Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Decl nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGBlocks.h"
     16 #include "CGCleanup.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGOpenCLRuntime.h"
     19 #include "CodeGenModule.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/CharUnits.h"
     22 #include "clang/AST/Decl.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/Basic/SourceManager.h"
     25 #include "clang/Basic/TargetInfo.h"
     26 #include "clang/CodeGen/CGFunctionInfo.h"
     27 #include "clang/Frontend/CodeGenOptions.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/GlobalVariable.h"
     30 #include "llvm/IR/Intrinsics.h"
     31 #include "llvm/IR/Type.h"
     32 using namespace clang;
     33 using namespace CodeGen;
     34 
     35 
     36 void CodeGenFunction::EmitDecl(const Decl &D) {
     37   switch (D.getKind()) {
     38   case Decl::BuiltinTemplate:
     39   case Decl::TranslationUnit:
     40   case Decl::ExternCContext:
     41   case Decl::Namespace:
     42   case Decl::UnresolvedUsingTypename:
     43   case Decl::ClassTemplateSpecialization:
     44   case Decl::ClassTemplatePartialSpecialization:
     45   case Decl::VarTemplateSpecialization:
     46   case Decl::VarTemplatePartialSpecialization:
     47   case Decl::TemplateTypeParm:
     48   case Decl::UnresolvedUsingValue:
     49   case Decl::NonTypeTemplateParm:
     50   case Decl::CXXMethod:
     51   case Decl::CXXConstructor:
     52   case Decl::CXXDestructor:
     53   case Decl::CXXConversion:
     54   case Decl::Field:
     55   case Decl::MSProperty:
     56   case Decl::IndirectField:
     57   case Decl::ObjCIvar:
     58   case Decl::ObjCAtDefsField:
     59   case Decl::ParmVar:
     60   case Decl::ImplicitParam:
     61   case Decl::ClassTemplate:
     62   case Decl::VarTemplate:
     63   case Decl::FunctionTemplate:
     64   case Decl::TypeAliasTemplate:
     65   case Decl::TemplateTemplateParm:
     66   case Decl::ObjCMethod:
     67   case Decl::ObjCCategory:
     68   case Decl::ObjCProtocol:
     69   case Decl::ObjCInterface:
     70   case Decl::ObjCCategoryImpl:
     71   case Decl::ObjCImplementation:
     72   case Decl::ObjCProperty:
     73   case Decl::ObjCCompatibleAlias:
     74   case Decl::AccessSpec:
     75   case Decl::LinkageSpec:
     76   case Decl::ObjCPropertyImpl:
     77   case Decl::FileScopeAsm:
     78   case Decl::Friend:
     79   case Decl::FriendTemplate:
     80   case Decl::Block:
     81   case Decl::Captured:
     82   case Decl::ClassScopeFunctionSpecialization:
     83   case Decl::UsingShadow:
     84   case Decl::ObjCTypeParam:
     85     llvm_unreachable("Declaration should not be in declstmts!");
     86   case Decl::Function:  // void X();
     87   case Decl::Record:    // struct/union/class X;
     88   case Decl::Enum:      // enum X;
     89   case Decl::EnumConstant: // enum ? { X = ? }
     90   case Decl::CXXRecord: // struct/union/class X; [C++]
     91   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
     92   case Decl::Label:        // __label__ x;
     93   case Decl::Import:
     94   case Decl::OMPThreadPrivate:
     95   case Decl::Empty:
     96     // None of these decls require codegen support.
     97     return;
     98 
     99   case Decl::NamespaceAlias:
    100     if (CGDebugInfo *DI = getDebugInfo())
    101         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
    102     return;
    103   case Decl::Using:          // using X; [C++]
    104     if (CGDebugInfo *DI = getDebugInfo())
    105         DI->EmitUsingDecl(cast<UsingDecl>(D));
    106     return;
    107   case Decl::UsingDirective: // using namespace X; [C++]
    108     if (CGDebugInfo *DI = getDebugInfo())
    109       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
    110     return;
    111   case Decl::Var: {
    112     const VarDecl &VD = cast<VarDecl>(D);
    113     assert(VD.isLocalVarDecl() &&
    114            "Should not see file-scope variables inside a function!");
    115     return EmitVarDecl(VD);
    116   }
    117 
    118   case Decl::Typedef:      // typedef int X;
    119   case Decl::TypeAlias: {  // using X = int; [C++0x]
    120     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
    121     QualType Ty = TD.getUnderlyingType();
    122 
    123     if (Ty->isVariablyModifiedType())
    124       EmitVariablyModifiedType(Ty);
    125   }
    126   }
    127 }
    128 
    129 /// EmitVarDecl - This method handles emission of any variable declaration
    130 /// inside a function, including static vars etc.
    131 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
    132   if (D.isStaticLocal()) {
    133     llvm::GlobalValue::LinkageTypes Linkage =
    134         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
    135 
    136     // FIXME: We need to force the emission/use of a guard variable for
    137     // some variables even if we can constant-evaluate them because
    138     // we can't guarantee every translation unit will constant-evaluate them.
    139 
    140     return EmitStaticVarDecl(D, Linkage);
    141   }
    142 
    143   if (D.hasExternalStorage())
    144     // Don't emit it now, allow it to be emitted lazily on its first use.
    145     return;
    146 
    147   if (D.getType().getAddressSpace() == LangAS::opencl_local)
    148     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
    149 
    150   assert(D.hasLocalStorage());
    151   return EmitAutoVarDecl(D);
    152 }
    153 
    154 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
    155   if (CGM.getLangOpts().CPlusPlus)
    156     return CGM.getMangledName(&D).str();
    157 
    158   // If this isn't C++, we don't need a mangled name, just a pretty one.
    159   assert(!D.isExternallyVisible() && "name shouldn't matter");
    160   std::string ContextName;
    161   const DeclContext *DC = D.getDeclContext();
    162   if (auto *CD = dyn_cast<CapturedDecl>(DC))
    163     DC = cast<DeclContext>(CD->getNonClosureContext());
    164   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
    165     ContextName = CGM.getMangledName(FD);
    166   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
    167     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
    168   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
    169     ContextName = OMD->getSelector().getAsString();
    170   else
    171     llvm_unreachable("Unknown context for static var decl");
    172 
    173   ContextName += "." + D.getNameAsString();
    174   return ContextName;
    175 }
    176 
    177 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
    178     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
    179   // In general, we don't always emit static var decls once before we reference
    180   // them. It is possible to reference them before emitting the function that
    181   // contains them, and it is possible to emit the containing function multiple
    182   // times.
    183   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
    184     return ExistingGV;
    185 
    186   QualType Ty = D.getType();
    187   assert(Ty->isConstantSizeType() && "VLAs can't be static");
    188 
    189   // Use the label if the variable is renamed with the asm-label extension.
    190   std::string Name;
    191   if (D.hasAttr<AsmLabelAttr>())
    192     Name = getMangledName(&D);
    193   else
    194     Name = getStaticDeclName(*this, D);
    195 
    196   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
    197   unsigned AddrSpace =
    198       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
    199 
    200   // Local address space cannot have an initializer.
    201   llvm::Constant *Init = nullptr;
    202   if (Ty.getAddressSpace() != LangAS::opencl_local)
    203     Init = EmitNullConstant(Ty);
    204   else
    205     Init = llvm::UndefValue::get(LTy);
    206 
    207   llvm::GlobalVariable *GV =
    208     new llvm::GlobalVariable(getModule(), LTy,
    209                              Ty.isConstant(getContext()), Linkage,
    210                              Init, Name, nullptr,
    211                              llvm::GlobalVariable::NotThreadLocal,
    212                              AddrSpace);
    213   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
    214   setGlobalVisibility(GV, &D);
    215 
    216   if (supportsCOMDAT() && GV->isWeakForLinker())
    217     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
    218 
    219   if (D.getTLSKind())
    220     setTLSMode(GV, D);
    221 
    222   if (D.isExternallyVisible()) {
    223     if (D.hasAttr<DLLImportAttr>())
    224       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
    225     else if (D.hasAttr<DLLExportAttr>())
    226       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
    227   }
    228 
    229   // Make sure the result is of the correct type.
    230   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
    231   llvm::Constant *Addr = GV;
    232   if (AddrSpace != ExpectedAddrSpace) {
    233     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
    234     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
    235   }
    236 
    237   setStaticLocalDeclAddress(&D, Addr);
    238 
    239   // Ensure that the static local gets initialized by making sure the parent
    240   // function gets emitted eventually.
    241   const Decl *DC = cast<Decl>(D.getDeclContext());
    242 
    243   // We can't name blocks or captured statements directly, so try to emit their
    244   // parents.
    245   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
    246     DC = DC->getNonClosureContext();
    247     // FIXME: Ensure that global blocks get emitted.
    248     if (!DC)
    249       return Addr;
    250   }
    251 
    252   GlobalDecl GD;
    253   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
    254     GD = GlobalDecl(CD, Ctor_Base);
    255   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
    256     GD = GlobalDecl(DD, Dtor_Base);
    257   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
    258     GD = GlobalDecl(FD);
    259   else {
    260     // Don't do anything for Obj-C method decls or global closures. We should
    261     // never defer them.
    262     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
    263   }
    264   if (GD.getDecl())
    265     (void)GetAddrOfGlobal(GD);
    266 
    267   return Addr;
    268 }
    269 
    270 /// hasNontrivialDestruction - Determine whether a type's destruction is
    271 /// non-trivial. If so, and the variable uses static initialization, we must
    272 /// register its destructor to run on exit.
    273 static bool hasNontrivialDestruction(QualType T) {
    274   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
    275   return RD && !RD->hasTrivialDestructor();
    276 }
    277 
    278 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
    279 /// global variable that has already been created for it.  If the initializer
    280 /// has a different type than GV does, this may free GV and return a different
    281 /// one.  Otherwise it just returns GV.
    282 llvm::GlobalVariable *
    283 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
    284                                                llvm::GlobalVariable *GV) {
    285   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
    286 
    287   // If constant emission failed, then this should be a C++ static
    288   // initializer.
    289   if (!Init) {
    290     if (!getLangOpts().CPlusPlus)
    291       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
    292     else if (Builder.GetInsertBlock()) {
    293       // Since we have a static initializer, this global variable can't
    294       // be constant.
    295       GV->setConstant(false);
    296 
    297       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
    298     }
    299     return GV;
    300   }
    301 
    302   // The initializer may differ in type from the global. Rewrite
    303   // the global to match the initializer.  (We have to do this
    304   // because some types, like unions, can't be completely represented
    305   // in the LLVM type system.)
    306   if (GV->getType()->getElementType() != Init->getType()) {
    307     llvm::GlobalVariable *OldGV = GV;
    308 
    309     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
    310                                   OldGV->isConstant(),
    311                                   OldGV->getLinkage(), Init, "",
    312                                   /*InsertBefore*/ OldGV,
    313                                   OldGV->getThreadLocalMode(),
    314                            CGM.getContext().getTargetAddressSpace(D.getType()));
    315     GV->setVisibility(OldGV->getVisibility());
    316     GV->setComdat(OldGV->getComdat());
    317 
    318     // Steal the name of the old global
    319     GV->takeName(OldGV);
    320 
    321     // Replace all uses of the old global with the new global
    322     llvm::Constant *NewPtrForOldDecl =
    323     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
    324     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
    325 
    326     // Erase the old global, since it is no longer used.
    327     OldGV->eraseFromParent();
    328   }
    329 
    330   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
    331   GV->setInitializer(Init);
    332 
    333   if (hasNontrivialDestruction(D.getType())) {
    334     // We have a constant initializer, but a nontrivial destructor. We still
    335     // need to perform a guarded "initialization" in order to register the
    336     // destructor.
    337     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
    338   }
    339 
    340   return GV;
    341 }
    342 
    343 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
    344                                       llvm::GlobalValue::LinkageTypes Linkage) {
    345   // Check to see if we already have a global variable for this
    346   // declaration.  This can happen when double-emitting function
    347   // bodies, e.g. with complete and base constructors.
    348   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
    349   CharUnits alignment = getContext().getDeclAlign(&D);
    350 
    351   // Store into LocalDeclMap before generating initializer to handle
    352   // circular references.
    353   setAddrOfLocalVar(&D, Address(addr, alignment));
    354 
    355   // We can't have a VLA here, but we can have a pointer to a VLA,
    356   // even though that doesn't really make any sense.
    357   // Make sure to evaluate VLA bounds now so that we have them for later.
    358   if (D.getType()->isVariablyModifiedType())
    359     EmitVariablyModifiedType(D.getType());
    360 
    361   // Save the type in case adding the initializer forces a type change.
    362   llvm::Type *expectedType = addr->getType();
    363 
    364   llvm::GlobalVariable *var =
    365     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
    366   // If this value has an initializer, emit it.
    367   if (D.getInit())
    368     var = AddInitializerToStaticVarDecl(D, var);
    369 
    370   var->setAlignment(alignment.getQuantity());
    371 
    372   if (D.hasAttr<AnnotateAttr>())
    373     CGM.AddGlobalAnnotations(&D, var);
    374 
    375   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
    376     var->setSection(SA->getName());
    377 
    378   if (D.hasAttr<UsedAttr>())
    379     CGM.addUsedGlobal(var);
    380 
    381   // We may have to cast the constant because of the initializer
    382   // mismatch above.
    383   //
    384   // FIXME: It is really dangerous to store this in the map; if anyone
    385   // RAUW's the GV uses of this constant will be invalid.
    386   llvm::Constant *castedAddr =
    387     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
    388   if (var != castedAddr)
    389     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
    390   CGM.setStaticLocalDeclAddress(&D, castedAddr);
    391 
    392   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
    393 
    394   // Emit global variable debug descriptor for static vars.
    395   CGDebugInfo *DI = getDebugInfo();
    396   if (DI &&
    397       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
    398     DI->setLocation(D.getLocation());
    399     DI->EmitGlobalVariable(var, &D);
    400   }
    401 }
    402 
    403 namespace {
    404   struct DestroyObject final : EHScopeStack::Cleanup {
    405     DestroyObject(Address addr, QualType type,
    406                   CodeGenFunction::Destroyer *destroyer,
    407                   bool useEHCleanupForArray)
    408       : addr(addr), type(type), destroyer(destroyer),
    409         useEHCleanupForArray(useEHCleanupForArray) {}
    410 
    411     Address addr;
    412     QualType type;
    413     CodeGenFunction::Destroyer *destroyer;
    414     bool useEHCleanupForArray;
    415 
    416     void Emit(CodeGenFunction &CGF, Flags flags) override {
    417       // Don't use an EH cleanup recursively from an EH cleanup.
    418       bool useEHCleanupForArray =
    419         flags.isForNormalCleanup() && this->useEHCleanupForArray;
    420 
    421       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
    422     }
    423   };
    424 
    425   struct DestroyNRVOVariable final : EHScopeStack::Cleanup {
    426     DestroyNRVOVariable(Address addr,
    427                         const CXXDestructorDecl *Dtor,
    428                         llvm::Value *NRVOFlag)
    429       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
    430 
    431     const CXXDestructorDecl *Dtor;
    432     llvm::Value *NRVOFlag;
    433     Address Loc;
    434 
    435     void Emit(CodeGenFunction &CGF, Flags flags) override {
    436       // Along the exceptions path we always execute the dtor.
    437       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
    438 
    439       llvm::BasicBlock *SkipDtorBB = nullptr;
    440       if (NRVO) {
    441         // If we exited via NRVO, we skip the destructor call.
    442         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
    443         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
    444         llvm::Value *DidNRVO =
    445           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
    446         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
    447         CGF.EmitBlock(RunDtorBB);
    448       }
    449 
    450       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
    451                                 /*ForVirtualBase=*/false,
    452                                 /*Delegating=*/false,
    453                                 Loc);
    454 
    455       if (NRVO) CGF.EmitBlock(SkipDtorBB);
    456     }
    457   };
    458 
    459   struct CallStackRestore final : EHScopeStack::Cleanup {
    460     Address Stack;
    461     CallStackRestore(Address Stack) : Stack(Stack) {}
    462     void Emit(CodeGenFunction &CGF, Flags flags) override {
    463       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
    464       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
    465       CGF.Builder.CreateCall(F, V);
    466     }
    467   };
    468 
    469   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
    470     const VarDecl &Var;
    471     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
    472 
    473     void Emit(CodeGenFunction &CGF, Flags flags) override {
    474       // Compute the address of the local variable, in case it's a
    475       // byref or something.
    476       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
    477                       Var.getType(), VK_LValue, SourceLocation());
    478       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
    479                                                 SourceLocation());
    480       CGF.EmitExtendGCLifetime(value);
    481     }
    482   };
    483 
    484   struct CallCleanupFunction final : EHScopeStack::Cleanup {
    485     llvm::Constant *CleanupFn;
    486     const CGFunctionInfo &FnInfo;
    487     const VarDecl &Var;
    488 
    489     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
    490                         const VarDecl *Var)
    491       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
    492 
    493     void Emit(CodeGenFunction &CGF, Flags flags) override {
    494       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
    495                       Var.getType(), VK_LValue, SourceLocation());
    496       // Compute the address of the local variable, in case it's a byref
    497       // or something.
    498       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
    499 
    500       // In some cases, the type of the function argument will be different from
    501       // the type of the pointer. An example of this is
    502       // void f(void* arg);
    503       // __attribute__((cleanup(f))) void *g;
    504       //
    505       // To fix this we insert a bitcast here.
    506       QualType ArgTy = FnInfo.arg_begin()->type;
    507       llvm::Value *Arg =
    508         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
    509 
    510       CallArgList Args;
    511       Args.add(RValue::get(Arg),
    512                CGF.getContext().getPointerType(Var.getType()));
    513       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
    514     }
    515   };
    516 
    517   /// A cleanup to call @llvm.lifetime.end.
    518   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
    519     llvm::Value *Addr;
    520     llvm::Value *Size;
    521   public:
    522     CallLifetimeEnd(Address addr, llvm::Value *size)
    523       : Addr(addr.getPointer()), Size(size) {}
    524 
    525     void Emit(CodeGenFunction &CGF, Flags flags) override {
    526       CGF.EmitLifetimeEnd(Size, Addr);
    527     }
    528   };
    529 }
    530 
    531 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
    532 /// variable with lifetime.
    533 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
    534                                     Address addr,
    535                                     Qualifiers::ObjCLifetime lifetime) {
    536   switch (lifetime) {
    537   case Qualifiers::OCL_None:
    538     llvm_unreachable("present but none");
    539 
    540   case Qualifiers::OCL_ExplicitNone:
    541     // nothing to do
    542     break;
    543 
    544   case Qualifiers::OCL_Strong: {
    545     CodeGenFunction::Destroyer *destroyer =
    546       (var.hasAttr<ObjCPreciseLifetimeAttr>()
    547        ? CodeGenFunction::destroyARCStrongPrecise
    548        : CodeGenFunction::destroyARCStrongImprecise);
    549 
    550     CleanupKind cleanupKind = CGF.getARCCleanupKind();
    551     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
    552                     cleanupKind & EHCleanup);
    553     break;
    554   }
    555   case Qualifiers::OCL_Autoreleasing:
    556     // nothing to do
    557     break;
    558 
    559   case Qualifiers::OCL_Weak:
    560     // __weak objects always get EH cleanups; otherwise, exceptions
    561     // could cause really nasty crashes instead of mere leaks.
    562     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
    563                     CodeGenFunction::destroyARCWeak,
    564                     /*useEHCleanup*/ true);
    565     break;
    566   }
    567 }
    568 
    569 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
    570   if (const Expr *e = dyn_cast<Expr>(s)) {
    571     // Skip the most common kinds of expressions that make
    572     // hierarchy-walking expensive.
    573     s = e = e->IgnoreParenCasts();
    574 
    575     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
    576       return (ref->getDecl() == &var);
    577     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
    578       const BlockDecl *block = be->getBlockDecl();
    579       for (const auto &I : block->captures()) {
    580         if (I.getVariable() == &var)
    581           return true;
    582       }
    583     }
    584   }
    585 
    586   for (const Stmt *SubStmt : s->children())
    587     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
    588     if (SubStmt && isAccessedBy(var, SubStmt))
    589       return true;
    590 
    591   return false;
    592 }
    593 
    594 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
    595   if (!decl) return false;
    596   if (!isa<VarDecl>(decl)) return false;
    597   const VarDecl *var = cast<VarDecl>(decl);
    598   return isAccessedBy(*var, e);
    599 }
    600 
    601 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
    602                                    const LValue &destLV, const Expr *init) {
    603   bool needsCast = false;
    604 
    605   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
    606     switch (castExpr->getCastKind()) {
    607     // Look through casts that don't require representation changes.
    608     case CK_NoOp:
    609     case CK_BitCast:
    610     case CK_BlockPointerToObjCPointerCast:
    611       needsCast = true;
    612       break;
    613 
    614     // If we find an l-value to r-value cast from a __weak variable,
    615     // emit this operation as a copy or move.
    616     case CK_LValueToRValue: {
    617       const Expr *srcExpr = castExpr->getSubExpr();
    618       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
    619         return false;
    620 
    621       // Emit the source l-value.
    622       LValue srcLV = CGF.EmitLValue(srcExpr);
    623 
    624       // Handle a formal type change to avoid asserting.
    625       auto srcAddr = srcLV.getAddress();
    626       if (needsCast) {
    627         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
    628                                          destLV.getAddress().getElementType());
    629       }
    630 
    631       // If it was an l-value, use objc_copyWeak.
    632       if (srcExpr->getValueKind() == VK_LValue) {
    633         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
    634       } else {
    635         assert(srcExpr->getValueKind() == VK_XValue);
    636         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
    637       }
    638       return true;
    639     }
    640 
    641     // Stop at anything else.
    642     default:
    643       return false;
    644     }
    645 
    646     init = castExpr->getSubExpr();
    647     continue;
    648   }
    649   return false;
    650 }
    651 
    652 static void drillIntoBlockVariable(CodeGenFunction &CGF,
    653                                    LValue &lvalue,
    654                                    const VarDecl *var) {
    655   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
    656 }
    657 
    658 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
    659                                      LValue lvalue, bool capturedByInit) {
    660   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
    661   if (!lifetime) {
    662     llvm::Value *value = EmitScalarExpr(init);
    663     if (capturedByInit)
    664       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    665     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
    666     return;
    667   }
    668 
    669   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
    670     init = DIE->getExpr();
    671 
    672   // If we're emitting a value with lifetime, we have to do the
    673   // initialization *before* we leave the cleanup scopes.
    674   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
    675     enterFullExpression(ewc);
    676     init = ewc->getSubExpr();
    677   }
    678   CodeGenFunction::RunCleanupsScope Scope(*this);
    679 
    680   // We have to maintain the illusion that the variable is
    681   // zero-initialized.  If the variable might be accessed in its
    682   // initializer, zero-initialize before running the initializer, then
    683   // actually perform the initialization with an assign.
    684   bool accessedByInit = false;
    685   if (lifetime != Qualifiers::OCL_ExplicitNone)
    686     accessedByInit = (capturedByInit || isAccessedBy(D, init));
    687   if (accessedByInit) {
    688     LValue tempLV = lvalue;
    689     // Drill down to the __block object if necessary.
    690     if (capturedByInit) {
    691       // We can use a simple GEP for this because it can't have been
    692       // moved yet.
    693       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
    694                                               cast<VarDecl>(D),
    695                                               /*follow*/ false));
    696     }
    697 
    698     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
    699     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
    700 
    701     // If __weak, we want to use a barrier under certain conditions.
    702     if (lifetime == Qualifiers::OCL_Weak)
    703       EmitARCInitWeak(tempLV.getAddress(), zero);
    704 
    705     // Otherwise just do a simple store.
    706     else
    707       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
    708   }
    709 
    710   // Emit the initializer.
    711   llvm::Value *value = nullptr;
    712 
    713   switch (lifetime) {
    714   case Qualifiers::OCL_None:
    715     llvm_unreachable("present but none");
    716 
    717   case Qualifiers::OCL_ExplicitNone:
    718     // nothing to do
    719     value = EmitScalarExpr(init);
    720     break;
    721 
    722   case Qualifiers::OCL_Strong: {
    723     value = EmitARCRetainScalarExpr(init);
    724     break;
    725   }
    726 
    727   case Qualifiers::OCL_Weak: {
    728     // If it's not accessed by the initializer, try to emit the
    729     // initialization with a copy or move.
    730     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
    731       return;
    732     }
    733 
    734     // No way to optimize a producing initializer into this.  It's not
    735     // worth optimizing for, because the value will immediately
    736     // disappear in the common case.
    737     value = EmitScalarExpr(init);
    738 
    739     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    740     if (accessedByInit)
    741       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
    742     else
    743       EmitARCInitWeak(lvalue.getAddress(), value);
    744     return;
    745   }
    746 
    747   case Qualifiers::OCL_Autoreleasing:
    748     value = EmitARCRetainAutoreleaseScalarExpr(init);
    749     break;
    750   }
    751 
    752   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    753 
    754   // If the variable might have been accessed by its initializer, we
    755   // might have to initialize with a barrier.  We have to do this for
    756   // both __weak and __strong, but __weak got filtered out above.
    757   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
    758     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
    759     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
    760     EmitARCRelease(oldValue, ARCImpreciseLifetime);
    761     return;
    762   }
    763 
    764   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
    765 }
    766 
    767 /// EmitScalarInit - Initialize the given lvalue with the given object.
    768 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
    769   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
    770   if (!lifetime)
    771     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
    772 
    773   switch (lifetime) {
    774   case Qualifiers::OCL_None:
    775     llvm_unreachable("present but none");
    776 
    777   case Qualifiers::OCL_ExplicitNone:
    778     // nothing to do
    779     break;
    780 
    781   case Qualifiers::OCL_Strong:
    782     init = EmitARCRetain(lvalue.getType(), init);
    783     break;
    784 
    785   case Qualifiers::OCL_Weak:
    786     // Initialize and then skip the primitive store.
    787     EmitARCInitWeak(lvalue.getAddress(), init);
    788     return;
    789 
    790   case Qualifiers::OCL_Autoreleasing:
    791     init = EmitARCRetainAutorelease(lvalue.getType(), init);
    792     break;
    793   }
    794 
    795   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
    796 }
    797 
    798 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
    799 /// non-zero parts of the specified initializer with equal or fewer than
    800 /// NumStores scalar stores.
    801 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
    802                                                 unsigned &NumStores) {
    803   // Zero and Undef never requires any extra stores.
    804   if (isa<llvm::ConstantAggregateZero>(Init) ||
    805       isa<llvm::ConstantPointerNull>(Init) ||
    806       isa<llvm::UndefValue>(Init))
    807     return true;
    808   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
    809       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
    810       isa<llvm::ConstantExpr>(Init))
    811     return Init->isNullValue() || NumStores--;
    812 
    813   // See if we can emit each element.
    814   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
    815     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    816       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
    817       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
    818         return false;
    819     }
    820     return true;
    821   }
    822 
    823   if (llvm::ConstantDataSequential *CDS =
    824         dyn_cast<llvm::ConstantDataSequential>(Init)) {
    825     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
    826       llvm::Constant *Elt = CDS->getElementAsConstant(i);
    827       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
    828         return false;
    829     }
    830     return true;
    831   }
    832 
    833   // Anything else is hard and scary.
    834   return false;
    835 }
    836 
    837 /// emitStoresForInitAfterMemset - For inits that
    838 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
    839 /// stores that would be required.
    840 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
    841                                          bool isVolatile, CGBuilderTy &Builder) {
    842   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
    843          "called emitStoresForInitAfterMemset for zero or undef value.");
    844 
    845   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
    846       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
    847       isa<llvm::ConstantExpr>(Init)) {
    848     Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile);
    849     return;
    850   }
    851 
    852   if (llvm::ConstantDataSequential *CDS =
    853         dyn_cast<llvm::ConstantDataSequential>(Init)) {
    854     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
    855       llvm::Constant *Elt = CDS->getElementAsConstant(i);
    856 
    857       // If necessary, get a pointer to the element and emit it.
    858       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
    859         emitStoresForInitAfterMemset(
    860             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
    861             isVolatile, Builder);
    862     }
    863     return;
    864   }
    865 
    866   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
    867          "Unknown value type!");
    868 
    869   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    870     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
    871 
    872     // If necessary, get a pointer to the element and emit it.
    873     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
    874       emitStoresForInitAfterMemset(
    875           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
    876           isVolatile, Builder);
    877   }
    878 }
    879 
    880 
    881 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
    882 /// plus some stores to initialize a local variable instead of using a memcpy
    883 /// from a constant global.  It is beneficial to use memset if the global is all
    884 /// zeros, or mostly zeros and large.
    885 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
    886                                                   uint64_t GlobalSize) {
    887   // If a global is all zeros, always use a memset.
    888   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
    889 
    890   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
    891   // do it if it will require 6 or fewer scalar stores.
    892   // TODO: Should budget depends on the size?  Avoiding a large global warrants
    893   // plopping in more stores.
    894   unsigned StoreBudget = 6;
    895   uint64_t SizeLimit = 32;
    896 
    897   return GlobalSize > SizeLimit &&
    898          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
    899 }
    900 
    901 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
    902 /// variable declaration with auto, register, or no storage class specifier.
    903 /// These turn into simple stack objects, or GlobalValues depending on target.
    904 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
    905   AutoVarEmission emission = EmitAutoVarAlloca(D);
    906   EmitAutoVarInit(emission);
    907   EmitAutoVarCleanups(emission);
    908 }
    909 
    910 /// Emit a lifetime.begin marker if some criteria are satisfied.
    911 /// \return a pointer to the temporary size Value if a marker was emitted, null
    912 /// otherwise
    913 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
    914                                                 llvm::Value *Addr) {
    915   // For now, only in optimized builds.
    916   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
    917     return nullptr;
    918 
    919   // Disable lifetime markers in msan builds.
    920   // FIXME: Remove this when msan works with lifetime markers.
    921   if (getLangOpts().Sanitize.has(SanitizerKind::Memory))
    922     return nullptr;
    923 
    924   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
    925   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
    926   llvm::CallInst *C =
    927       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
    928   C->setDoesNotThrow();
    929   return SizeV;
    930 }
    931 
    932 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
    933   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
    934   llvm::CallInst *C =
    935       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
    936   C->setDoesNotThrow();
    937 }
    938 
    939 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
    940 /// local variable.  Does not emit initialization or destruction.
    941 CodeGenFunction::AutoVarEmission
    942 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
    943   QualType Ty = D.getType();
    944 
    945   AutoVarEmission emission(D);
    946 
    947   bool isByRef = D.hasAttr<BlocksAttr>();
    948   emission.IsByRef = isByRef;
    949 
    950   CharUnits alignment = getContext().getDeclAlign(&D);
    951 
    952   // If the type is variably-modified, emit all the VLA sizes for it.
    953   if (Ty->isVariablyModifiedType())
    954     EmitVariablyModifiedType(Ty);
    955 
    956   Address address = Address::invalid();
    957   if (Ty->isConstantSizeType()) {
    958     bool NRVO = getLangOpts().ElideConstructors &&
    959       D.isNRVOVariable();
    960 
    961     // If this value is an array or struct with a statically determinable
    962     // constant initializer, there are optimizations we can do.
    963     //
    964     // TODO: We should constant-evaluate the initializer of any variable,
    965     // as long as it is initialized by a constant expression. Currently,
    966     // isConstantInitializer produces wrong answers for structs with
    967     // reference or bitfield members, and a few other cases, and checking
    968     // for POD-ness protects us from some of these.
    969     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
    970         (D.isConstexpr() ||
    971          ((Ty.isPODType(getContext()) ||
    972            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
    973           D.getInit()->isConstantInitializer(getContext(), false)))) {
    974 
    975       // If the variable's a const type, and it's neither an NRVO
    976       // candidate nor a __block variable and has no mutable members,
    977       // emit it as a global instead.
    978       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
    979           CGM.isTypeConstant(Ty, true)) {
    980         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
    981 
    982         // Signal this condition to later callbacks.
    983         emission.Addr = Address::invalid();
    984         assert(emission.wasEmittedAsGlobal());
    985         return emission;
    986       }
    987 
    988       // Otherwise, tell the initialization code that we're in this case.
    989       emission.IsConstantAggregate = true;
    990     }
    991 
    992     // A normal fixed sized variable becomes an alloca in the entry block,
    993     // unless it's an NRVO variable.
    994 
    995     if (NRVO) {
    996       // The named return value optimization: allocate this variable in the
    997       // return slot, so that we can elide the copy when returning this
    998       // variable (C++0x [class.copy]p34).
    999       address = ReturnValue;
   1000 
   1001       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
   1002         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
   1003           // Create a flag that is used to indicate when the NRVO was applied
   1004           // to this variable. Set it to zero to indicate that NRVO was not
   1005           // applied.
   1006           llvm::Value *Zero = Builder.getFalse();
   1007           Address NRVOFlag =
   1008             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
   1009           EnsureInsertPoint();
   1010           Builder.CreateStore(Zero, NRVOFlag);
   1011 
   1012           // Record the NRVO flag for this variable.
   1013           NRVOFlags[&D] = NRVOFlag.getPointer();
   1014           emission.NRVOFlag = NRVOFlag.getPointer();
   1015         }
   1016       }
   1017     } else {
   1018       CharUnits allocaAlignment;
   1019       llvm::Type *allocaTy;
   1020       if (isByRef) {
   1021         auto &byrefInfo = getBlockByrefInfo(&D);
   1022         allocaTy = byrefInfo.Type;
   1023         allocaAlignment = byrefInfo.ByrefAlignment;
   1024       } else {
   1025         allocaTy = ConvertTypeForMem(Ty);
   1026         allocaAlignment = alignment;
   1027       }
   1028 
   1029       // Create the alloca.  Note that we set the name separately from
   1030       // building the instruction so that it's there even in no-asserts
   1031       // builds.
   1032       address = CreateTempAlloca(allocaTy, allocaAlignment);
   1033       address.getPointer()->setName(D.getName());
   1034 
   1035       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
   1036       // the catch parameter starts in the catchpad instruction, and we can't
   1037       // insert code in those basic blocks.
   1038       bool IsMSCatchParam =
   1039           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
   1040 
   1041       // Emit a lifetime intrinsic if meaningful.  There's no point
   1042       // in doing this if we don't have a valid insertion point (?).
   1043       if (HaveInsertPoint() && !IsMSCatchParam) {
   1044         uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
   1045         emission.SizeForLifetimeMarkers =
   1046           EmitLifetimeStart(size, address.getPointer());
   1047       } else {
   1048         assert(!emission.useLifetimeMarkers());
   1049       }
   1050     }
   1051   } else {
   1052     EnsureInsertPoint();
   1053 
   1054     if (!DidCallStackSave) {
   1055       // Save the stack.
   1056       Address Stack =
   1057         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
   1058 
   1059       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
   1060       llvm::Value *V = Builder.CreateCall(F);
   1061       Builder.CreateStore(V, Stack);
   1062 
   1063       DidCallStackSave = true;
   1064 
   1065       // Push a cleanup block and restore the stack there.
   1066       // FIXME: in general circumstances, this should be an EH cleanup.
   1067       pushStackRestore(NormalCleanup, Stack);
   1068     }
   1069 
   1070     llvm::Value *elementCount;
   1071     QualType elementType;
   1072     std::tie(elementCount, elementType) = getVLASize(Ty);
   1073 
   1074     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
   1075 
   1076     // Allocate memory for the array.
   1077     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
   1078     vla->setAlignment(alignment.getQuantity());
   1079 
   1080     address = Address(vla, alignment);
   1081   }
   1082 
   1083   setAddrOfLocalVar(&D, address);
   1084   emission.Addr = address;
   1085 
   1086   // Emit debug info for local var declaration.
   1087   if (HaveInsertPoint())
   1088     if (CGDebugInfo *DI = getDebugInfo()) {
   1089       if (CGM.getCodeGenOpts().getDebugInfo()
   1090             >= CodeGenOptions::LimitedDebugInfo) {
   1091         DI->setLocation(D.getLocation());
   1092         DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
   1093       }
   1094     }
   1095 
   1096   if (D.hasAttr<AnnotateAttr>())
   1097     EmitVarAnnotations(&D, address.getPointer());
   1098 
   1099   return emission;
   1100 }
   1101 
   1102 /// Determines whether the given __block variable is potentially
   1103 /// captured by the given expression.
   1104 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
   1105   // Skip the most common kinds of expressions that make
   1106   // hierarchy-walking expensive.
   1107   e = e->IgnoreParenCasts();
   1108 
   1109   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
   1110     const BlockDecl *block = be->getBlockDecl();
   1111     for (const auto &I : block->captures()) {
   1112       if (I.getVariable() == &var)
   1113         return true;
   1114     }
   1115 
   1116     // No need to walk into the subexpressions.
   1117     return false;
   1118   }
   1119 
   1120   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
   1121     const CompoundStmt *CS = SE->getSubStmt();
   1122     for (const auto *BI : CS->body())
   1123       if (const auto *E = dyn_cast<Expr>(BI)) {
   1124         if (isCapturedBy(var, E))
   1125             return true;
   1126       }
   1127       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
   1128           // special case declarations
   1129           for (const auto *I : DS->decls()) {
   1130               if (const auto *VD = dyn_cast<VarDecl>((I))) {
   1131                 const Expr *Init = VD->getInit();
   1132                 if (Init && isCapturedBy(var, Init))
   1133                   return true;
   1134               }
   1135           }
   1136       }
   1137       else
   1138         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
   1139         // Later, provide code to poke into statements for capture analysis.
   1140         return true;
   1141     return false;
   1142   }
   1143 
   1144   for (const Stmt *SubStmt : e->children())
   1145     if (isCapturedBy(var, cast<Expr>(SubStmt)))
   1146       return true;
   1147 
   1148   return false;
   1149 }
   1150 
   1151 /// \brief Determine whether the given initializer is trivial in the sense
   1152 /// that it requires no code to be generated.
   1153 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
   1154   if (!Init)
   1155     return true;
   1156 
   1157   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
   1158     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
   1159       if (Constructor->isTrivial() &&
   1160           Constructor->isDefaultConstructor() &&
   1161           !Construct->requiresZeroInitialization())
   1162         return true;
   1163 
   1164   return false;
   1165 }
   1166 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
   1167   assert(emission.Variable && "emission was not valid!");
   1168 
   1169   // If this was emitted as a global constant, we're done.
   1170   if (emission.wasEmittedAsGlobal()) return;
   1171 
   1172   const VarDecl &D = *emission.Variable;
   1173   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
   1174   QualType type = D.getType();
   1175 
   1176   // If this local has an initializer, emit it now.
   1177   const Expr *Init = D.getInit();
   1178 
   1179   // If we are at an unreachable point, we don't need to emit the initializer
   1180   // unless it contains a label.
   1181   if (!HaveInsertPoint()) {
   1182     if (!Init || !ContainsLabel(Init)) return;
   1183     EnsureInsertPoint();
   1184   }
   1185 
   1186   // Initialize the structure of a __block variable.
   1187   if (emission.IsByRef)
   1188     emitByrefStructureInit(emission);
   1189 
   1190   if (isTrivialInitializer(Init))
   1191     return;
   1192 
   1193   // Check whether this is a byref variable that's potentially
   1194   // captured and moved by its own initializer.  If so, we'll need to
   1195   // emit the initializer first, then copy into the variable.
   1196   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
   1197 
   1198   Address Loc =
   1199     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
   1200 
   1201   llvm::Constant *constant = nullptr;
   1202   if (emission.IsConstantAggregate || D.isConstexpr()) {
   1203     assert(!capturedByInit && "constant init contains a capturing block?");
   1204     constant = CGM.EmitConstantInit(D, this);
   1205   }
   1206 
   1207   if (!constant) {
   1208     LValue lv = MakeAddrLValue(Loc, type);
   1209     lv.setNonGC(true);
   1210     return EmitExprAsInit(Init, &D, lv, capturedByInit);
   1211   }
   1212 
   1213   if (!emission.IsConstantAggregate) {
   1214     // For simple scalar/complex initialization, store the value directly.
   1215     LValue lv = MakeAddrLValue(Loc, type);
   1216     lv.setNonGC(true);
   1217     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
   1218   }
   1219 
   1220   // If this is a simple aggregate initialization, we can optimize it
   1221   // in various ways.
   1222   bool isVolatile = type.isVolatileQualified();
   1223 
   1224   llvm::Value *SizeVal =
   1225     llvm::ConstantInt::get(IntPtrTy,
   1226                            getContext().getTypeSizeInChars(type).getQuantity());
   1227 
   1228   llvm::Type *BP = Int8PtrTy;
   1229   if (Loc.getType() != BP)
   1230     Loc = Builder.CreateBitCast(Loc, BP);
   1231 
   1232   // If the initializer is all or mostly zeros, codegen with memset then do
   1233   // a few stores afterward.
   1234   if (shouldUseMemSetPlusStoresToInitialize(constant,
   1235                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
   1236     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
   1237                          isVolatile);
   1238     // Zero and undef don't require a stores.
   1239     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
   1240       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
   1241       emitStoresForInitAfterMemset(constant, Loc.getPointer(),
   1242                                    isVolatile, Builder);
   1243     }
   1244   } else {
   1245     // Otherwise, create a temporary global with the initializer then
   1246     // memcpy from the global to the alloca.
   1247     std::string Name = getStaticDeclName(CGM, D);
   1248     llvm::GlobalVariable *GV =
   1249       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
   1250                                llvm::GlobalValue::PrivateLinkage,
   1251                                constant, Name);
   1252     GV->setAlignment(Loc.getAlignment().getQuantity());
   1253     GV->setUnnamedAddr(true);
   1254 
   1255     Address SrcPtr = Address(GV, Loc.getAlignment());
   1256     if (SrcPtr.getType() != BP)
   1257       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
   1258 
   1259     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
   1260   }
   1261 }
   1262 
   1263 /// Emit an expression as an initializer for a variable at the given
   1264 /// location.  The expression is not necessarily the normal
   1265 /// initializer for the variable, and the address is not necessarily
   1266 /// its normal location.
   1267 ///
   1268 /// \param init the initializing expression
   1269 /// \param var the variable to act as if we're initializing
   1270 /// \param loc the address to initialize; its type is a pointer
   1271 ///   to the LLVM mapping of the variable's type
   1272 /// \param alignment the alignment of the address
   1273 /// \param capturedByInit true if the variable is a __block variable
   1274 ///   whose address is potentially changed by the initializer
   1275 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
   1276                                      LValue lvalue, bool capturedByInit) {
   1277   QualType type = D->getType();
   1278 
   1279   if (type->isReferenceType()) {
   1280     RValue rvalue = EmitReferenceBindingToExpr(init);
   1281     if (capturedByInit)
   1282       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
   1283     EmitStoreThroughLValue(rvalue, lvalue, true);
   1284     return;
   1285   }
   1286   switch (getEvaluationKind(type)) {
   1287   case TEK_Scalar:
   1288     EmitScalarInit(init, D, lvalue, capturedByInit);
   1289     return;
   1290   case TEK_Complex: {
   1291     ComplexPairTy complex = EmitComplexExpr(init);
   1292     if (capturedByInit)
   1293       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
   1294     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
   1295     return;
   1296   }
   1297   case TEK_Aggregate:
   1298     if (type->isAtomicType()) {
   1299       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
   1300     } else {
   1301       // TODO: how can we delay here if D is captured by its initializer?
   1302       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
   1303                                               AggValueSlot::IsDestructed,
   1304                                          AggValueSlot::DoesNotNeedGCBarriers,
   1305                                               AggValueSlot::IsNotAliased));
   1306     }
   1307     return;
   1308   }
   1309   llvm_unreachable("bad evaluation kind");
   1310 }
   1311 
   1312 /// Enter a destroy cleanup for the given local variable.
   1313 void CodeGenFunction::emitAutoVarTypeCleanup(
   1314                             const CodeGenFunction::AutoVarEmission &emission,
   1315                             QualType::DestructionKind dtorKind) {
   1316   assert(dtorKind != QualType::DK_none);
   1317 
   1318   // Note that for __block variables, we want to destroy the
   1319   // original stack object, not the possibly forwarded object.
   1320   Address addr = emission.getObjectAddress(*this);
   1321 
   1322   const VarDecl *var = emission.Variable;
   1323   QualType type = var->getType();
   1324 
   1325   CleanupKind cleanupKind = NormalAndEHCleanup;
   1326   CodeGenFunction::Destroyer *destroyer = nullptr;
   1327 
   1328   switch (dtorKind) {
   1329   case QualType::DK_none:
   1330     llvm_unreachable("no cleanup for trivially-destructible variable");
   1331 
   1332   case QualType::DK_cxx_destructor:
   1333     // If there's an NRVO flag on the emission, we need a different
   1334     // cleanup.
   1335     if (emission.NRVOFlag) {
   1336       assert(!type->isArrayType());
   1337       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
   1338       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr,
   1339                                                dtor, emission.NRVOFlag);
   1340       return;
   1341     }
   1342     break;
   1343 
   1344   case QualType::DK_objc_strong_lifetime:
   1345     // Suppress cleanups for pseudo-strong variables.
   1346     if (var->isARCPseudoStrong()) return;
   1347 
   1348     // Otherwise, consider whether to use an EH cleanup or not.
   1349     cleanupKind = getARCCleanupKind();
   1350 
   1351     // Use the imprecise destroyer by default.
   1352     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
   1353       destroyer = CodeGenFunction::destroyARCStrongImprecise;
   1354     break;
   1355 
   1356   case QualType::DK_objc_weak_lifetime:
   1357     break;
   1358   }
   1359 
   1360   // If we haven't chosen a more specific destroyer, use the default.
   1361   if (!destroyer) destroyer = getDestroyer(dtorKind);
   1362 
   1363   // Use an EH cleanup in array destructors iff the destructor itself
   1364   // is being pushed as an EH cleanup.
   1365   bool useEHCleanup = (cleanupKind & EHCleanup);
   1366   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
   1367                                      useEHCleanup);
   1368 }
   1369 
   1370 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
   1371   assert(emission.Variable && "emission was not valid!");
   1372 
   1373   // If this was emitted as a global constant, we're done.
   1374   if (emission.wasEmittedAsGlobal()) return;
   1375 
   1376   // If we don't have an insertion point, we're done.  Sema prevents
   1377   // us from jumping into any of these scopes anyway.
   1378   if (!HaveInsertPoint()) return;
   1379 
   1380   const VarDecl &D = *emission.Variable;
   1381 
   1382   // Make sure we call @llvm.lifetime.end.  This needs to happen
   1383   // *last*, so the cleanup needs to be pushed *first*.
   1384   if (emission.useLifetimeMarkers()) {
   1385     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
   1386                                          emission.getAllocatedAddress(),
   1387                                          emission.getSizeForLifetimeMarkers());
   1388     EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
   1389     cleanup.setLifetimeMarker();
   1390   }
   1391 
   1392   // Check the type for a cleanup.
   1393   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
   1394     emitAutoVarTypeCleanup(emission, dtorKind);
   1395 
   1396   // In GC mode, honor objc_precise_lifetime.
   1397   if (getLangOpts().getGC() != LangOptions::NonGC &&
   1398       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
   1399     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
   1400   }
   1401 
   1402   // Handle the cleanup attribute.
   1403   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
   1404     const FunctionDecl *FD = CA->getFunctionDecl();
   1405 
   1406     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
   1407     assert(F && "Could not find function!");
   1408 
   1409     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
   1410     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
   1411   }
   1412 
   1413   // If this is a block variable, call _Block_object_destroy
   1414   // (on the unforwarded address).
   1415   if (emission.IsByRef)
   1416     enterByrefCleanup(emission);
   1417 }
   1418 
   1419 CodeGenFunction::Destroyer *
   1420 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
   1421   switch (kind) {
   1422   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
   1423   case QualType::DK_cxx_destructor:
   1424     return destroyCXXObject;
   1425   case QualType::DK_objc_strong_lifetime:
   1426     return destroyARCStrongPrecise;
   1427   case QualType::DK_objc_weak_lifetime:
   1428     return destroyARCWeak;
   1429   }
   1430   llvm_unreachable("Unknown DestructionKind");
   1431 }
   1432 
   1433 /// pushEHDestroy - Push the standard destructor for the given type as
   1434 /// an EH-only cleanup.
   1435 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
   1436                                     Address addr, QualType type) {
   1437   assert(dtorKind && "cannot push destructor for trivial type");
   1438   assert(needsEHCleanup(dtorKind));
   1439 
   1440   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
   1441 }
   1442 
   1443 /// pushDestroy - Push the standard destructor for the given type as
   1444 /// at least a normal cleanup.
   1445 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
   1446                                   Address addr, QualType type) {
   1447   assert(dtorKind && "cannot push destructor for trivial type");
   1448 
   1449   CleanupKind cleanupKind = getCleanupKind(dtorKind);
   1450   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
   1451               cleanupKind & EHCleanup);
   1452 }
   1453 
   1454 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
   1455                                   QualType type, Destroyer *destroyer,
   1456                                   bool useEHCleanupForArray) {
   1457   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
   1458                                      destroyer, useEHCleanupForArray);
   1459 }
   1460 
   1461 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
   1462   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
   1463 }
   1464 
   1465 void CodeGenFunction::pushLifetimeExtendedDestroy(
   1466     CleanupKind cleanupKind, Address addr, QualType type,
   1467     Destroyer *destroyer, bool useEHCleanupForArray) {
   1468   assert(!isInConditionalBranch() &&
   1469          "performing lifetime extension from within conditional");
   1470 
   1471   // Push an EH-only cleanup for the object now.
   1472   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
   1473   // around in case a temporary's destructor throws an exception.
   1474   if (cleanupKind & EHCleanup)
   1475     EHStack.pushCleanup<DestroyObject>(
   1476         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
   1477         destroyer, useEHCleanupForArray);
   1478 
   1479   // Remember that we need to push a full cleanup for the object at the
   1480   // end of the full-expression.
   1481   pushCleanupAfterFullExpr<DestroyObject>(
   1482       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
   1483 }
   1484 
   1485 /// emitDestroy - Immediately perform the destruction of the given
   1486 /// object.
   1487 ///
   1488 /// \param addr - the address of the object; a type*
   1489 /// \param type - the type of the object; if an array type, all
   1490 ///   objects are destroyed in reverse order
   1491 /// \param destroyer - the function to call to destroy individual
   1492 ///   elements
   1493 /// \param useEHCleanupForArray - whether an EH cleanup should be
   1494 ///   used when destroying array elements, in case one of the
   1495 ///   destructions throws an exception
   1496 void CodeGenFunction::emitDestroy(Address addr, QualType type,
   1497                                   Destroyer *destroyer,
   1498                                   bool useEHCleanupForArray) {
   1499   const ArrayType *arrayType = getContext().getAsArrayType(type);
   1500   if (!arrayType)
   1501     return destroyer(*this, addr, type);
   1502 
   1503   llvm::Value *length = emitArrayLength(arrayType, type, addr);
   1504 
   1505   CharUnits elementAlign =
   1506     addr.getAlignment()
   1507         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
   1508 
   1509   // Normally we have to check whether the array is zero-length.
   1510   bool checkZeroLength = true;
   1511 
   1512   // But if the array length is constant, we can suppress that.
   1513   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
   1514     // ...and if it's constant zero, we can just skip the entire thing.
   1515     if (constLength->isZero()) return;
   1516     checkZeroLength = false;
   1517   }
   1518 
   1519   llvm::Value *begin = addr.getPointer();
   1520   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
   1521   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
   1522                    checkZeroLength, useEHCleanupForArray);
   1523 }
   1524 
   1525 /// emitArrayDestroy - Destroys all the elements of the given array,
   1526 /// beginning from last to first.  The array cannot be zero-length.
   1527 ///
   1528 /// \param begin - a type* denoting the first element of the array
   1529 /// \param end - a type* denoting one past the end of the array
   1530 /// \param elementType - the element type of the array
   1531 /// \param destroyer - the function to call to destroy elements
   1532 /// \param useEHCleanup - whether to push an EH cleanup to destroy
   1533 ///   the remaining elements in case the destruction of a single
   1534 ///   element throws
   1535 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
   1536                                        llvm::Value *end,
   1537                                        QualType elementType,
   1538                                        CharUnits elementAlign,
   1539                                        Destroyer *destroyer,
   1540                                        bool checkZeroLength,
   1541                                        bool useEHCleanup) {
   1542   assert(!elementType->isArrayType());
   1543 
   1544   // The basic structure here is a do-while loop, because we don't
   1545   // need to check for the zero-element case.
   1546   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
   1547   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
   1548 
   1549   if (checkZeroLength) {
   1550     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
   1551                                                 "arraydestroy.isempty");
   1552     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
   1553   }
   1554 
   1555   // Enter the loop body, making that address the current address.
   1556   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
   1557   EmitBlock(bodyBB);
   1558   llvm::PHINode *elementPast =
   1559     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
   1560   elementPast->addIncoming(end, entryBB);
   1561 
   1562   // Shift the address back by one element.
   1563   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
   1564   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
   1565                                                    "arraydestroy.element");
   1566 
   1567   if (useEHCleanup)
   1568     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
   1569                                    destroyer);
   1570 
   1571   // Perform the actual destruction there.
   1572   destroyer(*this, Address(element, elementAlign), elementType);
   1573 
   1574   if (useEHCleanup)
   1575     PopCleanupBlock();
   1576 
   1577   // Check whether we've reached the end.
   1578   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
   1579   Builder.CreateCondBr(done, doneBB, bodyBB);
   1580   elementPast->addIncoming(element, Builder.GetInsertBlock());
   1581 
   1582   // Done.
   1583   EmitBlock(doneBB);
   1584 }
   1585 
   1586 /// Perform partial array destruction as if in an EH cleanup.  Unlike
   1587 /// emitArrayDestroy, the element type here may still be an array type.
   1588 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
   1589                                     llvm::Value *begin, llvm::Value *end,
   1590                                     QualType type, CharUnits elementAlign,
   1591                                     CodeGenFunction::Destroyer *destroyer) {
   1592   // If the element type is itself an array, drill down.
   1593   unsigned arrayDepth = 0;
   1594   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
   1595     // VLAs don't require a GEP index to walk into.
   1596     if (!isa<VariableArrayType>(arrayType))
   1597       arrayDepth++;
   1598     type = arrayType->getElementType();
   1599   }
   1600 
   1601   if (arrayDepth) {
   1602     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
   1603 
   1604     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
   1605     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
   1606     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
   1607   }
   1608 
   1609   // Destroy the array.  We don't ever need an EH cleanup because we
   1610   // assume that we're in an EH cleanup ourselves, so a throwing
   1611   // destructor causes an immediate terminate.
   1612   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
   1613                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
   1614 }
   1615 
   1616 namespace {
   1617   /// RegularPartialArrayDestroy - a cleanup which performs a partial
   1618   /// array destroy where the end pointer is regularly determined and
   1619   /// does not need to be loaded from a local.
   1620   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
   1621     llvm::Value *ArrayBegin;
   1622     llvm::Value *ArrayEnd;
   1623     QualType ElementType;
   1624     CodeGenFunction::Destroyer *Destroyer;
   1625     CharUnits ElementAlign;
   1626   public:
   1627     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
   1628                                QualType elementType, CharUnits elementAlign,
   1629                                CodeGenFunction::Destroyer *destroyer)
   1630       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
   1631         ElementType(elementType), Destroyer(destroyer),
   1632         ElementAlign(elementAlign) {}
   1633 
   1634     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1635       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
   1636                               ElementType, ElementAlign, Destroyer);
   1637     }
   1638   };
   1639 
   1640   /// IrregularPartialArrayDestroy - a cleanup which performs a
   1641   /// partial array destroy where the end pointer is irregularly
   1642   /// determined and must be loaded from a local.
   1643   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
   1644     llvm::Value *ArrayBegin;
   1645     Address ArrayEndPointer;
   1646     QualType ElementType;
   1647     CodeGenFunction::Destroyer *Destroyer;
   1648     CharUnits ElementAlign;
   1649   public:
   1650     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
   1651                                  Address arrayEndPointer,
   1652                                  QualType elementType,
   1653                                  CharUnits elementAlign,
   1654                                  CodeGenFunction::Destroyer *destroyer)
   1655       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
   1656         ElementType(elementType), Destroyer(destroyer),
   1657         ElementAlign(elementAlign) {}
   1658 
   1659     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1660       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
   1661       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
   1662                               ElementType, ElementAlign, Destroyer);
   1663     }
   1664   };
   1665 }
   1666 
   1667 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
   1668 /// already-constructed elements of the given array.  The cleanup
   1669 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
   1670 ///
   1671 /// \param elementType - the immediate element type of the array;
   1672 ///   possibly still an array type
   1673 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
   1674                                                        Address arrayEndPointer,
   1675                                                        QualType elementType,
   1676                                                        CharUnits elementAlign,
   1677                                                        Destroyer *destroyer) {
   1678   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
   1679                                                     arrayBegin, arrayEndPointer,
   1680                                                     elementType, elementAlign,
   1681                                                     destroyer);
   1682 }
   1683 
   1684 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
   1685 /// already-constructed elements of the given array.  The cleanup
   1686 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
   1687 ///
   1688 /// \param elementType - the immediate element type of the array;
   1689 ///   possibly still an array type
   1690 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
   1691                                                      llvm::Value *arrayEnd,
   1692                                                      QualType elementType,
   1693                                                      CharUnits elementAlign,
   1694                                                      Destroyer *destroyer) {
   1695   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
   1696                                                   arrayBegin, arrayEnd,
   1697                                                   elementType, elementAlign,
   1698                                                   destroyer);
   1699 }
   1700 
   1701 /// Lazily declare the @llvm.lifetime.start intrinsic.
   1702 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
   1703   if (LifetimeStartFn) return LifetimeStartFn;
   1704   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
   1705                                             llvm::Intrinsic::lifetime_start);
   1706   return LifetimeStartFn;
   1707 }
   1708 
   1709 /// Lazily declare the @llvm.lifetime.end intrinsic.
   1710 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
   1711   if (LifetimeEndFn) return LifetimeEndFn;
   1712   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
   1713                                               llvm::Intrinsic::lifetime_end);
   1714   return LifetimeEndFn;
   1715 }
   1716 
   1717 namespace {
   1718   /// A cleanup to perform a release of an object at the end of a
   1719   /// function.  This is used to balance out the incoming +1 of a
   1720   /// ns_consumed argument when we can't reasonably do that just by
   1721   /// not doing the initial retain for a __block argument.
   1722   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
   1723     ConsumeARCParameter(llvm::Value *param,
   1724                         ARCPreciseLifetime_t precise)
   1725       : Param(param), Precise(precise) {}
   1726 
   1727     llvm::Value *Param;
   1728     ARCPreciseLifetime_t Precise;
   1729 
   1730     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1731       CGF.EmitARCRelease(Param, Precise);
   1732     }
   1733   };
   1734 }
   1735 
   1736 /// Emit an alloca (or GlobalValue depending on target)
   1737 /// for the specified parameter and set up LocalDeclMap.
   1738 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
   1739                                    unsigned ArgNo) {
   1740   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
   1741   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
   1742          "Invalid argument to EmitParmDecl");
   1743 
   1744   Arg.getAnyValue()->setName(D.getName());
   1745 
   1746   QualType Ty = D.getType();
   1747 
   1748   // Use better IR generation for certain implicit parameters.
   1749   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
   1750     // The only implicit argument a block has is its literal.
   1751     // We assume this is always passed directly.
   1752     if (BlockInfo) {
   1753       setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue());
   1754       return;
   1755     }
   1756   }
   1757 
   1758   Address DeclPtr = Address::invalid();
   1759   bool DoStore = false;
   1760   bool IsScalar = hasScalarEvaluationKind(Ty);
   1761   // If we already have a pointer to the argument, reuse the input pointer.
   1762   if (Arg.isIndirect()) {
   1763     DeclPtr = Arg.getIndirectAddress();
   1764     // If we have a prettier pointer type at this point, bitcast to that.
   1765     unsigned AS = DeclPtr.getType()->getAddressSpace();
   1766     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
   1767     if (DeclPtr.getType() != IRTy)
   1768       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
   1769 
   1770     // Push a destructor cleanup for this parameter if the ABI requires it.
   1771     // Don't push a cleanup in a thunk for a method that will also emit a
   1772     // cleanup.
   1773     if (!IsScalar && !CurFuncIsThunk &&
   1774         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
   1775       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
   1776       if (RD && RD->hasNonTrivialDestructor())
   1777         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
   1778     }
   1779   } else {
   1780     // Otherwise, create a temporary to hold the value.
   1781     DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
   1782                             D.getName() + ".addr");
   1783     DoStore = true;
   1784   }
   1785 
   1786   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
   1787 
   1788   LValue lv = MakeAddrLValue(DeclPtr, Ty);
   1789   if (IsScalar) {
   1790     Qualifiers qs = Ty.getQualifiers();
   1791     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
   1792       // We honor __attribute__((ns_consumed)) for types with lifetime.
   1793       // For __strong, it's handled by just skipping the initial retain;
   1794       // otherwise we have to balance out the initial +1 with an extra
   1795       // cleanup to do the release at the end of the function.
   1796       bool isConsumed = D.hasAttr<NSConsumedAttr>();
   1797 
   1798       // 'self' is always formally __strong, but if this is not an
   1799       // init method then we don't want to retain it.
   1800       if (D.isARCPseudoStrong()) {
   1801         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
   1802         assert(&D == method->getSelfDecl());
   1803         assert(lt == Qualifiers::OCL_Strong);
   1804         assert(qs.hasConst());
   1805         assert(method->getMethodFamily() != OMF_init);
   1806         (void) method;
   1807         lt = Qualifiers::OCL_ExplicitNone;
   1808       }
   1809 
   1810       if (lt == Qualifiers::OCL_Strong) {
   1811         if (!isConsumed) {
   1812           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   1813             // use objc_storeStrong(&dest, value) for retaining the
   1814             // object. But first, store a null into 'dest' because
   1815             // objc_storeStrong attempts to release its old value.
   1816             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
   1817             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
   1818             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
   1819             DoStore = false;
   1820           }
   1821           else
   1822           // Don't use objc_retainBlock for block pointers, because we
   1823           // don't want to Block_copy something just because we got it
   1824           // as a parameter.
   1825             ArgVal = EmitARCRetainNonBlock(ArgVal);
   1826         }
   1827       } else {
   1828         // Push the cleanup for a consumed parameter.
   1829         if (isConsumed) {
   1830           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
   1831                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
   1832           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
   1833                                                    precise);
   1834         }
   1835 
   1836         if (lt == Qualifiers::OCL_Weak) {
   1837           EmitARCInitWeak(DeclPtr, ArgVal);
   1838           DoStore = false; // The weak init is a store, no need to do two.
   1839         }
   1840       }
   1841 
   1842       // Enter the cleanup scope.
   1843       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
   1844     }
   1845   }
   1846 
   1847   // Store the initial value into the alloca.
   1848   if (DoStore)
   1849     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
   1850 
   1851   setAddrOfLocalVar(&D, DeclPtr);
   1852 
   1853   // Emit debug info for param declaration.
   1854   if (CGDebugInfo *DI = getDebugInfo()) {
   1855     if (CGM.getCodeGenOpts().getDebugInfo()
   1856           >= CodeGenOptions::LimitedDebugInfo) {
   1857       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
   1858     }
   1859   }
   1860 
   1861   if (D.hasAttr<AnnotateAttr>())
   1862     EmitVarAnnotations(&D, DeclPtr.getPointer());
   1863 }
   1864