {
    960         max_tokens = codes->num_symbols;
    961       }
    962     }
    963     tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens,
    964                                                sizeof(*tokens));
    965     if (tokens == NULL) {
    966       err = VP8_ENC_ERROR_OUT_OF_MEMORY;
    967       goto Error;
    968     }
    969     for (i = 0; i < 5 * histogram_image_size; ++i) {
    970       HuffmanTreeCode* const codes = &huffman_codes[i];
    971       StoreHuffmanCode(bw, huff_tree, tokens, codes);
    972       ClearHuffmanTreeIfOnlyOneSymbol(codes);
    973     }
    974   }
    975 
    976   *hdr_size = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position);
    977   // Store actual literals.
    978   err = StoreImageToBitMask(bw, width, histogram_bits, &refs,
    979                             histogram_symbols, huffman_codes);
    980   *data_size =
    981         (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size);
    982 
    983  Error:
    984   WebPSafeFree(tokens);
    985   WebPSafeFree(huff_tree);
    986   VP8LFreeHistogramSet(histogram_image);
    987   VP8LFreeHistogramSet(tmp_histos);
    988   VP8LBackwardRefsClear(&refs);
    989   if (huffman_codes != NULL) {
    990     WebPSafeFree(huffman_codes->codes);
    991     WebPSafeFree(huffman_codes);
    992   }
    993   WebPSafeFree(histogram_symbols);
    994   return err;
    995 }
    996 
    997 // -----------------------------------------------------------------------------
    998 // Transforms
    999 
   1000 static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height,
   1001                                VP8LBitWriter* const bw) {
   1002   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
   1003   VP8LPutBits(bw, SUBTRACT_GREEN, 2);
   1004   VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height);
   1005 }
   1006 
   1007 static WebPEncodingError ApplyPredictFilter(const VP8LEncoder* const enc,
   1008                                             int width, int height,
   1009                                             int quality, int low_effort,
   1010                                             VP8LBitWriter* const bw) {
   1011   const int pred_bits = enc->transform_bits_;
   1012   const int transform_width = VP8LSubSampleSize(width, pred_bits);
   1013   const int transform_height = VP8LSubSampleSize(height, pred_bits);
   1014 
   1015   VP8LResidualImage(width, height, pred_bits, low_effort, enc->argb_,
   1016                     enc->argb_scratch_, enc->transform_data_,
   1017                     enc->config_->exact);
   1018   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
   1019   VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2);
   1020   assert(pred_bits >= 2);
   1021   VP8LPutBits(bw, pred_bits - 2, 3);
   1022   return EncodeImageNoHuffman(bw, enc->transform_data_,
   1023                               (VP8LHashChain*)&enc->hash_chain_,
   1024                               (VP8LBackwardRefs*)enc->refs_,  // cast const away
   1025                               transform_width, transform_height,
   1026                               quality);
   1027 }
   1028 
   1029 static WebPEncodingError ApplyCrossColorFilter(const VP8LEncoder* const enc,
   1030                                                int width, int height,
   1031                                                int quality,
   1032                                                VP8LBitWriter* const bw) {
   1033   const int ccolor_transform_bits = enc->transform_bits_;
   1034   const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits);
   1035   const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits);
   1036 
   1037   VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality,
   1038                           enc->argb_, enc->transform_data_);
   1039   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
   1040   VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2);
   1041   assert(ccolor_transform_bits >= 2);
   1042   VP8LPutBits(bw, ccolor_transform_bits - 2, 3);
   1043   return EncodeImageNoHuffman(bw, enc->transform_data_,
   1044                               (VP8LHashChain*)&enc->hash_chain_,
   1045                               (VP8LBackwardRefs*)enc->refs_,  // cast const away
   1046                               transform_width, transform_height,
   1047                               quality);
   1048 }
   1049 
   1050 // -----------------------------------------------------------------------------
   1051 
   1052 static WebPEncodingError WriteRiffHeader(const WebPPicture* const pic,
   1053                                          size_t riff_size, size_t vp8l_size) {
   1054   uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = {
   1055     'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P',
   1056     'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE,
   1057   };
   1058   PutLE32(riff + TAG_SIZE, (uint32_t)riff_size);
   1059   PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size);
   1060   if (!pic->writer(riff, sizeof(riff), pic)) {
   1061     return VP8_ENC_ERROR_BAD_WRITE;
   1062   }
   1063   return VP8_ENC_OK;
   1064 }
   1065 
   1066 static int WriteImageSize(const WebPPicture* const pic,
   1067                           VP8LBitWriter* const bw) {
   1068   const int width = pic->width - 1;
   1069   const int height = pic->height - 1;
   1070   assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION);
   1071 
   1072   VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS);
   1073   VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS);
   1074   return !bw->error_;
   1075 }
   1076 
   1077 static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) {
   1078   VP8LPutBits(bw, has_alpha, 1);
   1079   VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS);
   1080   return !bw->error_;
   1081 }
   1082 
   1083 static WebPEncodingError WriteImage(const WebPPicture* const pic,
   1084                                     VP8LBitWriter* const bw,
   1085                                     size_t* const coded_size) {
   1086   WebPEncodingError err = VP8_ENC_OK;
   1087   const uint8_t* const webpll_data = VP8LBitWriterFinish(bw);
   1088   const size_t webpll_size = VP8LBitWriterNumBytes(bw);
   1089   const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size;
   1090   const size_t pad = vp8l_size & 1;
   1091   const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad;
   1092 
   1093   err = WriteRiffHeader(pic, riff_size, vp8l_size);
   1094   if (err != VP8_ENC_OK) goto Error;
   1095 
   1096   if (!pic->writer(webpll_data, webpll_size, pic)) {
   1097     err = VP8_ENC_ERROR_BAD_WRITE;
   1098     goto Error;
   1099   }
   1100 
   1101   if (pad) {
   1102     const uint8_t pad_byte[1] = { 0 };
   1103     if (!pic->writer(pad_byte, 1, pic)) {
   1104       err = VP8_ENC_ERROR_BAD_WRITE;
   1105       goto Error;
   1106     }
   1107   }
   1108   *coded_size = CHUNK_HEADER_SIZE + riff_size;
   1109   return VP8_ENC_OK;
   1110 
   1111  Error:
   1112   return err;
   1113 }
   1114 
   1115 // -----------------------------------------------------------------------------
   1116 
   1117 // Allocates the memory for argb (W x H) buffer, 2 rows of context for
   1118 // prediction and transform data.
   1119 // Flags influencing the memory allocated:
   1120 //  enc->transform_bits_
   1121 //  enc->use_predict_, enc->use_cross_color_
   1122 static WebPEncodingError AllocateTransformBuffer(VP8LEncoder* const enc,
   1123                                                  int width, int height) {
   1124   WebPEncodingError err = VP8_ENC_OK;
   1125   if (enc->argb_ == NULL) {
   1126     const int tile_size = 1 << enc->transform_bits_;
   1127     const uint64_t image_size = width * height;
   1128     // Ensure enough size for tiles, as well as for two scanlines and two
   1129     // extra pixels for CopyImageWithPrediction.
   1130     const uint64_t argb_scratch_size =
   1131         enc->use_predict_ ? tile_size * width + width + 2 : 0;
   1132     const int transform_data_size =
   1133         (enc->use_predict_ || enc->use_cross_color_)
   1134             ? VP8LSubSampleSize(width, enc->transform_bits_) *
   1135               VP8LSubSampleSize(height, enc->transform_bits_)
   1136             : 0;
   1137     const uint64_t total_size =
   1138         image_size + WEBP_ALIGN_CST +
   1139         argb_scratch_size + WEBP_ALIGN_CST +
   1140         (uint64_t)transform_data_size;
   1141     uint32_t* mem = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*mem));
   1142     if (mem == NULL) {
   1143       err = VP8_ENC_ERROR_OUT_OF_MEMORY;
   1144       goto Error;
   1145     }
   1146     enc->argb_ = mem;
   1147     mem = (uint32_t*)WEBP_ALIGN(mem + image_size);
   1148     enc->argb_scratch_ = mem;
   1149     mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size);
   1150     enc->transform_data_ = mem;
   1151     enc->current_width_ = width;
   1152   }
   1153  Error:
   1154   return err;
   1155 }
   1156 
   1157 static void ClearTransformBuffer(VP8LEncoder* const enc) {
   1158   WebPSafeFree(enc->argb_);
   1159   enc->argb_ = NULL;
   1160 }
   1161 
   1162 static WebPEncodingError MakeInputImageCopy(VP8LEncoder* const enc) {
   1163   WebPEncodingError err = VP8_ENC_OK;
   1164   const WebPPicture* const picture = enc->pic_;
   1165   const int width = picture->width;
   1166   const int height = picture->height;
   1167   int y;
   1168   err = AllocateTransformBuffer(enc, width, height);
   1169   if (err != VP8_ENC_OK) return err;
   1170   for (y = 0; y < height; ++y) {
   1171     memcpy(enc->argb_ + y * width,
   1172            picture->argb + y * picture->argb_stride,
   1173            width * sizeof(*enc->argb_));
   1174   }
   1175   assert(enc->current_width_ == width);
   1176   return VP8_ENC_OK;
   1177 }
   1178 
   1179 // -----------------------------------------------------------------------------
   1180 
   1181 static void MapToPalette(const uint32_t palette[], int num_colors,
   1182                          uint32_t* const last_pix, int* const last_idx,
   1183                          const uint32_t* src, uint8_t* dst, int width) {
   1184   int x;
   1185   int prev_idx = *last_idx;
   1186   uint32_t prev_pix = *last_pix;
   1187   for (x = 0; x < width; ++x) {
   1188     const uint32_t pix = src[x];
   1189     if (pix != prev_pix) {
   1190       int i;
   1191       for (i = 0; i < num_colors; ++i) {
   1192         if (pix == palette[i]) {
   1193           prev_idx = i;
   1194           prev_pix = pix;
   1195           break;
   1196         }
   1197       }
   1198     }
   1199     dst[x] = prev_idx;
   1200   }
   1201   *last_idx = prev_idx;
   1202   *last_pix = prev_pix;
   1203 }
   1204 
   1205 // Remap argb values in src[] to packed palettes entries in dst[]
   1206 // using 'row' as a temporary buffer of size 'width'.
   1207 // We assume that all src[] values have a corresponding entry in the palette.
   1208 // Note: src[] can be the same as dst[]
   1209 static WebPEncodingError ApplyPalette(const uint32_t* src, uint32_t src_stride,
   1210                                       uint32_t* dst, uint32_t dst_stride,
   1211                                       const uint32_t* palette, int palette_size,
   1212                                       int width, int height, int xbits) {
   1213   // TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be
   1214   // made to work in-place.
   1215   uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row));
   1216   int i, x, y;
   1217   int use_LUT = 1;
   1218 
   1219   if (tmp_row == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
   1220   for (i = 0; i < palette_size; ++i) {
   1221     if ((palette[i] & 0xffff00ffu) != 0) {
   1222       use_LUT = 0;
   1223       break;
   1224     }
   1225   }
   1226 
   1227   if (use_LUT) {
   1228     uint8_t inv_palette[MAX_PALETTE_SIZE] = { 0 };
   1229     for (i = 0; i < palette_size; ++i) {
   1230       const int color = (palette[i] >> 8) & 0xff;
   1231       inv_palette[color] = i;
   1232     }
   1233     for (y = 0; y < height; ++y) {
   1234       for (x = 0; x < width; ++x) {
   1235         const int color = (src[x] >> 8) & 0xff;
   1236         tmp_row[x] = inv_palette[color];
   1237       }
   1238       VP8LBundleColorMap(tmp_row, width, xbits, dst);
   1239       src += src_stride;
   1240       dst += dst_stride;
   1241     }
   1242   } else {
   1243     // Use 1 pixel cache for ARGB pixels.
   1244     uint32_t last_pix = palette[0];
   1245     int last_idx = 0;
   1246     for (y = 0; y < height; ++y) {
   1247       MapToPalette(palette, palette_size, &last_pix, &last_idx,
   1248                    src, tmp_row, width);
   1249       VP8LBundleColorMap(tmp_row, width, xbits, dst);
   1250       src += src_stride;
   1251       dst += dst_stride;
   1252     }
   1253   }
   1254   WebPSafeFree(tmp_row);
   1255   return VP8_ENC_OK;
   1256 }
   1257 
   1258 // Note: Expects "enc->palette_" to be set properly.
   1259 static WebPEncodingError MapImageFromPalette(VP8LEncoder* const enc,
   1260                                              int in_place) {
   1261   WebPEncodingError err = VP8_ENC_OK;
   1262   const WebPPicture* const pic = enc->pic_;
   1263   const int width = pic->width;
   1264   const int height = pic->height;
   1265   const uint32_t* const palette = enc->palette_;
   1266   const uint32_t* src = in_place ? enc->argb_ : pic->argb;
   1267   const int src_stride = in_place ? enc->current_width_ : pic->argb_stride;
   1268   const int palette_size = enc->palette_size_;
   1269   int xbits;
   1270 
   1271   // Replace each input pixel by corresponding palette index.
   1272   // This is done line by line.
   1273   if (palette_size <= 4) {
   1274     xbits = (palette_size <= 2) ? 3 : 2;
   1275   } else {
   1276     xbits = (palette_size <= 16) ? 1 : 0;
   1277   }
   1278 
   1279   err = AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height);
   1280   if (err != VP8_ENC_OK) return err;
   1281 
   1282   err = ApplyPalette(src, src_stride,
   1283                      enc->argb_, enc->current_width_,
   1284                      palette, palette_size, width, height, xbits);
   1285   return err;
   1286 }
   1287 
   1288 // Save palette_[] to bitstream.
   1289 static WebPEncodingError EncodePalette(VP8LBitWriter* const bw,
   1290                                        VP8LEncoder* const enc) {
   1291   int i;
   1292   uint32_t tmp_palette[MAX_PALETTE_SIZE];
   1293   const int palette_size = enc->palette_size_;
   1294   const uint32_t* const palette = enc->palette_;
   1295   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
   1296   VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2);
   1297   assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE);
   1298   VP8LPutBits(bw, palette_size - 1, 8);
   1299   for (i = palette_size - 1; i >= 1; --i) {
   1300     tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]);
   1301   }
   1302   tmp_palette[0] = palette[0];
   1303   return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_, enc->refs_,
   1304                               palette_size, 1, 20 /* quality */);
   1305 }
   1306 
   1307 #ifdef WEBP_EXPERIMENTAL_FEATURES
   1308 
   1309 static WebPEncodingError EncodeDeltaPalettePredictorImage(
   1310     VP8LBitWriter* const bw, VP8LEncoder* const enc, int quality) {
   1311   const WebPPicture* const pic = enc->pic_;
   1312   const int width = pic->width;
   1313   const int height = pic->height;
   1314 
   1315   const int pred_bits = 5;
   1316   const int transform_width = VP8LSubSampleSize(width, pred_bits);
   1317   const int transform_height = VP8LSubSampleSize(height, pred_bits);
   1318   const int pred = 7;   // default is Predictor7 (Top/Left Average)
   1319   const int tiles_per_row = VP8LSubSampleSize(width, pred_bits);
   1320   const int tiles_per_col = VP8LSubSampleSize(height, pred_bits);
   1321   uint32_t* predictors;
   1322   int tile_x, tile_y;
   1323   WebPEncodingError err = VP8_ENC_OK;
   1324 
   1325   predictors = (uint32_t*)WebPSafeMalloc(tiles_per_col * tiles_per_row,
   1326                                          sizeof(*predictors));
   1327   if (predictors == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
   1328 
   1329   for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
   1330     for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
   1331       predictors[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8);
   1332     }
   1333   }
   1334 
   1335   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
   1336   VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2);
   1337   VP8LPutBits(bw, pred_bits - 2, 3);
   1338   err = EncodeImageNoHuffman(bw, predictors, &enc->hash_chain_,
   1339                              (VP8LBackwardRefs*)enc->refs_,  // cast const away
   1340                              transform_width, transform_height,
   1341                              quality);
   1342   WebPSafeFree(predictors);
   1343   return err;
   1344 }
   1345 
   1346 #endif // WEBP_EXPERIMENTAL_FEATURES
   1347 
   1348 // -----------------------------------------------------------------------------
   1349 // VP8LEncoder
   1350 
   1351 static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config,
   1352                                    const WebPPicture* const picture) {
   1353   VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc));
   1354   if (enc == NULL) {
   1355     WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
   1356     return NULL;
   1357   }
   1358   enc->config_ = config;
   1359   enc->pic_ = picture;
   1360 
   1361   VP8LEncDspInit();
   1362 
   1363   return enc;
   1364 }
   1365 
   1366 static void VP8LEncoderDelete(VP8LEncoder* enc) {
   1367   if (enc != NULL) {
   1368     VP8LHashChainClear(&enc->hash_chain_);
   1369     VP8LBackwardRefsClear(&enc->refs_[0]);
   1370     VP8LBackwardRefsClear(&enc->refs_[1]);
   1371     ClearTransformBuffer(enc);
   1372     WebPSafeFree(enc);
   1373   }
   1374 }
   1375 
   1376 // -----------------------------------------------------------------------------
   1377 // Main call
   1378 
   1379 WebPEncodingError VP8LEncodeStream(const WebPConfig* const config,
   1380                                    const WebPPicture* const picture,
   1381                                    VP8LBitWriter* const bw) {
   1382   WebPEncodingError err = VP8_ENC_OK;
   1383   const int quality = (int)config->quality;
   1384   const int low_effort = (config->method == 0);
   1385   const int width = picture->width;
   1386   const int height = picture->height;
   1387   VP8LEncoder* const enc = VP8LEncoderNew(config, picture);
   1388   const size_t byte_position = VP8LBitWriterNumBytes(bw);
   1389   int use_near_lossless = 0;
   1390   int hdr_size = 0;
   1391   int data_size = 0;
   1392   int use_delta_palettization = 0;
   1393 
   1394   if (enc == NULL) {
   1395     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
   1396     goto Error;
   1397   }
   1398 
   1399   // ---------------------------------------------------------------------------
   1400   // Analyze image (entropy, num_palettes etc)
   1401 
   1402   if (!AnalyzeAndInit(enc)) {
   1403     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
   1404     goto Error;
   1405   }
   1406 
   1407   // Apply near-lossless preprocessing.
   1408   use_near_lossless = !enc->use_palette_ && (config->near_lossless < 100);
   1409   if (use_near_lossless) {
   1410     if (!VP8ApplyNearLossless(width, height, picture->argb,
   1411                               config->near_lossless)) {
   1412       err = VP8_ENC_ERROR_OUT_OF_MEMORY;
   1413       goto Error;
   1414     }
   1415   }
   1416 
   1417 #ifdef WEBP_EXPERIMENTAL_FEATURES
   1418   if (config->delta_palettization) {
   1419     enc->use_predict_ = 1;
   1420     enc->use_cross_color_ = 0;
   1421     enc->use_subtract_green_ = 0;
   1422     enc->use_palette_ = 1;
   1423     err = MakeInputImageCopy(enc);
   1424     if (err != VP8_ENC_OK) goto Error;
   1425     err = WebPSearchOptimalDeltaPalette(enc);
   1426     if (err != VP8_ENC_OK) goto Error;
   1427     if (enc->use_palette_) {
   1428       err = AllocateTransformBuffer(enc, width, height);
   1429       if (err != VP8_ENC_OK) goto Error;
   1430       err = EncodeDeltaPalettePredictorImage(bw, enc, quality);
   1431       if (err != VP8_ENC_OK) goto Error;
   1432       use_delta_palettization = 1;
   1433     }
   1434   }
   1435 #endif  // WEBP_EXPERIMENTAL_FEATURES
   1436 
   1437   // Encode palette
   1438   if (enc->use_palette_) {
   1439     err = EncodePalette(bw, enc);
   1440     if (err != VP8_ENC_OK) goto Error;
   1441     err = MapImageFromPalette(enc, use_delta_palettization);
   1442     if (err != VP8_ENC_OK) goto Error;
   1443   }
   1444   if (!use_delta_palettization) {
   1445     // In case image is not packed.
   1446     if (enc->argb_ == NULL) {
   1447       err = MakeInputImageCopy(enc);
   1448       if (err != VP8_ENC_OK) goto Error;
   1449     }
   1450 
   1451     // -------------------------------------------------------------------------
   1452     // Apply transforms and write transform data.
   1453 
   1454     if (enc->use_subtract_green_) {
   1455       ApplySubtractGreen(enc, enc->current_width_, height, bw);
   1456     }
   1457 
   1458     if (enc->use_predict_) {
   1459       err = ApplyPredictFilter(enc, enc->current_width_, height, quality,
   1460                                low_effort, bw);
   1461       if (err != VP8_ENC_OK) goto Error;
   1462     }
   1463 
   1464     if (enc->use_cross_color_) {
   1465       err = ApplyCrossColorFilter(enc, enc->current_width_,
   1466                                   height, quality, bw);
   1467       if (err != VP8_ENC_OK) goto Error;
   1468     }
   1469   }
   1470 
   1471   VP8LPutBits(bw, !TRANSFORM_PRESENT, 1);  // No more transforms.
   1472 
   1473   // ---------------------------------------------------------------------------
   1474   // Encode and write the transformed image.
   1475   err = EncodeImageInternal(bw, enc->argb_, &enc->hash_chain_, enc->refs_,
   1476                             enc->current_width_, height, quality, low_effort,
   1477                             &enc->cache_bits_, enc->histo_bits_, byte_position,
   1478                             &hdr_size, &data_size);
   1479   if (err != VP8_ENC_OK) goto Error;
   1480 
   1481   if (picture->stats != NULL) {
   1482     WebPAuxStats* const stats = picture->stats;
   1483     stats->lossless_features = 0;
   1484     if (enc->use_predict_) stats->lossless_features |= 1;
   1485     if (enc->use_cross_color_) stats->lossless_features |= 2;
   1486     if (enc->use_subtract_green_) stats->lossless_features |= 4;
   1487     if (enc->use_palette_) stats->lossless_features |= 8;
   1488     stats->histogram_bits = enc->histo_bits_;
   1489     stats->transform_bits = enc->transform_bits_;
   1490     stats->cache_bits = enc->cache_bits_;
   1491     stats->palette_size = enc->palette_size_;
   1492     stats->lossless_size = (int)(VP8LBitWriterNumBytes(bw) - byte_position);
   1493     stats->lossless_hdr_size = hdr_size;
   1494     stats->lossless_data_size = data_size;
   1495   }
   1496 
   1497  Error:
   1498   VP8LEncoderDelete(enc);
   1499   return err;
   1500 }
   1501 
   1502 int VP8LEncodeImage(const WebPConfig* const config,
   1503                     const WebPPicture* const picture) {
   1504   int width, height;
   1505   int has_alpha;
   1506   size_t coded_size;
   1507   int percent = 0;
   1508   int initial_size;
   1509   WebPEncodingError err = VP8_ENC_OK;
   1510   VP8LBitWriter bw;
   1511 
   1512   if (picture == NULL) return 0;
   1513 
   1514   if (config == NULL || picture->argb == NULL) {
   1515     err = VP8_ENC_ERROR_NULL_PARAMETER;
   1516     WebPEncodingSetError(picture, err);
   1517     return 0;
   1518   }
   1519 
   1520   width = picture->width;
   1521   height = picture->height;
   1522   // Initialize BitWriter with size corresponding to 16 bpp to photo images and
   1523   // 8 bpp for graphical images.
   1524   initial_size = (config->image_hint == WEBP_HINT_GRAPH) ?
   1525       width * height : width * height * 2;
   1526   if (!VP8LBitWriterInit(&bw, initial_size)) {
   1527     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
   1528     goto Error;
   1529   }
   1530 
   1531   if (!WebPReportProgress(picture, 1, &percent)) {
   1532  UserAbort:
   1533     err = VP8_ENC_ERROR_USER_ABORT;
   1534     goto Error;
   1535   }
   1536   // Reset stats (for pure lossless coding)
   1537   if (picture->stats != NULL) {
   1538     WebPAuxStats* const stats = picture->stats;
   1539     memset(stats, 0, sizeof(*stats));
   1540     stats->PSNR[0] = 99.f;
   1541     stats->PSNR[1] = 99.f;
   1542     stats->PSNR[2] = 99.f;
   1543     stats->PSNR[3] = 99.f;
   1544     stats->PSNR[4] = 99.f;
   1545   }
   1546 
   1547   // Write image size.
   1548   if (!WriteImageSize(picture, &bw)) {
   1549     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
   1550     goto Error;
   1551   }
   1552 
   1553   has_alpha = WebPPictureHasTransparency(picture);
   1554   // Write the non-trivial Alpha flag and lossless version.
   1555   if (!WriteRealAlphaAndVersion(&bw, has_alpha)) {
   1556     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
   1557     goto Error;
   1558   }
   1559 
   1560   if (!WebPReportProgress(picture, 5, &percent)) goto UserAbort;
   1561 
   1562   // Encode main image stream.
   1563   err = VP8LEncodeStream(config, picture, &bw);
   1564   if (err != VP8_ENC_OK) goto Error;
   1565 
   1566   // TODO(skal): have a fine-grained progress report in VP8LEncodeStream().
   1567   if (!WebPReportProgress(picture, 90, &percent)) goto UserAbort;
   1568 
   1569   // Finish the RIFF chunk.
   1570   err = WriteImage(picture, &bw, &coded_size);
   1571   if (err != VP8_ENC_OK) goto Error;
   1572 
   1573   if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort;
   1574 
   1575   // Save size.
   1576   if (picture->stats != NULL) {
   1577     picture->stats->coded_size += (int)coded_size;
   1578     picture->stats->lossless_size = (int)coded_size;
   1579   }
   1580 
   1581   if (picture->extra_info != NULL) {
   1582     const int mb_w = (width + 15) >> 4;
   1583     const int mb_h = (height + 15) >> 4;
   1584     memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info));
   1585   }
   1586 
   1587  Error:
   1588   if (bw.error_) err = VP8_ENC_ERROR_OUT_OF_MEMORY;
   1589   VP8LBitWriterWipeOut(&bw);
   1590   if (err != VP8_ENC_OK) {
   1591     WebPEncodingSetError(picture, err);
   1592     return 0;
   1593   }
   1594   return 1;
   1595 }
   1596 
   1597 //------------------------------------------------------------------------------
   1598