Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include <iomanip>
     32 #include <iostream>  // NOLINT
     33 
     34 #include "ceres/line_search.h"
     35 
     36 #include "ceres/fpclassify.h"
     37 #include "ceres/evaluator.h"
     38 #include "ceres/internal/eigen.h"
     39 #include "ceres/polynomial.h"
     40 #include "ceres/stringprintf.h"
     41 #include "glog/logging.h"
     42 
     43 namespace ceres {
     44 namespace internal {
     45 namespace {
     46 // Precision used for floating point values in error message output.
     47 const int kErrorMessageNumericPrecision = 8;
     48 
     49 FunctionSample ValueSample(const double x, const double value) {
     50   FunctionSample sample;
     51   sample.x = x;
     52   sample.value = value;
     53   sample.value_is_valid = true;
     54   return sample;
     55 };
     56 
     57 FunctionSample ValueAndGradientSample(const double x,
     58                                       const double value,
     59                                       const double gradient) {
     60   FunctionSample sample;
     61   sample.x = x;
     62   sample.value = value;
     63   sample.gradient = gradient;
     64   sample.value_is_valid = true;
     65   sample.gradient_is_valid = true;
     66   return sample;
     67 };
     68 
     69 }  // namespace
     70 
     71 
     72 std::ostream& operator<<(std::ostream &os, const FunctionSample& sample);
     73 
     74 // Convenience stream operator for pushing FunctionSamples into log messages.
     75 std::ostream& operator<<(std::ostream &os, const FunctionSample& sample) {
     76   os << sample.ToDebugString();
     77   return os;
     78 }
     79 
     80 LineSearch::LineSearch(const LineSearch::Options& options)
     81     : options_(options) {}
     82 
     83 LineSearch* LineSearch::Create(const LineSearchType line_search_type,
     84                                const LineSearch::Options& options,
     85                                string* error) {
     86   LineSearch* line_search = NULL;
     87   switch (line_search_type) {
     88   case ceres::ARMIJO:
     89     line_search = new ArmijoLineSearch(options);
     90     break;
     91   case ceres::WOLFE:
     92     line_search = new WolfeLineSearch(options);
     93     break;
     94   default:
     95     *error = string("Invalid line search algorithm type: ") +
     96         LineSearchTypeToString(line_search_type) +
     97         string(", unable to create line search.");
     98     return NULL;
     99   }
    100   return line_search;
    101 }
    102 
    103 LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
    104     : evaluator_(evaluator),
    105       position_(evaluator->NumParameters()),
    106       direction_(evaluator->NumEffectiveParameters()),
    107       evaluation_point_(evaluator->NumParameters()),
    108       scaled_direction_(evaluator->NumEffectiveParameters()),
    109       gradient_(evaluator->NumEffectiveParameters()) {
    110 }
    111 
    112 void LineSearchFunction::Init(const Vector& position,
    113                               const Vector& direction) {
    114   position_ = position;
    115   direction_ = direction;
    116 }
    117 
    118 bool LineSearchFunction::Evaluate(double x, double* f, double* g) {
    119   scaled_direction_ = x * direction_;
    120   if (!evaluator_->Plus(position_.data(),
    121                         scaled_direction_.data(),
    122                         evaluation_point_.data())) {
    123     return false;
    124   }
    125 
    126   if (g == NULL) {
    127     return (evaluator_->Evaluate(evaluation_point_.data(),
    128                                   f, NULL, NULL, NULL) &&
    129             IsFinite(*f));
    130   }
    131 
    132   if (!evaluator_->Evaluate(evaluation_point_.data(),
    133                             f,
    134                             NULL,
    135                             gradient_.data(), NULL)) {
    136     return false;
    137   }
    138 
    139   *g = direction_.dot(gradient_);
    140   return IsFinite(*f) && IsFinite(*g);
    141 }
    142 
    143 double LineSearchFunction::DirectionInfinityNorm() const {
    144   return direction_.lpNorm<Eigen::Infinity>();
    145 }
    146 
    147 // Returns step_size \in [min_step_size, max_step_size] which minimizes the
    148 // polynomial of degree defined by interpolation_type which interpolates all
    149 // of the provided samples with valid values.
    150 double LineSearch::InterpolatingPolynomialMinimizingStepSize(
    151     const LineSearchInterpolationType& interpolation_type,
    152     const FunctionSample& lowerbound,
    153     const FunctionSample& previous,
    154     const FunctionSample& current,
    155     const double min_step_size,
    156     const double max_step_size) const {
    157   if (!current.value_is_valid ||
    158       (interpolation_type == BISECTION &&
    159        max_step_size <= current.x)) {
    160     // Either: sample is invalid; or we are using BISECTION and contracting
    161     // the step size.
    162     return min(max(current.x * 0.5, min_step_size), max_step_size);
    163   } else if (interpolation_type == BISECTION) {
    164     CHECK_GT(max_step_size, current.x);
    165     // We are expanding the search (during a Wolfe bracketing phase) using
    166     // BISECTION interpolation.  Using BISECTION when trying to expand is
    167     // strictly speaking an oxymoron, but we define this to mean always taking
    168     // the maximum step size so that the Armijo & Wolfe implementations are
    169     // agnostic to the interpolation type.
    170     return max_step_size;
    171   }
    172   // Only check if lower-bound is valid here, where it is required
    173   // to avoid replicating current.value_is_valid == false
    174   // behaviour in WolfeLineSearch.
    175   CHECK(lowerbound.value_is_valid)
    176       << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
    177       << "Ceres bug: lower-bound sample for interpolation is invalid, "
    178       << "please contact the developers!, interpolation_type: "
    179       << LineSearchInterpolationTypeToString(interpolation_type)
    180       << ", lowerbound: " << lowerbound << ", previous: " << previous
    181       << ", current: " << current;
    182 
    183   // Select step size by interpolating the function and gradient values
    184   // and minimizing the corresponding polynomial.
    185   vector<FunctionSample> samples;
    186   samples.push_back(lowerbound);
    187 
    188   if (interpolation_type == QUADRATIC) {
    189     // Two point interpolation using function values and the
    190     // gradient at the lower bound.
    191     samples.push_back(ValueSample(current.x, current.value));
    192 
    193     if (previous.value_is_valid) {
    194       // Three point interpolation, using function values and the
    195       // gradient at the lower bound.
    196       samples.push_back(ValueSample(previous.x, previous.value));
    197     }
    198   } else if (interpolation_type == CUBIC) {
    199     // Two point interpolation using the function values and the gradients.
    200     samples.push_back(current);
    201 
    202     if (previous.value_is_valid) {
    203       // Three point interpolation using the function values and
    204       // the gradients.
    205       samples.push_back(previous);
    206     }
    207   } else {
    208     LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
    209                << LineSearchInterpolationTypeToString(interpolation_type)
    210                << ", please contact the developers!";
    211   }
    212 
    213   double step_size = 0.0, unused_min_value = 0.0;
    214   MinimizeInterpolatingPolynomial(samples, min_step_size, max_step_size,
    215                                   &step_size, &unused_min_value);
    216   return step_size;
    217 }
    218 
    219 ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
    220     : LineSearch(options) {}
    221 
    222 void ArmijoLineSearch::Search(const double step_size_estimate,
    223                               const double initial_cost,
    224                               const double initial_gradient,
    225                               Summary* summary) {
    226   *CHECK_NOTNULL(summary) = LineSearch::Summary();
    227   CHECK_GE(step_size_estimate, 0.0);
    228   CHECK_GT(options().sufficient_decrease, 0.0);
    229   CHECK_LT(options().sufficient_decrease, 1.0);
    230   CHECK_GT(options().max_num_iterations, 0);
    231   Function* function = options().function;
    232 
    233   // Note initial_cost & initial_gradient are evaluated at step_size = 0,
    234   // not step_size_estimate, which is our starting guess.
    235   const FunctionSample initial_position =
    236       ValueAndGradientSample(0.0, initial_cost, initial_gradient);
    237 
    238   FunctionSample previous = ValueAndGradientSample(0.0, 0.0, 0.0);
    239   previous.value_is_valid = false;
    240 
    241   FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
    242   current.value_is_valid = false;
    243 
    244   // As the Armijo line search algorithm always uses the initial point, for
    245   // which both the function value and derivative are known, when fitting a
    246   // minimizing polynomial, we can fit up to a quadratic without requiring the
    247   // gradient at the current query point.
    248   const bool interpolation_uses_gradient_at_current_sample =
    249       options().interpolation_type == CUBIC;
    250   const double descent_direction_max_norm =
    251       static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
    252 
    253   ++summary->num_function_evaluations;
    254   if (interpolation_uses_gradient_at_current_sample) {
    255     ++summary->num_gradient_evaluations;
    256   }
    257   current.value_is_valid =
    258       function->Evaluate(current.x,
    259                          &current.value,
    260                          interpolation_uses_gradient_at_current_sample
    261                          ? &current.gradient : NULL);
    262   current.gradient_is_valid =
    263       interpolation_uses_gradient_at_current_sample && current.value_is_valid;
    264   while (!current.value_is_valid ||
    265          current.value > (initial_cost
    266                           + options().sufficient_decrease
    267                           * initial_gradient
    268                           * current.x)) {
    269     // If current.value_is_valid is false, we treat it as if the cost at that
    270     // point is not large enough to satisfy the sufficient decrease condition.
    271     ++summary->num_iterations;
    272     if (summary->num_iterations >= options().max_num_iterations) {
    273       summary->error =
    274           StringPrintf("Line search failed: Armijo failed to find a point "
    275                        "satisfying the sufficient decrease condition within "
    276                        "specified max_num_iterations: %d.",
    277                        options().max_num_iterations);
    278       LOG_IF(WARNING, !options().is_silent) << summary->error;
    279       return;
    280     }
    281 
    282     const double step_size =
    283         this->InterpolatingPolynomialMinimizingStepSize(
    284             options().interpolation_type,
    285             initial_position,
    286             previous,
    287             current,
    288             (options().max_step_contraction * current.x),
    289             (options().min_step_contraction * current.x));
    290 
    291     if (step_size * descent_direction_max_norm < options().min_step_size) {
    292       summary->error =
    293           StringPrintf("Line search failed: step_size too small: %.5e "
    294                        "with descent_direction_max_norm: %.5e.", step_size,
    295                        descent_direction_max_norm);
    296       LOG_IF(WARNING, !options().is_silent) << summary->error;
    297       return;
    298     }
    299 
    300     previous = current;
    301     current.x = step_size;
    302 
    303     ++summary->num_function_evaluations;
    304     if (interpolation_uses_gradient_at_current_sample) {
    305       ++summary->num_gradient_evaluations;
    306     }
    307     current.value_is_valid =
    308       function->Evaluate(current.x,
    309                          &current.value,
    310                          interpolation_uses_gradient_at_current_sample
    311                          ? &current.gradient : NULL);
    312     current.gradient_is_valid =
    313         interpolation_uses_gradient_at_current_sample && current.value_is_valid;
    314   }
    315 
    316   summary->optimal_step_size = current.x;
    317   summary->success = true;
    318 }
    319 
    320 WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
    321     : LineSearch(options) {}
    322 
    323 void WolfeLineSearch::Search(const double step_size_estimate,
    324                              const double initial_cost,
    325                              const double initial_gradient,
    326                              Summary* summary) {
    327   *CHECK_NOTNULL(summary) = LineSearch::Summary();
    328   // All parameters should have been validated by the Solver, but as
    329   // invalid values would produce crazy nonsense, hard check them here.
    330   CHECK_GE(step_size_estimate, 0.0);
    331   CHECK_GT(options().sufficient_decrease, 0.0);
    332   CHECK_GT(options().sufficient_curvature_decrease,
    333            options().sufficient_decrease);
    334   CHECK_LT(options().sufficient_curvature_decrease, 1.0);
    335   CHECK_GT(options().max_step_expansion, 1.0);
    336 
    337   // Note initial_cost & initial_gradient are evaluated at step_size = 0,
    338   // not step_size_estimate, which is our starting guess.
    339   const FunctionSample initial_position =
    340       ValueAndGradientSample(0.0, initial_cost, initial_gradient);
    341 
    342   bool do_zoom_search = false;
    343   // Important: The high/low in bracket_high & bracket_low refer to their
    344   // _function_ values, not their step sizes i.e. it is _not_ required that
    345   // bracket_low.x < bracket_high.x.
    346   FunctionSample solution, bracket_low, bracket_high;
    347 
    348   // Wolfe bracketing phase: Increases step_size until either it finds a point
    349   // that satisfies the (strong) Wolfe conditions, or an interval that brackets
    350   // step sizes which satisfy the conditions.  From Nocedal & Wright [1] p61 the
    351   // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
    352   // the strong Wolfe conditions if one of the following conditions are met:
    353   //
    354   //   1. step_size_{k} violates the sufficient decrease (Armijo) condition.
    355   //   2. f(step_size_{k}) >= f(step_size_{k-1}).
    356   //   3. f'(step_size_{k}) >= 0.
    357   //
    358   // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
    359   // this special case, step_size monotonically increases during bracketing.
    360   if (!this->BracketingPhase(initial_position,
    361                              step_size_estimate,
    362                              &bracket_low,
    363                              &bracket_high,
    364                              &do_zoom_search,
    365                              summary)) {
    366     // Failed to find either a valid point, a valid bracket satisfying the Wolfe
    367     // conditions, or even a step size > minimum tolerance satisfying the Armijo
    368     // condition.
    369     return;
    370   }
    371 
    372   if (!do_zoom_search) {
    373     // Either: Bracketing phase already found a point satisfying the strong
    374     // Wolfe conditions, thus no Zoom required.
    375     //
    376     // Or: Bracketing failed to find a valid bracket or a point satisfying the
    377     // strong Wolfe conditions within max_num_iterations, or whilst searching
    378     // shrank the bracket width until it was below our minimum tolerance.
    379     // As these are 'artificial' constraints, and we would otherwise fail to
    380     // produce a valid point when ArmijoLineSearch would succeed, we return the
    381     // point with the lowest cost found thus far which satsifies the Armijo
    382     // condition (but not the Wolfe conditions).
    383     summary->optimal_step_size = bracket_low.x;
    384     summary->success = true;
    385     return;
    386   }
    387 
    388   VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
    389           << "Starting line search zoom phase with bracket_low: "
    390           << bracket_low << ", bracket_high: " << bracket_high
    391           << ", bracket width: " << fabs(bracket_low.x - bracket_high.x)
    392           << ", bracket abs delta cost: "
    393           << fabs(bracket_low.value - bracket_high.value);
    394 
    395   // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
    396   // non-zero, finite width that should bracket step sizes which satisfy the
    397   // (strong) Wolfe conditions (before finding a step size that satisfies the
    398   // conditions).  Zoom successively decreases the size of the interval until a
    399   // step size which satisfies the Wolfe conditions is found.  The interval is
    400   // defined by bracket_low & bracket_high, which satisfy:
    401   //
    402   //   1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
    403   //      contains step sizes that satsify the strong Wolfe conditions.
    404   //   2. bracket_low.x is of all the step sizes evaluated *which satisifed the
    405   //      Armijo sufficient decrease condition*, the one which generated the
    406   //      smallest function value, i.e. bracket_low.value <
    407   //      f(all other steps satisfying Armijo).
    408   //        - Note that this does _not_ (necessarily) mean that initially
    409   //          bracket_low.value < bracket_high.value (although this is typical)
    410   //          e.g. when bracket_low = initial_position, and bracket_high is the
    411   //          first sample, and which does not satisfy the Armijo condition,
    412   //          but still has bracket_high.value < initial_position.value.
    413   //   3. bracket_high is chosen after bracket_low, s.t.
    414   //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
    415   if (!this->ZoomPhase(initial_position,
    416                        bracket_low,
    417                        bracket_high,
    418                        &solution,
    419                        summary) && !solution.value_is_valid) {
    420     // Failed to find a valid point (given the specified decrease parameters)
    421     // within the specified bracket.
    422     return;
    423   }
    424   // Ensure that if we ran out of iterations whilst zooming the bracket, or
    425   // shrank the bracket width to < tolerance and failed to find a point which
    426   // satisfies the strong Wolfe curvature condition, that we return the point
    427   // amongst those found thus far, which minimizes f() and satisfies the Armijo
    428   // condition.
    429   solution =
    430       solution.value_is_valid && solution.value <= bracket_low.value
    431       ? solution : bracket_low;
    432 
    433   summary->optimal_step_size = solution.x;
    434   summary->success = true;
    435 }
    436 
    437 // Returns true if either:
    438 //
    439 // A termination condition satisfying the (strong) Wolfe bracketing conditions
    440 // is found:
    441 //
    442 // - A valid point, defined as a bracket of zero width [zoom not required].
    443 // - A valid bracket (of width > tolerance), [zoom required].
    444 //
    445 // Or, searching was stopped due to an 'artificial' constraint, i.e. not
    446 // a condition imposed / required by the underlying algorithm, but instead an
    447 // engineering / implementation consideration. But a step which exceeds the
    448 // minimum step size, and satsifies the Armijo condition was still found,
    449 // and should thus be used [zoom not required].
    450 //
    451 // Returns false if no step size > minimum step size was found which
    452 // satisfies at least the Armijo condition.
    453 bool WolfeLineSearch::BracketingPhase(
    454     const FunctionSample& initial_position,
    455     const double step_size_estimate,
    456     FunctionSample* bracket_low,
    457     FunctionSample* bracket_high,
    458     bool* do_zoom_search,
    459     Summary* summary) {
    460   Function* function = options().function;
    461 
    462   FunctionSample previous = initial_position;
    463   FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
    464   current.value_is_valid = false;
    465 
    466   const double descent_direction_max_norm =
    467       static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
    468 
    469   *do_zoom_search = false;
    470   *bracket_low = initial_position;
    471 
    472   // As we require the gradient to evaluate the Wolfe condition, we always
    473   // calculate it together with the value, irrespective of the interpolation
    474   // type.  As opposed to only calculating the gradient after the Armijo
    475   // condition is satisifed, as the computational saving from this approach
    476   // would be slight (perhaps even negative due to the extra call).  Also,
    477   // always calculating the value & gradient together protects against us
    478   // reporting invalid solutions if the cost function returns slightly different
    479   // function values when evaluated with / without gradients (due to numerical
    480   // issues).
    481   ++summary->num_function_evaluations;
    482   ++summary->num_gradient_evaluations;
    483   current.value_is_valid =
    484       function->Evaluate(current.x,
    485                          &current.value,
    486                          &current.gradient);
    487   current.gradient_is_valid = current.value_is_valid;
    488 
    489   while (true) {
    490     ++summary->num_iterations;
    491 
    492     if (current.value_is_valid &&
    493         (current.value > (initial_position.value
    494                           + options().sufficient_decrease
    495                           * initial_position.gradient
    496                           * current.x) ||
    497          (previous.value_is_valid && current.value > previous.value))) {
    498       // Bracket found: current step size violates Armijo sufficient decrease
    499       // condition, or has stepped past an inflection point of f() relative to
    500       // previous step size.
    501       *do_zoom_search = true;
    502       *bracket_low = previous;
    503       *bracket_high = current;
    504       VLOG(3) << std::scientific
    505               << std::setprecision(kErrorMessageNumericPrecision)
    506               << "Bracket found: current step (" << current.x
    507               << ") violates Armijo sufficient condition, or has passed an "
    508               << "inflection point of f() based on value.";
    509       break;
    510     }
    511 
    512     if (current.value_is_valid &&
    513         fabs(current.gradient) <=
    514         -options().sufficient_curvature_decrease * initial_position.gradient) {
    515       // Current step size satisfies the strong Wolfe conditions, and is thus a
    516       // valid termination point, therefore a Zoom not required.
    517       *bracket_low = current;
    518       *bracket_high = current;
    519       VLOG(3) << std::scientific
    520               << std::setprecision(kErrorMessageNumericPrecision)
    521               << "Bracketing phase found step size: " << current.x
    522               << ", satisfying strong Wolfe conditions, initial_position: "
    523               << initial_position << ", current: " << current;
    524       break;
    525 
    526     } else if (current.value_is_valid && current.gradient >= 0) {
    527       // Bracket found: current step size has stepped past an inflection point
    528       // of f(), but Armijo sufficient decrease is still satisfied and
    529       // f(current) is our best minimum thus far.  Remember step size
    530       // monotonically increases, thus previous_step_size < current_step_size
    531       // even though f(previous) > f(current).
    532       *do_zoom_search = true;
    533       // Note inverse ordering from first bracket case.
    534       *bracket_low = current;
    535       *bracket_high = previous;
    536       VLOG(3) << "Bracket found: current step (" << current.x
    537               << ") satisfies Armijo, but has gradient >= 0, thus have passed "
    538               << "an inflection point of f().";
    539       break;
    540 
    541     } else if (current.value_is_valid &&
    542                fabs(current.x - previous.x) * descent_direction_max_norm
    543                < options().min_step_size) {
    544       // We have shrunk the search bracket to a width less than our tolerance,
    545       // and still not found either a point satisfying the strong Wolfe
    546       // conditions, or a valid bracket containing such a point. Stop searching
    547       // and set bracket_low to the size size amongst all those tested which
    548       // minimizes f() and satisfies the Armijo condition.
    549       LOG_IF(WARNING, !options().is_silent)
    550           << "Line search failed: Wolfe bracketing phase shrank "
    551           << "bracket width: " << fabs(current.x - previous.x)
    552           <<  ", to < tolerance: " << options().min_step_size
    553           << ", with descent_direction_max_norm: "
    554           << descent_direction_max_norm << ", and failed to find "
    555           << "a point satisfying the strong Wolfe conditions or a "
    556           << "bracketing containing such a point. Accepting "
    557           << "point found satisfying Armijo condition only, to "
    558           << "allow continuation.";
    559       *bracket_low = current;
    560       break;
    561 
    562     } else if (summary->num_iterations >= options().max_num_iterations) {
    563       // Check num iterations bound here so that we always evaluate the
    564       // max_num_iterations-th iteration against all conditions, and
    565       // then perform no additional (unused) evaluations.
    566       summary->error =
    567           StringPrintf("Line search failed: Wolfe bracketing phase failed to "
    568                        "find a point satisfying strong Wolfe conditions, or a "
    569                        "bracket containing such a point within specified "
    570                        "max_num_iterations: %d", options().max_num_iterations);
    571       LOG_IF(WARNING, !options().is_silent) << summary->error;
    572       // Ensure that bracket_low is always set to the step size amongst all
    573       // those tested which minimizes f() and satisfies the Armijo condition
    574       // when we terminate due to the 'artificial' max_num_iterations condition.
    575       *bracket_low =
    576           current.value_is_valid && current.value < bracket_low->value
    577           ? current : *bracket_low;
    578       break;
    579     }
    580     // Either: f(current) is invalid; or, f(current) is valid, but does not
    581     // satisfy the strong Wolfe conditions itself, or the conditions for
    582     // being a boundary of a bracket.
    583 
    584     // If f(current) is valid, (but meets no criteria) expand the search by
    585     // increasing the step size.
    586     const double max_step_size =
    587         current.value_is_valid
    588         ? (current.x * options().max_step_expansion) : current.x;
    589 
    590     // We are performing 2-point interpolation only here, but the API of
    591     // InterpolatingPolynomialMinimizingStepSize() allows for up to
    592     // 3-point interpolation, so pad call with a sample with an invalid
    593     // value that will therefore be ignored.
    594     const FunctionSample unused_previous;
    595     DCHECK(!unused_previous.value_is_valid);
    596     // Contracts step size if f(current) is not valid.
    597     const double step_size =
    598         this->InterpolatingPolynomialMinimizingStepSize(
    599             options().interpolation_type,
    600             previous,
    601             unused_previous,
    602             current,
    603             previous.x,
    604             max_step_size);
    605     if (step_size * descent_direction_max_norm < options().min_step_size) {
    606       summary->error =
    607           StringPrintf("Line search failed: step_size too small: %.5e "
    608                        "with descent_direction_max_norm: %.5e", step_size,
    609                        descent_direction_max_norm);
    610       LOG_IF(WARNING, !options().is_silent) << summary->error;
    611       return false;
    612     }
    613 
    614     previous = current.value_is_valid ? current : previous;
    615     current.x = step_size;
    616 
    617     ++summary->num_function_evaluations;
    618     ++summary->num_gradient_evaluations;
    619     current.value_is_valid =
    620         function->Evaluate(current.x,
    621                            &current.value,
    622                            &current.gradient);
    623     current.gradient_is_valid = current.value_is_valid;
    624   }
    625 
    626   // Ensure that even if a valid bracket was found, we will only mark a zoom
    627   // as required if the bracket's width is greater than our minimum tolerance.
    628   if (*do_zoom_search &&
    629       fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm
    630       < options().min_step_size) {
    631     *do_zoom_search = false;
    632   }
    633 
    634   return true;
    635 }
    636 
    637 // Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
    638 // on return false, if we stopped searching due to the 'artificial' condition of
    639 // reaching max_num_iterations, solution is the step size amongst all those
    640 // tested, which satisfied the Armijo decrease condition and minimized f().
    641 bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
    642                                 FunctionSample bracket_low,
    643                                 FunctionSample bracket_high,
    644                                 FunctionSample* solution,
    645                                 Summary* summary) {
    646   Function* function = options().function;
    647 
    648   CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
    649       << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
    650       << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
    651       << "the developers!, initial_position: " << initial_position
    652       << ", bracket_low: " << bracket_low
    653       << ", bracket_high: "<< bracket_high;
    654   // We do not require bracket_high.gradient_is_valid as the gradient condition
    655   // for a valid bracket is only dependent upon bracket_low.gradient, and
    656   // in order to minimize jacobian evaluations, bracket_high.gradient may
    657   // not have been calculated (if bracket_high.value does not satisfy the
    658   // Armijo sufficient decrease condition and interpolation method does not
    659   // require it).
    660   //
    661   // We also do not require that: bracket_low.value < bracket_high.value,
    662   // although this is typical. This is to deal with the case when
    663   // bracket_low = initial_position, bracket_high is the first sample,
    664   // and bracket_high does not satisfy the Armijo condition, but still has
    665   // bracket_high.value < initial_position.value.
    666   CHECK(bracket_high.value_is_valid)
    667       << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
    668       << "Ceres bug: f_high input to Wolfe Zoom invalid, please "
    669       << "contact the developers!, initial_position: " << initial_position
    670       << ", bracket_low: " << bracket_low
    671       << ", bracket_high: "<< bracket_high;
    672 
    673   if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) {
    674     // The third condition for a valid initial bracket:
    675     //
    676     //   3. bracket_high is chosen after bracket_low, s.t.
    677     //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
    678     //
    679     // is not satisfied.  As this can happen when the users' cost function
    680     // returns inconsistent gradient values relative to the function values,
    681     // we do not CHECK_LT(), but we do stop processing and return an invalid
    682     // value.
    683     summary->error =
    684         StringPrintf("Line search failed: Wolfe zoom phase passed a bracket "
    685                      "which does not satisfy: bracket_low.gradient * "
    686                      "(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] "
    687                      "with initial_position: %s, bracket_low: %s, bracket_high:"
    688                      " %s, the most likely cause of which is the cost function "
    689                      "returning inconsistent gradient & function values.",
    690                      bracket_low.gradient * (bracket_high.x - bracket_low.x),
    691                      initial_position.ToDebugString().c_str(),
    692                      bracket_low.ToDebugString().c_str(),
    693                      bracket_high.ToDebugString().c_str());
    694     LOG_IF(WARNING, !options().is_silent) << summary->error;
    695     solution->value_is_valid = false;
    696     return false;
    697   }
    698 
    699   const int num_bracketing_iterations = summary->num_iterations;
    700   const double descent_direction_max_norm =
    701       static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
    702 
    703   while (true) {
    704     // Set solution to bracket_low, as it is our best step size (smallest f())
    705     // found thus far and satisfies the Armijo condition, even though it does
    706     // not satisfy the Wolfe condition.
    707     *solution = bracket_low;
    708     if (summary->num_iterations >= options().max_num_iterations) {
    709       summary->error =
    710           StringPrintf("Line search failed: Wolfe zoom phase failed to "
    711                        "find a point satisfying strong Wolfe conditions "
    712                        "within specified max_num_iterations: %d, "
    713                        "(num iterations taken for bracketing: %d).",
    714                        options().max_num_iterations, num_bracketing_iterations);
    715       LOG_IF(WARNING, !options().is_silent) << summary->error;
    716       return false;
    717     }
    718     if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm
    719         < options().min_step_size) {
    720       // Bracket width has been reduced below tolerance, and no point satisfying
    721       // the strong Wolfe conditions has been found.
    722       summary->error =
    723           StringPrintf("Line search failed: Wolfe zoom bracket width: %.5e "
    724                        "too small with descent_direction_max_norm: %.5e.",
    725                        fabs(bracket_high.x - bracket_low.x),
    726                        descent_direction_max_norm);
    727       LOG_IF(WARNING, !options().is_silent) << summary->error;
    728       return false;
    729     }
    730 
    731     ++summary->num_iterations;
    732     // Polynomial interpolation requires inputs ordered according to step size,
    733     // not f(step size).
    734     const FunctionSample& lower_bound_step =
    735         bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
    736     const FunctionSample& upper_bound_step =
    737         bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
    738     // We are performing 2-point interpolation only here, but the API of
    739     // InterpolatingPolynomialMinimizingStepSize() allows for up to
    740     // 3-point interpolation, so pad call with a sample with an invalid
    741     // value that will therefore be ignored.
    742     const FunctionSample unused_previous;
    743     DCHECK(!unused_previous.value_is_valid);
    744     solution->x =
    745         this->InterpolatingPolynomialMinimizingStepSize(
    746             options().interpolation_type,
    747             lower_bound_step,
    748             unused_previous,
    749             upper_bound_step,
    750             lower_bound_step.x,
    751             upper_bound_step.x);
    752     // No check on magnitude of step size being too small here as it is
    753     // lower-bounded by the initial bracket start point, which was valid.
    754     //
    755     // As we require the gradient to evaluate the Wolfe condition, we always
    756     // calculate it together with the value, irrespective of the interpolation
    757     // type.  As opposed to only calculating the gradient after the Armijo
    758     // condition is satisifed, as the computational saving from this approach
    759     // would be slight (perhaps even negative due to the extra call).  Also,
    760     // always calculating the value & gradient together protects against us
    761     // reporting invalid solutions if the cost function returns slightly
    762     // different function values when evaluated with / without gradients (due
    763     // to numerical issues).
    764     ++summary->num_function_evaluations;
    765     ++summary->num_gradient_evaluations;
    766     solution->value_is_valid =
    767         function->Evaluate(solution->x,
    768                            &solution->value,
    769                            &solution->gradient);
    770     solution->gradient_is_valid = solution->value_is_valid;
    771     if (!solution->value_is_valid) {
    772       summary->error =
    773           StringPrintf("Line search failed: Wolfe Zoom phase found "
    774                        "step_size: %.5e, for which function is invalid, "
    775                        "between low_step: %.5e and high_step: %.5e "
    776                        "at which function is valid.",
    777                        solution->x, bracket_low.x, bracket_high.x);
    778       LOG_IF(WARNING, !options().is_silent) << summary->error;
    779       return false;
    780     }
    781 
    782     VLOG(3) << "Zoom iteration: "
    783             << summary->num_iterations - num_bracketing_iterations
    784             << ", bracket_low: " << bracket_low
    785             << ", bracket_high: " << bracket_high
    786             << ", minimizing solution: " << *solution;
    787 
    788     if ((solution->value > (initial_position.value
    789                             + options().sufficient_decrease
    790                             * initial_position.gradient
    791                             * solution->x)) ||
    792         (solution->value >= bracket_low.value)) {
    793       // Armijo sufficient decrease not satisfied, or not better
    794       // than current lowest sample, use as new upper bound.
    795       bracket_high = *solution;
    796       continue;
    797     }
    798 
    799     // Armijo sufficient decrease satisfied, check strong Wolfe condition.
    800     if (fabs(solution->gradient) <=
    801         -options().sufficient_curvature_decrease * initial_position.gradient) {
    802       // Found a valid termination point satisfying strong Wolfe conditions.
    803       VLOG(3) << std::scientific
    804               << std::setprecision(kErrorMessageNumericPrecision)
    805               << "Zoom phase found step size: " << solution->x
    806               << ", satisfying strong Wolfe conditions.";
    807       break;
    808 
    809     } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
    810       bracket_high = bracket_low;
    811     }
    812 
    813     bracket_low = *solution;
    814   }
    815   // Solution contains a valid point which satisfies the strong Wolfe
    816   // conditions.
    817   return true;
    818 }
    819 
    820 }  // namespace internal
    821 }  // namespace ceres
    822