Home | History | Annotate | Download | only in pipeline
      1 /*------------------------------------------------------------------------
      2  * Vulkan Conformance Tests
      3  * ------------------------
      4  *
      5  * Copyright (c) 2015 The Khronos Group Inc.
      6  * Copyright (c) 2015 Imagination Technologies Ltd.
      7  *
      8  * Licensed under the Apache License, Version 2.0 (the "License");
      9  * you may not use this file except in compliance with the License.
     10  * You may obtain a copy of the License at
     11  *
     12  *      http://www.apache.org/licenses/LICENSE-2.0
     13  *
     14  * Unless required by applicable law or agreed to in writing, software
     15  * distributed under the License is distributed on an "AS IS" BASIS,
     16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     17  * See the License for the specific language governing permissions and
     18  * limitations under the License.
     19  *
     20  *//*!
     21  * \file
     22  * \brief Vertex Input Tests
     23  *//*--------------------------------------------------------------------*/
     24 
     25 #include "vktPipelineVertexInputTests.hpp"
     26 #include "vktPipelineCombinationsIterator.hpp"
     27 #include "vktPipelineClearUtil.hpp"
     28 #include "vktPipelineImageUtil.hpp"
     29 #include "vktPipelineVertexUtil.hpp"
     30 #include "vktPipelineReferenceRenderer.hpp"
     31 #include "vktTestCase.hpp"
     32 #include "vktTestCaseUtil.hpp"
     33 #include "vkImageUtil.hpp"
     34 #include "vkMemUtil.hpp"
     35 #include "vkPrograms.hpp"
     36 #include "vkQueryUtil.hpp"
     37 #include "vkRef.hpp"
     38 #include "vkRefUtil.hpp"
     39 #include "tcuFloat.hpp"
     40 #include "tcuImageCompare.hpp"
     41 #include "deFloat16.h"
     42 #include "deMemory.h"
     43 #include "deStringUtil.hpp"
     44 #include "deUniquePtr.hpp"
     45 
     46 #include <sstream>
     47 #include <vector>
     48 
     49 namespace vkt
     50 {
     51 namespace pipeline
     52 {
     53 
     54 using namespace vk;
     55 
     56 namespace
     57 {
     58 
     59 bool isSupportedVertexFormat (Context& context, VkFormat format)
     60 {
     61 	if (isVertexFormatDouble(format) && !context.getDeviceFeatures().shaderFloat64)
     62 		return false;
     63 
     64 	VkFormatProperties  formatProps;
     65 	deMemset(&formatProps, 0, sizeof(VkFormatProperties));
     66 	context.getInstanceInterface().getPhysicalDeviceFormatProperties(context.getPhysicalDevice(), format, &formatProps);
     67 
     68 	return (formatProps.bufferFeatures & VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT) != 0u;
     69 }
     70 
     71 float getRepresentableDifferenceUnorm (VkFormat format)
     72 {
     73 	DE_ASSERT(isVertexFormatUnorm(format) || isVertexFormatSRGB(format));
     74 
     75 	return 1.0f / float((1 << (getVertexFormatComponentSize(format) * 8)) - 1);
     76 }
     77 
     78 float getRepresentableDifferenceSnorm (VkFormat format)
     79 {
     80 	DE_ASSERT(isVertexFormatSnorm(format));
     81 
     82 	return 1.0f / float((1 << (getVertexFormatComponentSize(format) * 8 - 1)) - 1);
     83 }
     84 
     85 deUint32 getNextMultipleOffset (deUint32 divisor, deUint32 value)
     86 {
     87 	if (value % divisor == 0)
     88 		return 0;
     89 	else
     90 		return divisor - (value % divisor);
     91 }
     92 
     93 class VertexInputTest : public vkt::TestCase
     94 {
     95 public:
     96 	enum GlslType
     97 	{
     98 		GLSL_TYPE_INT,
     99 		GLSL_TYPE_IVEC2,
    100 		GLSL_TYPE_IVEC3,
    101 		GLSL_TYPE_IVEC4,
    102 
    103 		GLSL_TYPE_UINT,
    104 		GLSL_TYPE_UVEC2,
    105 		GLSL_TYPE_UVEC3,
    106 		GLSL_TYPE_UVEC4,
    107 
    108 		GLSL_TYPE_FLOAT,
    109 		GLSL_TYPE_VEC2,
    110 		GLSL_TYPE_VEC3,
    111 		GLSL_TYPE_VEC4,
    112 		GLSL_TYPE_MAT2,
    113 		GLSL_TYPE_MAT3,
    114 		GLSL_TYPE_MAT4,
    115 
    116 		GLSL_TYPE_DOUBLE,
    117 		GLSL_TYPE_DVEC2,
    118 		GLSL_TYPE_DVEC3,
    119 		GLSL_TYPE_DVEC4,
    120 		GLSL_TYPE_DMAT2,
    121 		GLSL_TYPE_DMAT3,
    122 		GLSL_TYPE_DMAT4,
    123 
    124 		GLSL_TYPE_COUNT
    125 	};
    126 
    127 	enum GlslBasicType
    128 	{
    129 		GLSL_BASIC_TYPE_INT,
    130 		GLSL_BASIC_TYPE_UINT,
    131 		GLSL_BASIC_TYPE_FLOAT,
    132 		GLSL_BASIC_TYPE_DOUBLE
    133 	};
    134 
    135 	enum BindingMapping
    136 	{
    137 		BINDING_MAPPING_ONE_TO_ONE,	// Vertex input bindings will not contain data for more than one attribute.
    138 		BINDING_MAPPING_ONE_TO_MANY	// Vertex input bindings can contain data for more than one attribute.
    139 	};
    140 
    141 	struct AttributeInfo
    142 	{
    143 		GlslType				glslType;
    144 		VkFormat				vkType;
    145 		VkVertexInputRate		inputRate;
    146 	};
    147 
    148 	struct GlslTypeDescription
    149 	{
    150 		const char*		name;
    151 		int				vertexInputComponentCount;
    152 		int				vertexInputCount;
    153 		GlslBasicType	basicType;
    154 	};
    155 
    156 	static const GlslTypeDescription		s_glslTypeDescriptions[GLSL_TYPE_COUNT];
    157 
    158 											VertexInputTest				(tcu::TestContext&					testContext,
    159 																		 const std::string&					name,
    160 																		 const std::string&					description,
    161 																		 const std::vector<AttributeInfo>&	attributeInfos,
    162 																		 BindingMapping						bindingMapping);
    163 
    164 	virtual									~VertexInputTest			(void) {}
    165 	virtual void							initPrograms				(SourceCollections& programCollection) const;
    166 	virtual TestInstance*					createInstance				(Context& context) const;
    167 	static bool								isCompatibleType			(VkFormat format, GlslType glslType);
    168 
    169 private:
    170 	std::string								getGlslInputDeclarations	(void) const;
    171 	std::string								getGlslVertexCheck			(void) const;
    172 	std::string								getGlslAttributeConditions	(const AttributeInfo& attributeInfo, deUint32 attributeIndex) const;
    173 	static tcu::Vec4						getFormatThreshold			(VkFormat format);
    174 
    175 	const std::vector<AttributeInfo>		m_attributeInfos;
    176 	const BindingMapping					m_bindingMapping;
    177 	bool									m_usesDoubleType;
    178 };
    179 
    180 class GlslTypeCombinationsIterator : public CombinationsIterator< std::vector<VertexInputTest::GlslType> >
    181 {
    182 public:
    183 													GlslTypeCombinationsIterator	(deUint32 numValues, deUint32 combinationSize);
    184 	virtual											~GlslTypeCombinationsIterator	(void) {}
    185 
    186 protected:
    187 	virtual std::vector<VertexInputTest::GlslType>	getCombinationValue				(const std::vector<deUint32>& combination);
    188 
    189 private:
    190 	std::vector<VertexInputTest::GlslType>			m_combinationValue;
    191 };
    192 
    193 class VertexInputInstance : public vkt::TestInstance
    194 {
    195 public:
    196 	struct VertexInputAttributeDescription
    197 	{
    198 		VertexInputTest::GlslType			glslType;
    199 		int									vertexInputIndex;
    200 		VkVertexInputAttributeDescription	vkDescription;
    201 	};
    202 
    203 	typedef	std::vector<VertexInputAttributeDescription>	AttributeDescriptionList;
    204 
    205 											VertexInputInstance			(Context&												context,
    206 																		 const AttributeDescriptionList&						attributeDescriptions,
    207 																		 const std::vector<VkVertexInputBindingDescription>&	bindingDescriptions,
    208 																		 const std::vector<VkDeviceSize>&						bindingOffsets);
    209 
    210 	virtual									~VertexInputInstance		(void);
    211 	virtual tcu::TestStatus					iterate						(void);
    212 
    213 
    214 	static void								writeVertexInputData		(deUint8* destPtr, const VkVertexInputBindingDescription& bindingDescription, const VkDeviceSize bindingOffset, const AttributeDescriptionList& attributes);
    215 	static void								writeVertexInputValue		(deUint8* destPtr, const VertexInputAttributeDescription& attributes, int indexId);
    216 
    217 private:
    218 	tcu::TestStatus							verifyImage					(void);
    219 
    220 private:
    221 	std::vector<VkBuffer>					m_vertexBuffers;
    222 	std::vector<Allocation*>				m_vertexBufferAllocs;
    223 
    224 	const tcu::UVec2						m_renderSize;
    225 	const VkFormat							m_colorFormat;
    226 
    227 	Move<VkImage>							m_colorImage;
    228 	de::MovePtr<Allocation>					m_colorImageAlloc;
    229 	Move<VkImage>							m_depthImage;
    230 	Move<VkImageView>						m_colorAttachmentView;
    231 	Move<VkRenderPass>						m_renderPass;
    232 	Move<VkFramebuffer>						m_framebuffer;
    233 
    234 	Move<VkShaderModule>					m_vertexShaderModule;
    235 	Move<VkShaderModule>					m_fragmentShaderModule;
    236 
    237 	Move<VkPipelineLayout>					m_pipelineLayout;
    238 	Move<VkPipeline>						m_graphicsPipeline;
    239 
    240 	Move<VkCommandPool>						m_cmdPool;
    241 	Move<VkCommandBuffer>					m_cmdBuffer;
    242 
    243 	Move<VkFence>							m_fence;
    244 };
    245 
    246 const VertexInputTest::GlslTypeDescription VertexInputTest::s_glslTypeDescriptions[GLSL_TYPE_COUNT] =
    247 {
    248 	{ "int",	1, 1, GLSL_BASIC_TYPE_INT },
    249 	{ "ivec2",	2, 1, GLSL_BASIC_TYPE_INT },
    250 	{ "ivec3",	3, 1, GLSL_BASIC_TYPE_INT },
    251 	{ "ivec4",	4, 1, GLSL_BASIC_TYPE_INT },
    252 
    253 	{ "uint",	1, 1, GLSL_BASIC_TYPE_UINT },
    254 	{ "uvec2",	2, 1, GLSL_BASIC_TYPE_UINT },
    255 	{ "uvec3",	3, 1, GLSL_BASIC_TYPE_UINT },
    256 	{ "uvec4",	4, 1, GLSL_BASIC_TYPE_UINT },
    257 
    258 	{ "float",	1, 1, GLSL_BASIC_TYPE_FLOAT },
    259 	{ "vec2",	2, 1, GLSL_BASIC_TYPE_FLOAT },
    260 	{ "vec3",	3, 1, GLSL_BASIC_TYPE_FLOAT },
    261 	{ "vec4",	4, 1, GLSL_BASIC_TYPE_FLOAT },
    262 	{ "mat2",	2, 2, GLSL_BASIC_TYPE_FLOAT },
    263 	{ "mat3",	3, 3, GLSL_BASIC_TYPE_FLOAT },
    264 	{ "mat4",	4, 4, GLSL_BASIC_TYPE_FLOAT },
    265 
    266 	{ "double",	1, 1, GLSL_BASIC_TYPE_DOUBLE },
    267 	{ "dvec2",	2, 1, GLSL_BASIC_TYPE_DOUBLE },
    268 	{ "dvec3",	3, 1, GLSL_BASIC_TYPE_DOUBLE },
    269 	{ "dvec4",	4, 1, GLSL_BASIC_TYPE_DOUBLE },
    270 	{ "dmat2",	2, 2, GLSL_BASIC_TYPE_DOUBLE },
    271 	{ "dmat3",	3, 3, GLSL_BASIC_TYPE_DOUBLE },
    272 	{ "dmat4",	4, 4, GLSL_BASIC_TYPE_DOUBLE }
    273 };
    274 
    275 
    276 VertexInputTest::VertexInputTest (tcu::TestContext&						testContext,
    277 								  const std::string&					name,
    278 								  const std::string&					description,
    279 								  const std::vector<AttributeInfo>&		attributeInfos,
    280 								  BindingMapping						bindingMapping)
    281 
    282 	: vkt::TestCase			(testContext, name, description)
    283 	, m_attributeInfos		(attributeInfos)
    284 	, m_bindingMapping		(bindingMapping)
    285 {
    286 	m_usesDoubleType = false;
    287 
    288 	for (size_t attributeNdx = 0; attributeNdx < m_attributeInfos.size(); attributeNdx++)
    289 	{
    290 		if (s_glslTypeDescriptions[m_attributeInfos[attributeNdx].glslType].basicType == GLSL_BASIC_TYPE_DOUBLE)
    291 		{
    292 			m_usesDoubleType = true;
    293 			break;
    294 		}
    295 	}
    296 }
    297 
    298 TestInstance* VertexInputTest::createInstance (Context& context) const
    299 {
    300 	// Create enough binding descriptions with random offsets
    301 	std::vector<VkVertexInputBindingDescription>	bindingDescriptions;
    302 	std::vector<VkDeviceSize>						bindingOffsets;
    303 
    304 	for (size_t bindingNdx = 0; bindingNdx < m_attributeInfos.size() * 2; bindingNdx++)
    305 	{
    306 		// Use STEP_RATE_VERTEX in even bindings and STEP_RATE_INSTANCE in odd bindings
    307 		const VkVertexInputRate						inputRate			= (bindingNdx % 2 == 0) ? VK_VERTEX_INPUT_RATE_VERTEX : VK_VERTEX_INPUT_RATE_INSTANCE;
    308 
    309 		// .strideInBytes will be updated when creating the attribute descriptions
    310 		const VkVertexInputBindingDescription	bindingDescription	=
    311 		{
    312 			(deUint32)bindingNdx,	// deUint32				binding;
    313 			0,						// deUint32				stride;
    314 			inputRate				// VkVertexInputRate	inputRate;
    315 		};
    316 
    317 		bindingDescriptions.push_back(bindingDescription);
    318 		bindingOffsets.push_back(4 * bindingNdx);
    319 	}
    320 
    321 	// Create attribute descriptions, assign them to bindings and update .strideInBytes
    322 	std::vector<VertexInputInstance::VertexInputAttributeDescription>	attributeDescriptions;
    323 	deUint32															attributeLocation		= 0;
    324 	std::vector<deUint32>												attributeOffsets		(bindingDescriptions.size(), 0);
    325 	std::vector<deUint32>												attributeMaxSizes		(bindingDescriptions.size(), 0);
    326 
    327 	for (size_t attributeNdx = 0; attributeNdx < m_attributeInfos.size(); attributeNdx++)
    328 	{
    329 		const AttributeInfo&		attributeInfo			= m_attributeInfos[attributeNdx];
    330 		const GlslTypeDescription&	glslTypeDescription		= s_glslTypeDescriptions[attributeInfo.glslType];
    331 		const deUint32				inputSize				= getVertexFormatSize(attributeInfo.vkType);
    332 		deUint32					attributeBinding;
    333 
    334 		if (m_bindingMapping == BINDING_MAPPING_ONE_TO_ONE)
    335 		{
    336 			if (attributeInfo.inputRate == VK_VERTEX_INPUT_RATE_VERTEX)
    337 			{
    338 				attributeBinding = (deUint32)attributeNdx * 2; // Odd binding number
    339 			}
    340 			else // attributeInfo.inputRate == VK_VERTEX_INPUT_STEP_RATE_INSTANCE
    341 			{
    342 				attributeBinding = (deUint32)attributeNdx * 2 + 1; // Even binding number
    343 			}
    344 		}
    345 		else // m_bindingMapping == BINDING_MAPPING_ONE_TO_MANY
    346 		{
    347 			if (attributeInfo.inputRate == VK_VERTEX_INPUT_RATE_VERTEX)
    348 			{
    349 				attributeBinding = 0;
    350 			}
    351 			else // attributeInfo.inputRate == VK_VERTEX_INPUT_STEP_RATE_INSTANCE
    352 			{
    353 				attributeBinding = 1;
    354 			}
    355 		}
    356 
    357 		for (int descNdx = 0; descNdx < glslTypeDescription.vertexInputCount; descNdx++)
    358 		{
    359 			const deUint32	offsetToComponentAlignment	= getNextMultipleOffset(getVertexFormatComponentSize(attributeInfo.vkType),
    360 																				(deUint32)bindingOffsets[attributeBinding] + attributeOffsets[attributeBinding]);
    361 
    362 			attributeOffsets[attributeBinding] += offsetToComponentAlignment;
    363 
    364 			const VertexInputInstance::VertexInputAttributeDescription attributeDescription =
    365 			{
    366 				attributeInfo.glslType,							// GlslType	glslType;
    367 				descNdx,										// int		index;
    368 				{
    369 					attributeLocation,							// deUint32	location;
    370 					attributeBinding,							// deUint32	binding;
    371 					attributeInfo.vkType,						// VkFormat	format;
    372 					attributeOffsets[attributeBinding],			// deUint32	offset;
    373 				},
    374 			};
    375 
    376 			bindingDescriptions[attributeBinding].stride	+= offsetToComponentAlignment + inputSize;
    377 			attributeOffsets[attributeBinding]				+= inputSize;
    378 			attributeMaxSizes[attributeBinding]				 = de::max(attributeMaxSizes[attributeBinding], getVertexFormatComponentSize(attributeInfo.vkType));
    379 
    380 			//double formats with more than 2 components will take 2 locations
    381 			const GlslType type = attributeInfo.glslType;
    382 			if ((type == GLSL_TYPE_DMAT2 || type == GLSL_TYPE_DMAT3 || type == GLSL_TYPE_DMAT4) &&
    383 				(attributeInfo.vkType == VK_FORMAT_R64G64B64_SFLOAT || attributeInfo.vkType == VK_FORMAT_R64G64B64A64_SFLOAT))
    384 			{
    385 				attributeLocation += 2;
    386 			}
    387 			else
    388 				attributeLocation++;
    389 
    390 			attributeDescriptions.push_back(attributeDescription);
    391 		}
    392 	}
    393 
    394 	// Make sure the stride results in aligned access
    395 	for (deUint32 bindingNdx = 0; bindingNdx < bindingDescriptions.size(); ++bindingNdx)
    396 	{
    397 		if (attributeMaxSizes[bindingNdx] > 0)
    398 			bindingDescriptions[bindingNdx].stride += getNextMultipleOffset(attributeMaxSizes[bindingNdx], bindingDescriptions[bindingNdx].stride);
    399 	}
    400 
    401 	return new VertexInputInstance(context, attributeDescriptions, bindingDescriptions, bindingOffsets);
    402 }
    403 
    404 void VertexInputTest::initPrograms (SourceCollections& programCollection) const
    405 {
    406 	std::ostringstream vertexSrc;
    407 
    408 	vertexSrc << "#version 440\n"
    409 			  << getGlslInputDeclarations()
    410 			  << "layout(location = 0) out highp vec4 vtxColor;\n"
    411 			  << "out gl_PerVertex {\n"
    412 			  << "  vec4 gl_Position;\n"
    413 			  << "};\n";
    414 
    415 	// NOTE: double abs(double x) undefined in glslang ??
    416 	if (m_usesDoubleType)
    417 		vertexSrc << "double abs (double x) { if (x < 0.0LF) return -x; else return x; }\n";
    418 
    419 	vertexSrc << "void main (void)\n"
    420 			  << "{\n"
    421 			  << getGlslVertexCheck()
    422 			  << "}\n";
    423 
    424 	programCollection.glslSources.add("attribute_test_vert") << glu::VertexSource(vertexSrc.str());
    425 
    426 	programCollection.glslSources.add("attribute_test_frag") << glu::FragmentSource(
    427 		"#version 440\n"
    428 		"layout(location = 0) in highp vec4 vtxColor;\n"
    429 		"layout(location = 0) out highp vec4 fragColor;\n"
    430 		"void main (void)\n"
    431 		"{\n"
    432 		"	fragColor = vtxColor;\n"
    433 		"}\n");
    434 }
    435 
    436 std::string VertexInputTest::getGlslInputDeclarations (void) const
    437 {
    438 	std::ostringstream	glslInputs;
    439 	deUint32			location = 0;
    440 
    441 	for (size_t attributeNdx = 0; attributeNdx < m_attributeInfos.size(); attributeNdx++)
    442 	{
    443 		const GlslTypeDescription& glslTypeDesc = s_glslTypeDescriptions[m_attributeInfos[attributeNdx].glslType];
    444 
    445 		glslInputs << "layout(location = " << location << ") in highp " << glslTypeDesc.name << " attr" << attributeNdx << ";\n";
    446 		location += glslTypeDesc.vertexInputCount;
    447 	}
    448 
    449 	return glslInputs.str();
    450 }
    451 
    452 std::string VertexInputTest::getGlslVertexCheck (void) const
    453 {
    454 	std::ostringstream	glslCode;
    455 	int					totalInputComponentCount	= 0;
    456 
    457 
    458 	glslCode << "	int okCount = 0;\n";
    459 
    460 	for (size_t attributeNdx = 0; attributeNdx < m_attributeInfos.size(); attributeNdx++)
    461 	{
    462 		glslCode << getGlslAttributeConditions(m_attributeInfos[attributeNdx], (deUint32)attributeNdx);
    463 
    464 		const int vertexInputCount	= VertexInputTest::s_glslTypeDescriptions[m_attributeInfos[attributeNdx].glslType].vertexInputCount;
    465 		totalInputComponentCount	+= vertexInputCount * VertexInputTest::s_glslTypeDescriptions[m_attributeInfos[attributeNdx].glslType].vertexInputComponentCount;
    466 	}
    467 
    468 	glslCode <<
    469 		"	if (okCount == " << totalInputComponentCount << ")\n"
    470 		"	{\n"
    471 		"		if (gl_InstanceIndex == 0)\n"
    472 		"			vtxColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
    473 		"		else\n"
    474 		"			vtxColor = vec4(0.0, 0.0, 1.0, 1.0);\n"
    475 		"	}\n"
    476 		"	else\n"
    477 		"	{\n"
    478 		"		vtxColor = vec4(okCount / float(" << totalInputComponentCount << "), 0.0f, 0.0f, 1.0);\n" <<
    479 		"	}\n\n"
    480 		"	if (gl_InstanceIndex == 0)\n"
    481 		"	{\n"
    482 		"		if (gl_VertexIndex == 0) gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n"
    483 		"		else if (gl_VertexIndex == 1) gl_Position = vec4(0.0, -1.0, 0.0, 1.0);\n"
    484 		"		else if (gl_VertexIndex == 2) gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n"
    485 		"		else if (gl_VertexIndex == 3) gl_Position = vec4(0.0, 1.0, 0.0, 1.0);\n"
    486 		"		else gl_Position = vec4(0.0);\n"
    487 		"	}\n"
    488 		"	else\n"
    489 		"	{\n"
    490 		"		if (gl_VertexIndex == 0) gl_Position = vec4(0.0, -1.0, 0.0, 1.0);\n"
    491 		"		else if (gl_VertexIndex == 1) gl_Position = vec4(1.0, -1.0, 0.0, 1.0);\n"
    492 		"		else if (gl_VertexIndex == 2) gl_Position = vec4(0.0, 1.0, 0.0, 1.0);\n"
    493 		"		else if (gl_VertexIndex == 3) gl_Position = vec4(1.0, 1.0, 0.0, 1.0);\n"
    494 		"		else gl_Position = vec4(0.0);\n"
    495 		"	}\n";
    496 
    497 	return glslCode.str();
    498 }
    499 
    500 std::string VertexInputTest::getGlslAttributeConditions (const AttributeInfo& attributeInfo, deUint32 attributeIndex) const
    501 {
    502 	std::ostringstream	glslCode;
    503 	std::ostringstream	attributeVar;
    504 	const std::string	indexId				= (attributeInfo.inputRate == VK_VERTEX_INPUT_RATE_VERTEX) ? "gl_VertexIndex" : "gl_InstanceIndex";
    505 	const int			componentCount		= VertexInputTest::s_glslTypeDescriptions[attributeInfo.glslType].vertexInputComponentCount;
    506 	const int			vertexInputCount	= VertexInputTest::s_glslTypeDescriptions[attributeInfo.glslType].vertexInputCount;
    507 	const deUint32		totalComponentCount	= componentCount * vertexInputCount;
    508 	const tcu::Vec4		threshold			= getFormatThreshold(attributeInfo.vkType);
    509 	deUint32			componentIndex		= 0;
    510 
    511 	attributeVar << "attr" << attributeIndex;
    512 
    513 	glslCode << std::fixed;
    514 
    515 	for (int columnNdx = 0; columnNdx< vertexInputCount; columnNdx++)
    516 	{
    517 		for (int rowNdx = 0; rowNdx < componentCount; rowNdx++)
    518 		{
    519 			std::string accessStr;
    520 			{
    521 				// Build string representing the access to the attribute component
    522 				std::ostringstream accessStream;
    523 				accessStream << attributeVar.str();
    524 
    525 				if (vertexInputCount == 1)
    526 				{
    527 					if (componentCount > 1)
    528 						accessStream << "[" << rowNdx << "]";
    529 				}
    530 				else
    531 				{
    532 					accessStream << "[" << columnNdx << "][" << rowNdx << "]";
    533 				}
    534 
    535 				accessStr = accessStream.str();
    536 			}
    537 
    538 			if (isVertexFormatSint(attributeInfo.vkType))
    539 			{
    540 				glslCode << "\tif (" << accessStr << " == -(" << totalComponentCount << " * " << indexId << " + " << componentIndex << "))\n";
    541 			}
    542 			else if (isVertexFormatUint(attributeInfo.vkType))
    543 			{
    544 				glslCode << "\tif (" << accessStr << " == uint(" << totalComponentCount << " * " << indexId << " + " << componentIndex << "))\n";
    545 			}
    546 			else if (isVertexFormatSfloat(attributeInfo.vkType))
    547 			{
    548 				if (VertexInputTest::s_glslTypeDescriptions[attributeInfo.glslType].basicType == VertexInputTest::GLSL_BASIC_TYPE_DOUBLE)
    549 				{
    550 					glslCode << "\tif (abs(" << accessStr << " + double(0.01 * (" << totalComponentCount << ".0 * float(" << indexId << ") + " << componentIndex << ".0))) < double(" << threshold[rowNdx] << "))\n";
    551 				}
    552 				else
    553 				{
    554 					glslCode << "\tif (abs(" << accessStr << " + (0.01 * (" << totalComponentCount << ".0 * float(" << indexId << ") + " << componentIndex << ".0))) < " << threshold[rowNdx] << ")\n";
    555 				}
    556 			}
    557 			else if (isVertexFormatSscaled(attributeInfo.vkType))
    558 			{
    559 				glslCode << "\tif (abs(" << accessStr << " + (" << totalComponentCount << ".0 * float(" << indexId << ") + " << componentIndex << ".0)) < " << threshold[rowNdx] << ")\n";
    560 			}
    561 			else if (isVertexFormatUscaled(attributeInfo.vkType))
    562 			{
    563 				glslCode << "\t if (abs(" << accessStr << " - (" << totalComponentCount << ".0 * float(" << indexId << ") + " << componentIndex << ".0)) < " << threshold[rowNdx] << ")\n";
    564 			}
    565 			else if (isVertexFormatSnorm(attributeInfo.vkType))
    566 			{
    567 				const float representableDiff = getRepresentableDifferenceSnorm(attributeInfo.vkType);
    568 
    569 				glslCode << "\tif (abs(" << accessStr << " - (-1.0 + " << representableDiff << " * (" << totalComponentCount << ".0 * float(" << indexId << ") + " << componentIndex << ".0))) < " << threshold[rowNdx] << ")\n";
    570 			}
    571 			else if (isVertexFormatUnorm(attributeInfo.vkType) || isVertexFormatSRGB(attributeInfo.vkType))
    572 			{
    573 				const float representableDiff = getRepresentableDifferenceUnorm(attributeInfo.vkType);
    574 
    575 				glslCode << "\tif (abs(" << accessStr << " - " << "(" << representableDiff << " * (" << totalComponentCount << ".0 * float(" << indexId << ") + " << componentIndex << ".0))) < " << threshold[rowNdx] << ")\n";
    576 			}
    577 			else
    578 			{
    579 				DE_ASSERT(false);
    580 			}
    581 
    582 			glslCode << "\t\tokCount++;\n\n";
    583 
    584 			componentIndex++;
    585 		}
    586 	}
    587 	return glslCode.str();
    588 }
    589 
    590 tcu::Vec4 VertexInputTest::getFormatThreshold (VkFormat format)
    591 {
    592 	using tcu::Vec4;
    593 
    594 	switch (format)
    595 	{
    596 		case VK_FORMAT_R32_SFLOAT:
    597 		case VK_FORMAT_R32G32_SFLOAT:
    598 		case VK_FORMAT_R32G32B32_SFLOAT:
    599 		case VK_FORMAT_R32G32B32A32_SFLOAT:
    600 		case VK_FORMAT_R64_SFLOAT:
    601 		case VK_FORMAT_R64G64_SFLOAT:
    602 		case VK_FORMAT_R64G64B64_SFLOAT:
    603 		case VK_FORMAT_R64G64B64A64_SFLOAT:
    604 			return Vec4(0.00001f);
    605 
    606 		default:
    607 			break;
    608 	}
    609 
    610 	if (isVertexFormatSnorm(format))
    611 	{
    612 		return Vec4(1.5f * getRepresentableDifferenceSnorm(format));
    613 	}
    614 	else if (isVertexFormatUnorm(format))
    615 	{
    616 		return Vec4(1.5f * getRepresentableDifferenceUnorm(format));
    617 	}
    618 
    619 	return Vec4(0.001f);
    620 }
    621 
    622 GlslTypeCombinationsIterator::GlslTypeCombinationsIterator (deUint32 numValues, deUint32 combinationSize)
    623 	: CombinationsIterator< std::vector<VertexInputTest::GlslType> >	(numValues, combinationSize)
    624 	, m_combinationValue												(std::vector<VertexInputTest::GlslType>(combinationSize))
    625 {
    626 	DE_ASSERT(numValues <= VertexInputTest::GLSL_TYPE_COUNT);
    627 }
    628 
    629 std::vector<VertexInputTest::GlslType> GlslTypeCombinationsIterator::getCombinationValue (const std::vector<deUint32>& combination)
    630 {
    631 	for (size_t combinationItemNdx = 0; combinationItemNdx < combination.size(); combinationItemNdx++)
    632 		m_combinationValue[combinationItemNdx] = (VertexInputTest::GlslType)combination[combinationItemNdx];
    633 
    634 	return m_combinationValue;
    635 }
    636 
    637 VertexInputInstance::VertexInputInstance (Context&												context,
    638 										  const AttributeDescriptionList&						attributeDescriptions,
    639 										  const std::vector<VkVertexInputBindingDescription>&	bindingDescriptions,
    640 										  const std::vector<VkDeviceSize>&						bindingOffsets)
    641 	: vkt::TestInstance			(context)
    642 	, m_renderSize				(16, 16)
    643 	, m_colorFormat				(VK_FORMAT_R8G8B8A8_UNORM)
    644 {
    645 	DE_ASSERT(bindingDescriptions.size() == bindingOffsets.size());
    646 
    647 	const DeviceInterface&		vk						= context.getDeviceInterface();
    648 	const VkDevice				vkDevice				= context.getDevice();
    649 	const deUint32				queueFamilyIndex		= context.getUniversalQueueFamilyIndex();
    650 	SimpleAllocator				memAlloc				(vk, vkDevice, getPhysicalDeviceMemoryProperties(context.getInstanceInterface(), context.getPhysicalDevice()));
    651 	const VkComponentMapping	componentMappingRGBA	= { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
    652 
    653 	// Create color image
    654 	{
    655 		const VkImageCreateInfo colorImageParams =
    656 		{
    657 			VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,										// VkStructureType			sType;
    658 			DE_NULL,																	// const void*				pNext;
    659 			0u,																			// VkImageCreateFlags		flags;
    660 			VK_IMAGE_TYPE_2D,															// VkImageType				imageType;
    661 			m_colorFormat,																// VkFormat					format;
    662 			{ m_renderSize.x(), m_renderSize.y(), 1u },									// VkExtent3D				extent;
    663 			1u,																			// deUint32					mipLevels;
    664 			1u,																			// deUint32					arrayLayers;
    665 			VK_SAMPLE_COUNT_1_BIT,														// VkSampleCountFlagBits	samples;
    666 			VK_IMAGE_TILING_OPTIMAL,													// VkImageTiling			tiling;
    667 			VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT,		// VkImageUsageFlags		usage;
    668 			VK_SHARING_MODE_EXCLUSIVE,													// VkSharingMode			sharingMode;
    669 			1u,																			// deUint32					queueFamilyIndexCount;
    670 			&queueFamilyIndex,															// const deUint32*			pQueueFamilyIndices;
    671 			VK_IMAGE_LAYOUT_UNDEFINED,													// VkImageLayout			initialLayout;
    672 		};
    673 
    674 		m_colorImage			= createImage(vk, vkDevice, &colorImageParams);
    675 
    676 		// Allocate and bind color image memory
    677 		m_colorImageAlloc		= memAlloc.allocate(getImageMemoryRequirements(vk, vkDevice, *m_colorImage), MemoryRequirement::Any);
    678 		VK_CHECK(vk.bindImageMemory(vkDevice, *m_colorImage, m_colorImageAlloc->getMemory(), m_colorImageAlloc->getOffset()));
    679 	}
    680 
    681 	// Create color attachment view
    682 	{
    683 		const VkImageViewCreateInfo colorAttachmentViewParams =
    684 		{
    685 			VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,		// VkStructureType			sType;
    686 			DE_NULL,										// const void*				pNext;
    687 			0u,												// VkImageViewCreateFlags	flags;
    688 			*m_colorImage,									// VkImage					image;
    689 			VK_IMAGE_VIEW_TYPE_2D,							// VkImageViewType			viewType;
    690 			m_colorFormat,									// VkFormat					format;
    691 			componentMappingRGBA,							// VkComponentMapping		components;
    692 			{ VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u },  // VkImageSubresourceRange	subresourceRange;
    693 		};
    694 
    695 		m_colorAttachmentView = createImageView(vk, vkDevice, &colorAttachmentViewParams);
    696 	}
    697 
    698 	// Create render pass
    699 	{
    700 		const VkAttachmentDescription colorAttachmentDescription =
    701 		{
    702 			0u,													// VkAttachmentDescriptionFlags		flags;
    703 			m_colorFormat,										// VkFormat							format;
    704 			VK_SAMPLE_COUNT_1_BIT,								// VkSampleCountFlagBits			samples;
    705 			VK_ATTACHMENT_LOAD_OP_CLEAR,						// VkAttachmentLoadOp				loadOp;
    706 			VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
    707 			VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
    708 			VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
    709 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					initialLayout;
    710 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout					finalLayout;
    711 		};
    712 
    713 		const VkAttachmentReference colorAttachmentReference =
    714 		{
    715 			0u,													// deUint32			attachment;
    716 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout	layout;
    717 		};
    718 
    719 		const VkSubpassDescription subpassDescription =
    720 		{
    721 			0u,													// VkSubpassDescriptionFlags	flags;
    722 			VK_PIPELINE_BIND_POINT_GRAPHICS,					// VkPipelineBindPoint			pipelineBindPoint;
    723 			0u,													// deUint32						inputAttachmentCount;
    724 			DE_NULL,											// const VkAttachmentReference*	pInputAttachments;
    725 			1u,													// deUint32						colorAttachmentCount;
    726 			&colorAttachmentReference,							// const VkAttachmentReference*	pColorAttachments;
    727 			DE_NULL,											// const VkAttachmentReference*	pResolveAttachments;
    728 			DE_NULL,											// const VkAttachmentReference*	pDepthStencilAttachment;
    729 			0u,													// deUint32						preserveAttachmentCount;
    730 			DE_NULL												// const VkAttachmentReference*	pPreserveAttachments;
    731 		};
    732 
    733 		const VkRenderPassCreateInfo renderPassParams =
    734 		{
    735 			VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,			// VkStructureType					sType;
    736 			DE_NULL,											// const void*						pNext;
    737 			0u,													// VkRenderPassCreateFlags			flags;
    738 			1u,													// deUint32							attachmentCount;
    739 			&colorAttachmentDescription,						// const VkAttachmentDescription*	pAttachments;
    740 			1u,													// deUint32							subpassCount;
    741 			&subpassDescription,								// const VkSubpassDescription*		pSubpasses;
    742 			0u,													// deUint32							dependencyCount;
    743 			DE_NULL												// const VkSubpassDependency*		pDependencies;
    744 		};
    745 
    746 		m_renderPass = createRenderPass(vk, vkDevice, &renderPassParams);
    747 	}
    748 
    749 	// Create framebuffer
    750 	{
    751 		const VkFramebufferCreateInfo framebufferParams =
    752 		{
    753 			VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,			// VkStructureType			sType;
    754 			DE_NULL,											// const void*				pNext;
    755 			0u,													// VkFramebufferCreateFlags	flags;
    756 			*m_renderPass,										// VkRenderPass				renderPass;
    757 			1u,													// deUint32					attachmentCount;
    758 			&m_colorAttachmentView.get(),						// const VkImageView*		pAttachments;
    759 			(deUint32)m_renderSize.x(),							// deUint32					width;
    760 			(deUint32)m_renderSize.y(),							// deUint32					height;
    761 			1u													// deUint32					layers;
    762 		};
    763 
    764 		m_framebuffer = createFramebuffer(vk, vkDevice, &framebufferParams);
    765 	}
    766 
    767 	// Create pipeline layout
    768 	{
    769 		const VkPipelineLayoutCreateInfo pipelineLayoutParams =
    770 		{
    771 			VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,		// VkStructureType					sType;
    772 			DE_NULL,											// const void*						pNext;
    773 			0u,													// VkPipelineLayoutCreateFlags		flags;
    774 			0u,													// deUint32							setLayoutCount;
    775 			DE_NULL,											// const VkDescriptorSetLayout*		pSetLayouts;
    776 			0u,													// deUint32							pushConstantRangeCount;
    777 			DE_NULL												// const VkPushConstantRange*		pPushConstantRanges;
    778 		};
    779 
    780 		m_pipelineLayout = createPipelineLayout(vk, vkDevice, &pipelineLayoutParams);
    781 	}
    782 
    783 	m_vertexShaderModule	= createShaderModule(vk, vkDevice, m_context.getBinaryCollection().get("attribute_test_vert"), 0);
    784 	m_fragmentShaderModule	= createShaderModule(vk, vkDevice, m_context.getBinaryCollection().get("attribute_test_frag"), 0);
    785 
    786 
    787 	// Create pipeline
    788 	{
    789 		const VkPipelineShaderStageCreateInfo shaderStageParams[2] =
    790 		{
    791 			{
    792 				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,		// VkStructureType						sType;
    793 				DE_NULL,													// const void*							pNext;
    794 				0u,															// VkPipelineShaderStageCreateFlags		flags;
    795 				VK_SHADER_STAGE_VERTEX_BIT,									// VkShaderStageFlagBits				stage;
    796 				*m_vertexShaderModule,										// VkShaderModule						module;
    797 				"main",														// const char*							pName;
    798 				DE_NULL														// const VkSpecializationInfo*			pSpecializationInfo;
    799 			},
    800 			{
    801 				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,		// VkStructureType						sType;
    802 				DE_NULL,													// const void*							pNext;
    803 				0u,															// VkPipelineShaderStageCreateFlags		flags;
    804 				VK_SHADER_STAGE_FRAGMENT_BIT,								// VkShaderStageFlagBits				stage;
    805 				*m_fragmentShaderModule,									// VkShaderModule						module;
    806 				"main",														// const char*							pName;
    807 				DE_NULL														// const VkSpecializationInfo*			pSpecializationInfo;
    808 			}
    809 		};
    810 
    811 		// Create vertex attribute array and check if their VK formats are supported
    812 		std::vector<VkVertexInputAttributeDescription> vkAttributeDescriptions;
    813 		for (size_t attributeNdx = 0; attributeNdx < attributeDescriptions.size(); attributeNdx++)
    814 		{
    815 			const VkVertexInputAttributeDescription& attributeDescription = attributeDescriptions[attributeNdx].vkDescription;
    816 
    817 			if (!isSupportedVertexFormat(context, attributeDescription.format))
    818 				throw tcu::NotSupportedError(std::string("Unsupported format for vertex input: ") + getFormatName(attributeDescription.format));
    819 
    820 			vkAttributeDescriptions.push_back(attributeDescription);
    821 		}
    822 
    823 		const VkPipelineVertexInputStateCreateInfo	vertexInputStateParams	=
    824 		{
    825 			VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,		// VkStructureType							sType;
    826 			DE_NULL,														// const void*								pNext;
    827 			0u,																// VkPipelineVertexInputStateCreateFlags	flags;
    828 			(deUint32)bindingDescriptions.size(),							// deUint32									vertexBindingDescriptionCount;
    829 			bindingDescriptions.data(),										// const VkVertexInputBindingDescription*	pVertexBindingDescriptions;
    830 			(deUint32)vkAttributeDescriptions.size(),						// deUint32									vertexAttributeDescriptionCount;
    831 			vkAttributeDescriptions.data()									// const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
    832 		};
    833 
    834 		const VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateParams =
    835 		{
    836 			VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	// VkStructureType							sType;
    837 			DE_NULL,														// const void*								pNext;
    838 			0u,																// VkPipelineInputAssemblyStateCreateFlags	flags;
    839 			VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,							// VkPrimitiveTopology						topology;
    840 			false															// VkBool32									primitiveRestartEnable;
    841 		};
    842 
    843 		const VkViewport viewport =
    844 		{
    845 			0.0f,						// float	x;
    846 			0.0f,						// float	y;
    847 			(float)m_renderSize.x(),	// float	width;
    848 			(float)m_renderSize.y(),	// float	height;
    849 			0.0f,						// float	minDepth;
    850 			1.0f						// float	maxDepth;
    851 		};
    852 
    853 		const VkRect2D scissor = { { 0, 0 }, { m_renderSize.x(), m_renderSize.y() } };
    854 
    855 		const VkPipelineViewportStateCreateInfo viewportStateParams =
    856 		{
    857 			VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,			// VkStructureType						sType;
    858 			DE_NULL,														// const void*							pNext;
    859 			0u,																// VkPipelineViewportStateCreateFlags	flags;
    860 			1u,																// deUint32								viewportCount;
    861 			&viewport,														// const VkViewport*					pViewports;
    862 			1u,																// deUint32								scissorCount;
    863 			&scissor														// const VkRect2D*						pScissors;
    864 		};
    865 
    866 		const VkPipelineRasterizationStateCreateInfo rasterStateParams =
    867 		{
    868 			VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,		// VkStructureType							sType;
    869 			DE_NULL,														// const void*								pNext;
    870 			0u,																// VkPipelineRasterizationStateCreateFlags	flags;
    871 			false,															// VkBool32									depthClampEnable;
    872 			false,															// VkBool32									rasterizerDiscardEnable;
    873 			VK_POLYGON_MODE_FILL,											// VkPolygonMode							polygonMode;
    874 			VK_CULL_MODE_NONE,												// VkCullModeFlags							cullMode;
    875 			VK_FRONT_FACE_COUNTER_CLOCKWISE,								// VkFrontFace								frontFace;
    876 			VK_FALSE,														// VkBool32									depthBiasEnable;
    877 			0.0f,															// float									depthBiasConstantFactor;
    878 			0.0f,															// float									depthBiasClamp;
    879 			0.0f,															// float									depthBiasSlopeFactor;
    880 			1.0f,															// float									lineWidth;
    881 		};
    882 
    883 		const VkPipelineColorBlendAttachmentState colorBlendAttachmentState =
    884 		{
    885 			false,																		// VkBool32					blendEnable;
    886 			VK_BLEND_FACTOR_ONE,														// VkBlendFactor			srcColorBlendFactor;
    887 			VK_BLEND_FACTOR_ZERO,														// VkBlendFactor			dstColorBlendFactor;
    888 			VK_BLEND_OP_ADD,															// VkBlendOp				colorBlendOp;
    889 			VK_BLEND_FACTOR_ONE,														// VkBlendFactor			srcAlphaBlendFactor;
    890 			VK_BLEND_FACTOR_ZERO,														// VkBlendFactor			dstAlphaBlendFactor;
    891 			VK_BLEND_OP_ADD,															// VkBlendOp				alphaBlendOp;
    892 			VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |						// VkColorComponentFlags	colorWriteMask;
    893 				VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT
    894 		};
    895 
    896 		const VkPipelineColorBlendStateCreateInfo colorBlendStateParams =
    897 		{
    898 			VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,	// VkStructureType								sType;
    899 			DE_NULL,													// const void*									pNext;
    900 			0u,															// VkPipelineColorBlendStateCreateFlags			flags;
    901 			false,														// VkBool32										logicOpEnable;
    902 			VK_LOGIC_OP_COPY,											// VkLogicOp									logicOp;
    903 			1u,															// deUint32										attachmentCount;
    904 			&colorBlendAttachmentState,									// const VkPipelineColorBlendAttachmentState*	pAttachments;
    905 			{ 0.0f, 0.0f, 0.0f, 0.0f },									// float										blendConstants[4];
    906 		};
    907 
    908 		const VkPipelineMultisampleStateCreateInfo	multisampleStateParams	=
    909 		{
    910 			VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,	// VkStructureType							sType;
    911 			DE_NULL,													// const void*								pNext;
    912 			0u,															// VkPipelineMultisampleStateCreateFlags	flags;
    913 			VK_SAMPLE_COUNT_1_BIT,										// VkSampleCountFlagBits					rasterizationSamples;
    914 			false,														// VkBool32									sampleShadingEnable;
    915 			0.0f,														// float									minSampleShading;
    916 			DE_NULL,													// const VkSampleMask*						pSampleMask;
    917 			false,														// VkBool32									alphaToCoverageEnable;
    918 			false														// VkBool32									alphaToOneEnable;
    919 		};
    920 
    921 		VkPipelineDepthStencilStateCreateInfo depthStencilStateParams =
    922 		{
    923 			VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,	// VkStructureType							sType;
    924 			DE_NULL,													// const void*								pNext;
    925 			0u,															// VkPipelineDepthStencilStateCreateFlags	flags;
    926 			false,														// VkBool32									depthTestEnable;
    927 			false,														// VkBool32									depthWriteEnable;
    928 			VK_COMPARE_OP_LESS,											// VkCompareOp								depthCompareOp;
    929 			false,														// VkBool32									depthBoundsTestEnable;
    930 			false,														// VkBool32									stencilTestEnable;
    931 			// VkStencilOpState	front;
    932 			{
    933 				VK_STENCIL_OP_KEEP,		// VkStencilOp	failOp;
    934 				VK_STENCIL_OP_KEEP,		// VkStencilOp	passOp;
    935 				VK_STENCIL_OP_KEEP,		// VkStencilOp	depthFailOp;
    936 				VK_COMPARE_OP_NEVER,	// VkCompareOp	compareOp;
    937 				0u,						// deUint32		compareMask;
    938 				0u,						// deUint32		writeMask;
    939 				0u,						// deUint32		reference;
    940 			},
    941 			// VkStencilOpState	back;
    942 			{
    943 				VK_STENCIL_OP_KEEP,		// VkStencilOp	failOp;
    944 				VK_STENCIL_OP_KEEP,		// VkStencilOp	passOp;
    945 				VK_STENCIL_OP_KEEP,		// VkStencilOp	depthFailOp;
    946 				VK_COMPARE_OP_NEVER,	// VkCompareOp	compareOp;
    947 				0u,						// deUint32		compareMask;
    948 				0u,						// deUint32		writeMask;
    949 				0u,						// deUint32		reference;
    950 			},
    951 			0.0f,														// float			minDepthBounds;
    952 			1.0f,														// float			maxDepthBounds;
    953 		};
    954 
    955 		const VkGraphicsPipelineCreateInfo graphicsPipelineParams =
    956 		{
    957 			VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,	// VkStructureType									sType;
    958 			DE_NULL,											// const void*										pNext;
    959 			0u,													// VkPipelineCreateFlags							flags;
    960 			2u,													// deUint32											stageCount;
    961 			shaderStageParams,									// const VkPipelineShaderStageCreateInfo*			pStages;
    962 			&vertexInputStateParams,							// const VkPipelineVertexInputStateCreateInfo*		pVertexInputState;
    963 			&inputAssemblyStateParams,							// const VkPipelineInputAssemblyStateCreateInfo*	pInputAssemblyState;
    964 			DE_NULL,											// const VkPipelineTessellationStateCreateInfo*		pTessellationState;
    965 			&viewportStateParams,								// const VkPipelineViewportStateCreateInfo*			pViewportState;
    966 			&rasterStateParams,									// const VkPipelineRasterizationStateCreateInfo*	pRasterizationState;
    967 			&multisampleStateParams,							// const VkPipelineMultisampleStateCreateInfo*		pMultisampleState;
    968 			&depthStencilStateParams,							// const VkPipelineDepthStencilStateCreateInfo*		pDepthStencilState;
    969 			&colorBlendStateParams,								// const VkPipelineColorBlendStateCreateInfo*		pColorBlendState;
    970 			(const VkPipelineDynamicStateCreateInfo*)DE_NULL,	// const VkPipelineDynamicStateCreateInfo*			pDynamicState;
    971 			*m_pipelineLayout,									// VkPipelineLayout									layout;
    972 			*m_renderPass,										// VkRenderPass										renderPass;
    973 			0u,													// deUint32											subpass;
    974 			0u,													// VkPipeline										basePipelineHandle;
    975 			0u													// deInt32											basePipelineIndex;
    976 		};
    977 
    978 		m_graphicsPipeline	= createGraphicsPipeline(vk, vkDevice, DE_NULL, &graphicsPipelineParams);
    979 	}
    980 
    981 	// Create vertex buffer
    982 	{
    983 		const VkBufferCreateInfo vertexBufferParams =
    984 		{
    985 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
    986 			DE_NULL,									// const void*			pNext;
    987 			0u,											// VkBufferCreateFlags	flags;
    988 			4096u,										// VkDeviceSize			size;
    989 			VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,			// VkBufferUsageFlags	usage;
    990 			VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
    991 			1u,											// deUint32				queueFamilyIndexCount;
    992 			&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
    993 		};
    994 
    995 		// Upload data for each vertex input binding
    996 		for (deUint32 bindingNdx = 0; bindingNdx < bindingDescriptions.size(); bindingNdx++)
    997 		{
    998 			Move<VkBuffer>			vertexBuffer		= createBuffer(vk, vkDevice, &vertexBufferParams);
    999 			de::MovePtr<Allocation>	vertexBufferAlloc	= memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible);
   1000 
   1001 			VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferAlloc->getMemory(), vertexBufferAlloc->getOffset()));
   1002 
   1003 			writeVertexInputData((deUint8*)vertexBufferAlloc->getHostPtr(), bindingDescriptions[bindingNdx], bindingOffsets[bindingNdx], attributeDescriptions);
   1004 			flushMappedMemoryRange(vk, vkDevice, vertexBufferAlloc->getMemory(), vertexBufferAlloc->getOffset(), vertexBufferParams.size);
   1005 
   1006 			m_vertexBuffers.push_back(vertexBuffer.disown());
   1007 			m_vertexBufferAllocs.push_back(vertexBufferAlloc.release());
   1008 		}
   1009 	}
   1010 
   1011 	// Create command pool
   1012 	{
   1013 		const VkCommandPoolCreateInfo cmdPoolParams =
   1014 		{
   1015 			VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,	// VkStructureType				sType;
   1016 			DE_NULL,									// const void*					pNext;
   1017 			VK_COMMAND_POOL_CREATE_TRANSIENT_BIT,		// VkCommandPoolCreateFlags		flags;
   1018 			queueFamilyIndex,							// deUint32						queueFamilyIndex;
   1019 		};
   1020 
   1021 		m_cmdPool = createCommandPool(vk, vkDevice, &cmdPoolParams);
   1022 	}
   1023 
   1024 	// Create command buffer
   1025 	{
   1026 		const VkCommandBufferAllocateInfo cmdBufferAllocateInfo =
   1027 		{
   1028 			VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,	// VkStructureType			sType;
   1029 			DE_NULL,										// const void*				pNext;
   1030 			*m_cmdPool,										// VkCommandPool			commandPool;
   1031 			VK_COMMAND_BUFFER_LEVEL_PRIMARY,				// VkCommandBufferLevel		level;
   1032 			1u												// deUint32					bufferCount;
   1033 		};
   1034 
   1035 		const VkCommandBufferBeginInfo cmdBufferBeginInfo =
   1036 		{
   1037 			VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,	// VkStructureType					sType;
   1038 			DE_NULL,										// const void*						pNext;
   1039 			0u,												// VkCommandBufferUsageFlags		flags;
   1040 			(const VkCommandBufferInheritanceInfo*)DE_NULL,
   1041 		};
   1042 
   1043 		const VkClearValue attachmentClearValue = defaultClearValue(m_colorFormat);
   1044 
   1045 		const VkRenderPassBeginInfo renderPassBeginInfo =
   1046 		{
   1047 			VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,				// VkStructureType		sType;
   1048 			DE_NULL,												// const void*			pNext;
   1049 			*m_renderPass,											// VkRenderPass			renderPass;
   1050 			*m_framebuffer,											// VkFramebuffer		framebuffer;
   1051 			{ { 0, 0 }, { m_renderSize.x(), m_renderSize.y() } },	// VkRect2D				renderArea;
   1052 			1u,														// deUint32				clearValueCount;
   1053 			&attachmentClearValue									// const VkClearValue*	pClearValues;
   1054 		};
   1055 
   1056 		const VkImageMemoryBarrier attachmentLayoutBarrier =
   1057 		{
   1058 			VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,			// VkStructureType			sType;
   1059 			DE_NULL,										// const void*				pNext;
   1060 			0u,												// VkAccessFlags			srcAccessMask;
   1061 			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,			// VkAccessFlags			dstAccessMask;
   1062 			VK_IMAGE_LAYOUT_UNDEFINED,						// VkImageLayout			oldLayout;
   1063 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,		// VkImageLayout			newLayout;
   1064 			VK_QUEUE_FAMILY_IGNORED,						// deUint32					srcQueueFamilyIndex;
   1065 			VK_QUEUE_FAMILY_IGNORED,						// deUint32					dstQueueFamilyIndex;
   1066 			*m_colorImage,									// VkImage					image;
   1067 			{ VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u },	// VkImageSubresourceRange	subresourceRange;
   1068 		};
   1069 
   1070 		m_cmdBuffer = allocateCommandBuffer(vk, vkDevice, &cmdBufferAllocateInfo);
   1071 
   1072 		VK_CHECK(vk.beginCommandBuffer(*m_cmdBuffer, &cmdBufferBeginInfo));
   1073 
   1074 		vk.cmdPipelineBarrier(*m_cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, (VkDependencyFlags)0,
   1075 			0u, DE_NULL, 0u, DE_NULL, 1u, &attachmentLayoutBarrier);
   1076 
   1077 		vk.cmdBeginRenderPass(*m_cmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
   1078 
   1079 		vk.cmdBindPipeline(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *m_graphicsPipeline);
   1080 
   1081 		std::vector<VkBuffer> vertexBuffers;
   1082 		for (size_t bufferNdx = 0; bufferNdx < m_vertexBuffers.size(); bufferNdx++)
   1083 			vertexBuffers.push_back(m_vertexBuffers[bufferNdx]);
   1084 
   1085 		if (vertexBuffers.size() <= 1)
   1086 		{
   1087 			// One vertex buffer
   1088 			vk.cmdBindVertexBuffers(*m_cmdBuffer, 0, (deUint32)vertexBuffers.size(), vertexBuffers.data(), bindingOffsets.data());
   1089 		}
   1090 		else
   1091 		{
   1092 			// Smoke-test vkCmdBindVertexBuffers(..., startBinding, ... )
   1093 
   1094 			const deUint32 firstHalfLength = (deUint32)vertexBuffers.size() / 2;
   1095 			const deUint32 secondHalfLength = firstHalfLength + (deUint32)(vertexBuffers.size() % 2);
   1096 
   1097 			// Bind first half of vertex buffers
   1098 			vk.cmdBindVertexBuffers(*m_cmdBuffer, 0, firstHalfLength, vertexBuffers.data(), bindingOffsets.data());
   1099 
   1100 			// Bind second half of vertex buffers
   1101 			vk.cmdBindVertexBuffers(*m_cmdBuffer, firstHalfLength, secondHalfLength,
   1102 									vertexBuffers.data() + firstHalfLength,
   1103 									bindingOffsets.data() + firstHalfLength);
   1104 		}
   1105 
   1106 		vk.cmdDraw(*m_cmdBuffer, 4, 2, 0, 0);
   1107 
   1108 		vk.cmdEndRenderPass(*m_cmdBuffer);
   1109 		VK_CHECK(vk.endCommandBuffer(*m_cmdBuffer));
   1110 	}
   1111 
   1112 	// Create fence
   1113 	{
   1114 		const VkFenceCreateInfo fenceParams =
   1115 		{
   1116 			VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,	// VkStructureType		sType;
   1117 			DE_NULL,								// const void*			pNext;
   1118 			0u										// VkFenceCreateFlags	flags;
   1119 		};
   1120 
   1121 		m_fence = createFence(vk, vkDevice, &fenceParams);
   1122 	}
   1123 }
   1124 
   1125 VertexInputInstance::~VertexInputInstance (void)
   1126 {
   1127 	const DeviceInterface&		vk			= m_context.getDeviceInterface();
   1128 	const VkDevice				vkDevice	= m_context.getDevice();
   1129 
   1130 	for (size_t bufferNdx = 0; bufferNdx < m_vertexBuffers.size(); bufferNdx++)
   1131 		vk.destroyBuffer(vkDevice, m_vertexBuffers[bufferNdx], DE_NULL);
   1132 
   1133 	for (size_t allocNdx = 0; allocNdx < m_vertexBufferAllocs.size(); allocNdx++)
   1134 		delete m_vertexBufferAllocs[allocNdx];
   1135 }
   1136 
   1137 void VertexInputInstance::writeVertexInputData(deUint8* destPtr, const VkVertexInputBindingDescription& bindingDescription, const VkDeviceSize bindingOffset, const AttributeDescriptionList& attributes)
   1138 {
   1139 	const deUint32 vertexCount = (bindingDescription.inputRate == VK_VERTEX_INPUT_RATE_VERTEX) ? (4 * 2) : 2;
   1140 
   1141 	deUint8* destOffsetPtr = ((deUint8 *)destPtr) + bindingOffset;
   1142 	for (deUint32 vertexNdx = 0; vertexNdx < vertexCount; vertexNdx++)
   1143 	{
   1144 		for (size_t attributeNdx = 0; attributeNdx < attributes.size(); attributeNdx++)
   1145 		{
   1146 			const VertexInputAttributeDescription& attribDesc = attributes[attributeNdx];
   1147 
   1148 			// Only write vertex input data to bindings referenced by attribute descriptions
   1149 			if (attribDesc.vkDescription.binding == bindingDescription.binding)
   1150 			{
   1151 				writeVertexInputValue(destOffsetPtr + attribDesc.vkDescription.offset, attribDesc, vertexNdx);
   1152 			}
   1153 		}
   1154 		destOffsetPtr += bindingDescription.stride;
   1155 	}
   1156 }
   1157 
   1158 void writeVertexInputValueSint (deUint8* destPtr, VkFormat format, int componentNdx, deInt32 value)
   1159 {
   1160 	const deUint32	componentSize	= getVertexFormatComponentSize(format);
   1161 	deUint8*		destFormatPtr	= ((deUint8*)destPtr) + componentSize * componentNdx;
   1162 
   1163 	switch (componentSize)
   1164 	{
   1165 		case 1:
   1166 			*((deInt8*)destFormatPtr) = (deInt8)value;
   1167 			break;
   1168 
   1169 		case 2:
   1170 			*((deInt16*)destFormatPtr) = (deInt16)value;
   1171 			break;
   1172 
   1173 		case 4:
   1174 			*((deInt32*)destFormatPtr) = (deInt32)value;
   1175 			break;
   1176 
   1177 		default:
   1178 			DE_ASSERT(false);
   1179 	}
   1180 }
   1181 
   1182 void writeVertexInputValueUint (deUint8* destPtr, VkFormat format, int componentNdx, deUint32 value)
   1183 {
   1184 	const deUint32	componentSize	= getVertexFormatComponentSize(format);
   1185 	deUint8*		destFormatPtr	= ((deUint8*)destPtr) + componentSize * componentNdx;
   1186 
   1187 	switch (componentSize)
   1188 	{
   1189 		case 1:
   1190 			*((deUint8 *)destFormatPtr) = (deUint8)value;
   1191 			break;
   1192 
   1193 		case 2:
   1194 			*((deUint16 *)destFormatPtr) = (deUint16)value;
   1195 			break;
   1196 
   1197 		case 4:
   1198 			*((deUint32 *)destFormatPtr) = (deUint32)value;
   1199 			break;
   1200 
   1201 		default:
   1202 			DE_ASSERT(false);
   1203 	}
   1204 }
   1205 
   1206 void writeVertexInputValueSfloat (deUint8* destPtr, VkFormat format, int componentNdx, float value)
   1207 {
   1208 	const deUint32	componentSize	= getVertexFormatComponentSize(format);
   1209 	deUint8*		destFormatPtr	= ((deUint8*)destPtr) + componentSize * componentNdx;
   1210 
   1211 	switch (componentSize)
   1212 	{
   1213 		case 2:
   1214 		{
   1215 			deFloat16 f16 = deFloat32To16(value);
   1216 			deMemcpy(destFormatPtr, &f16, sizeof(f16));
   1217 			break;
   1218 		}
   1219 
   1220 		case 4:
   1221 			deMemcpy(destFormatPtr, &value, sizeof(value));
   1222 			break;
   1223 
   1224 		default:
   1225 			DE_ASSERT(false);
   1226 	}
   1227 }
   1228 
   1229 void VertexInputInstance::writeVertexInputValue (deUint8* destPtr, const VertexInputAttributeDescription& attribute, int indexId)
   1230 {
   1231 	const int		vertexInputCount	= VertexInputTest::s_glslTypeDescriptions[attribute.glslType].vertexInputCount;
   1232 	const int		componentCount		= VertexInputTest::s_glslTypeDescriptions[attribute.glslType].vertexInputComponentCount;
   1233 	const deUint32	totalComponentCount	= componentCount * vertexInputCount;
   1234 	const deUint32	vertexInputIndex	= indexId * totalComponentCount + attribute.vertexInputIndex * componentCount;
   1235 	const bool		hasBGROrder			= isVertexFormatComponentOrderBGR(attribute.vkDescription.format);
   1236 	int				swizzledNdx;
   1237 
   1238 	for (int componentNdx = 0; componentNdx < componentCount; componentNdx++)
   1239 	{
   1240 		if (hasBGROrder)
   1241 		{
   1242 			if (componentNdx == 0)
   1243 				swizzledNdx = 2;
   1244 			else if (componentNdx == 2)
   1245 				swizzledNdx = 0;
   1246 			else
   1247 				swizzledNdx = componentNdx;
   1248 		}
   1249 		else
   1250 			swizzledNdx = componentNdx;
   1251 
   1252 		switch (attribute.glslType)
   1253 		{
   1254 			case VertexInputTest::GLSL_TYPE_INT:
   1255 			case VertexInputTest::GLSL_TYPE_IVEC2:
   1256 			case VertexInputTest::GLSL_TYPE_IVEC3:
   1257 			case VertexInputTest::GLSL_TYPE_IVEC4:
   1258 				writeVertexInputValueSint(destPtr, attribute.vkDescription.format, componentNdx, -(deInt32)(vertexInputIndex + swizzledNdx));
   1259 				break;
   1260 
   1261 			case VertexInputTest::GLSL_TYPE_UINT:
   1262 			case VertexInputTest::GLSL_TYPE_UVEC2:
   1263 			case VertexInputTest::GLSL_TYPE_UVEC3:
   1264 			case VertexInputTest::GLSL_TYPE_UVEC4:
   1265 				writeVertexInputValueUint(destPtr, attribute.vkDescription.format, componentNdx, vertexInputIndex + swizzledNdx);
   1266 				break;
   1267 
   1268 			case VertexInputTest::GLSL_TYPE_FLOAT:
   1269 			case VertexInputTest::GLSL_TYPE_VEC2:
   1270 			case VertexInputTest::GLSL_TYPE_VEC3:
   1271 			case VertexInputTest::GLSL_TYPE_VEC4:
   1272 			case VertexInputTest::GLSL_TYPE_MAT2:
   1273 			case VertexInputTest::GLSL_TYPE_MAT3:
   1274 			case VertexInputTest::GLSL_TYPE_MAT4:
   1275 				if (isVertexFormatSfloat(attribute.vkDescription.format))
   1276 				{
   1277 					writeVertexInputValueSfloat(destPtr, attribute.vkDescription.format, componentNdx, -(0.01f * (float)(vertexInputIndex + swizzledNdx)));
   1278 				}
   1279 				else if (isVertexFormatSscaled(attribute.vkDescription.format))
   1280 				{
   1281 					writeVertexInputValueSint(destPtr, attribute.vkDescription.format, componentNdx, -(deInt32)(vertexInputIndex + swizzledNdx));
   1282 				}
   1283 				else if (isVertexFormatUscaled(attribute.vkDescription.format) || isVertexFormatUnorm(attribute.vkDescription.format) || isVertexFormatSRGB(attribute.vkDescription.format))
   1284 				{
   1285 					writeVertexInputValueUint(destPtr, attribute.vkDescription.format, componentNdx, vertexInputIndex + swizzledNdx);
   1286 				}
   1287 				else if (isVertexFormatSnorm(attribute.vkDescription.format))
   1288 				{
   1289 					const deInt32 minIntValue = -((1 << (getVertexFormatComponentSize(attribute.vkDescription.format) * 8 - 1))) + 1;
   1290 					writeVertexInputValueSint(destPtr, attribute.vkDescription.format, componentNdx, minIntValue + (vertexInputIndex + swizzledNdx));
   1291 				}
   1292 				else
   1293 					DE_ASSERT(false);
   1294 				break;
   1295 
   1296 			case VertexInputTest::GLSL_TYPE_DOUBLE:
   1297 			case VertexInputTest::GLSL_TYPE_DVEC2:
   1298 			case VertexInputTest::GLSL_TYPE_DVEC3:
   1299 			case VertexInputTest::GLSL_TYPE_DVEC4:
   1300 			case VertexInputTest::GLSL_TYPE_DMAT2:
   1301 			case VertexInputTest::GLSL_TYPE_DMAT3:
   1302 			case VertexInputTest::GLSL_TYPE_DMAT4:
   1303 				*(reinterpret_cast<double *>(destPtr) + componentNdx) = -0.01 * (vertexInputIndex + swizzledNdx);
   1304 
   1305 				break;
   1306 
   1307 			default:
   1308 				DE_ASSERT(false);
   1309 		}
   1310 	}
   1311 }
   1312 
   1313 tcu::TestStatus VertexInputInstance::iterate (void)
   1314 {
   1315 	const DeviceInterface&		vk			= m_context.getDeviceInterface();
   1316 	const VkDevice				vkDevice	= m_context.getDevice();
   1317 	const VkQueue				queue		= m_context.getUniversalQueue();
   1318 	const VkSubmitInfo			submitInfo	=
   1319 	{
   1320 		VK_STRUCTURE_TYPE_SUBMIT_INFO,	// VkStructureType			sType;
   1321 		DE_NULL,						// const void*				pNext;
   1322 		0u,								// deUint32					waitSemaphoreCount;
   1323 		DE_NULL,						// const VkSemaphore*		pWaitSemaphores;
   1324 		(const VkPipelineStageFlags*)DE_NULL,
   1325 		1u,								// deUint32					commandBufferCount;
   1326 		&m_cmdBuffer.get(),				// const VkCommandBuffer*	pCommandBuffers;
   1327 		0u,								// deUint32					signalSemaphoreCount;
   1328 		DE_NULL							// const VkSemaphore*		pSignalSemaphores;
   1329 	};
   1330 
   1331 	VK_CHECK(vk.resetFences(vkDevice, 1, &m_fence.get()));
   1332 	VK_CHECK(vk.queueSubmit(queue, 1, &submitInfo, *m_fence));
   1333 	VK_CHECK(vk.waitForFences(vkDevice, 1, &m_fence.get(), true, ~(0ull) /* infinity*/));
   1334 
   1335 	return verifyImage();
   1336 }
   1337 
   1338 bool VertexInputTest::isCompatibleType (VkFormat format, GlslType glslType)
   1339 {
   1340 	const GlslTypeDescription glslTypeDesc = s_glslTypeDescriptions[glslType];
   1341 
   1342 	if ((deUint32)s_glslTypeDescriptions[glslType].vertexInputComponentCount == getVertexFormatComponentCount(format))
   1343 	{
   1344 		switch (glslTypeDesc.basicType)
   1345 		{
   1346 			case GLSL_BASIC_TYPE_INT:
   1347 				return isVertexFormatSint(format);
   1348 
   1349 			case GLSL_BASIC_TYPE_UINT:
   1350 				return isVertexFormatUint(format);
   1351 
   1352 			case GLSL_BASIC_TYPE_FLOAT:
   1353 				return getVertexFormatComponentSize(format) <= 4 && (isVertexFormatSfloat(format) || isVertexFormatSnorm(format) || isVertexFormatUnorm(format) || isVertexFormatSscaled(format) || isVertexFormatUscaled(format) || isVertexFormatSRGB(format));
   1354 
   1355 			case GLSL_BASIC_TYPE_DOUBLE:
   1356 				return isVertexFormatSfloat(format) && getVertexFormatComponentSize(format) == 8;
   1357 
   1358 			default:
   1359 				DE_ASSERT(false);
   1360 				return false;
   1361 		}
   1362 	}
   1363 	else
   1364 		return false;
   1365 }
   1366 
   1367 tcu::TestStatus VertexInputInstance::verifyImage (void)
   1368 {
   1369 	bool							compareOk			= false;
   1370 	const tcu::TextureFormat		tcuColorFormat		= mapVkFormat(m_colorFormat);
   1371 	tcu::TextureLevel				reference			(tcuColorFormat, m_renderSize.x(), m_renderSize.y());
   1372 	const tcu::PixelBufferAccess	refRedSubregion		(tcu::getSubregion(reference.getAccess(),
   1373 																		   deRoundFloatToInt32((float)m_renderSize.x() * 0.0f),
   1374 																		   deRoundFloatToInt32((float)m_renderSize.y() * 0.0f),
   1375 																		   deRoundFloatToInt32((float)m_renderSize.x() * 0.5f),
   1376 																		   deRoundFloatToInt32((float)m_renderSize.y() * 1.0f)));
   1377 	const tcu::PixelBufferAccess	refBlueSubregion	(tcu::getSubregion(reference.getAccess(),
   1378 																		   deRoundFloatToInt32((float)m_renderSize.x() * 0.5f),
   1379 																		   deRoundFloatToInt32((float)m_renderSize.y() * 0.0f),
   1380 																		   deRoundFloatToInt32((float)m_renderSize.x() * 0.5f),
   1381 																		   deRoundFloatToInt32((float)m_renderSize.y() * 1.0f)));
   1382 
   1383 	// Create reference image
   1384 	tcu::clear(reference.getAccess(), defaultClearColor(tcuColorFormat));
   1385 	tcu::clear(refRedSubregion, tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f));
   1386 	tcu::clear(refBlueSubregion, tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f));
   1387 
   1388 	// Compare result with reference image
   1389 	{
   1390 		const DeviceInterface&			vk					= m_context.getDeviceInterface();
   1391 		const VkDevice					vkDevice			= m_context.getDevice();
   1392 		const VkQueue					queue				= m_context.getUniversalQueue();
   1393 		const deUint32					queueFamilyIndex	= m_context.getUniversalQueueFamilyIndex();
   1394 		SimpleAllocator					allocator			(vk, vkDevice, getPhysicalDeviceMemoryProperties(m_context.getInstanceInterface(), m_context.getPhysicalDevice()));
   1395 		de::MovePtr<tcu::TextureLevel>	result				= readColorAttachment(vk, vkDevice, queue, queueFamilyIndex, allocator, *m_colorImage, m_colorFormat, m_renderSize);
   1396 
   1397 		compareOk = tcu::intThresholdPositionDeviationCompare(m_context.getTestContext().getLog(),
   1398 															  "IntImageCompare",
   1399 															  "Image comparison",
   1400 															  reference.getAccess(),
   1401 															  result->getAccess(),
   1402 															  tcu::UVec4(2, 2, 2, 2),
   1403 															  tcu::IVec3(1, 1, 0),
   1404 															  true,
   1405 															  tcu::COMPARE_LOG_RESULT);
   1406 	}
   1407 
   1408 	if (compareOk)
   1409 		return tcu::TestStatus::pass("Result image matches reference");
   1410 	else
   1411 		return tcu::TestStatus::fail("Image mismatch");
   1412 }
   1413 
   1414 std::string getAttributeInfoCaseName (const VertexInputTest::AttributeInfo& attributeInfo)
   1415 {
   1416 	std::ostringstream	caseName;
   1417 	const std::string	formatName	= getFormatName(attributeInfo.vkType);
   1418 
   1419 	caseName << VertexInputTest::s_glslTypeDescriptions[attributeInfo.glslType].name << "_as_" << de::toLower(formatName.substr(10)) << "_rate_";
   1420 
   1421 	if (attributeInfo.inputRate == VK_VERTEX_INPUT_RATE_VERTEX)
   1422 		caseName <<  "vertex";
   1423 	else
   1424 		caseName <<  "instance";
   1425 
   1426 	return caseName.str();
   1427 }
   1428 
   1429 std::string getAttributeInfosCaseName (const std::vector<VertexInputTest::AttributeInfo>& attributeInfos)
   1430 {
   1431 	std::ostringstream caseName;
   1432 
   1433 	for (size_t attributeNdx = 0; attributeNdx < attributeInfos.size(); attributeNdx++)
   1434 	{
   1435 		caseName << getAttributeInfoCaseName(attributeInfos[attributeNdx]);
   1436 
   1437 		if (attributeNdx < attributeInfos.size() - 1)
   1438 			caseName << "-";
   1439 	}
   1440 
   1441 	return caseName.str();
   1442 }
   1443 
   1444 std::string getAttributeInfoDescription (const VertexInputTest::AttributeInfo& attributeInfo)
   1445 {
   1446 	std::ostringstream caseDesc;
   1447 
   1448 	caseDesc << std::string(VertexInputTest::s_glslTypeDescriptions[attributeInfo.glslType].name) << " from type " << getFormatName(attributeInfo.vkType) <<  " with ";
   1449 
   1450 	if (attributeInfo.inputRate == VK_VERTEX_INPUT_RATE_VERTEX)
   1451 		caseDesc <<  "vertex input rate ";
   1452 	else
   1453 		caseDesc <<  "instance input rate ";
   1454 
   1455 	return caseDesc.str();
   1456 }
   1457 
   1458 std::string getAttributeInfosDescription (const std::vector<VertexInputTest::AttributeInfo>& attributeInfos)
   1459 {
   1460 	std::ostringstream caseDesc;
   1461 
   1462 	caseDesc << "Uses vertex attributes:\n";
   1463 
   1464 	for (size_t attributeNdx = 0; attributeNdx < attributeInfos.size(); attributeNdx++)
   1465 		caseDesc << "\t- " << getAttributeInfoDescription (attributeInfos[attributeNdx]) << "\n";
   1466 
   1467 	return caseDesc.str();
   1468 }
   1469 
   1470 struct CompatibleFormats
   1471 {
   1472 	VertexInputTest::GlslType	glslType;
   1473 	std::vector<VkFormat>		compatibleVkFormats;
   1474 };
   1475 
   1476 de::MovePtr<tcu::TestCaseGroup> createSingleAttributeTests (tcu::TestContext& testCtx)
   1477 {
   1478 	const VkFormat vertexFormats[] =
   1479 	{
   1480 		// Required, unpacked
   1481 		VK_FORMAT_R8_UNORM,
   1482 		VK_FORMAT_R8_SNORM,
   1483 		VK_FORMAT_R8_UINT,
   1484 		VK_FORMAT_R8_SINT,
   1485 		VK_FORMAT_R8G8_UNORM,
   1486 		VK_FORMAT_R8G8_SNORM,
   1487 		VK_FORMAT_R8G8_UINT,
   1488 		VK_FORMAT_R8G8_SINT,
   1489 		VK_FORMAT_R8G8B8A8_UNORM,
   1490 		VK_FORMAT_R8G8B8A8_SNORM,
   1491 		VK_FORMAT_R8G8B8A8_UINT,
   1492 		VK_FORMAT_R8G8B8A8_SINT,
   1493 		VK_FORMAT_B8G8R8A8_UNORM,
   1494 		VK_FORMAT_R16_UNORM,
   1495 		VK_FORMAT_R16_SNORM,
   1496 		VK_FORMAT_R16_UINT,
   1497 		VK_FORMAT_R16_SINT,
   1498 		VK_FORMAT_R16_SFLOAT,
   1499 		VK_FORMAT_R16G16_UNORM,
   1500 		VK_FORMAT_R16G16_SNORM,
   1501 		VK_FORMAT_R16G16_UINT,
   1502 		VK_FORMAT_R16G16_SINT,
   1503 		VK_FORMAT_R16G16_SFLOAT,
   1504 		VK_FORMAT_R16G16B16A16_UNORM,
   1505 		VK_FORMAT_R16G16B16A16_SNORM,
   1506 		VK_FORMAT_R16G16B16A16_UINT,
   1507 		VK_FORMAT_R16G16B16A16_SINT,
   1508 		VK_FORMAT_R16G16B16A16_SFLOAT,
   1509 		VK_FORMAT_R32_UINT,
   1510 		VK_FORMAT_R32_SINT,
   1511 		VK_FORMAT_R32_SFLOAT,
   1512 		VK_FORMAT_R32G32_UINT,
   1513 		VK_FORMAT_R32G32_SINT,
   1514 		VK_FORMAT_R32G32_SFLOAT,
   1515 		VK_FORMAT_R32G32B32_UINT,
   1516 		VK_FORMAT_R32G32B32_SINT,
   1517 		VK_FORMAT_R32G32B32_SFLOAT,
   1518 		VK_FORMAT_R32G32B32A32_UINT,
   1519 		VK_FORMAT_R32G32B32A32_SINT,
   1520 		VK_FORMAT_R32G32B32A32_SFLOAT,
   1521 
   1522 		// Scaled formats
   1523 		VK_FORMAT_R8G8_USCALED,
   1524 		VK_FORMAT_R8G8_SSCALED,
   1525 		VK_FORMAT_R16_USCALED,
   1526 		VK_FORMAT_R16_SSCALED,
   1527 		VK_FORMAT_R8G8B8_USCALED,
   1528 		VK_FORMAT_R8G8B8_SSCALED,
   1529 		VK_FORMAT_B8G8R8_USCALED,
   1530 		VK_FORMAT_B8G8R8_SSCALED,
   1531 		VK_FORMAT_R8G8B8A8_USCALED,
   1532 		VK_FORMAT_R8G8B8A8_SSCALED,
   1533 		VK_FORMAT_B8G8R8A8_USCALED,
   1534 		VK_FORMAT_B8G8R8A8_SSCALED,
   1535 		VK_FORMAT_R16G16_USCALED,
   1536 		VK_FORMAT_R16G16_SSCALED,
   1537 		VK_FORMAT_R16G16B16_USCALED,
   1538 		VK_FORMAT_R16G16B16_SSCALED,
   1539 		VK_FORMAT_R16G16B16A16_USCALED,
   1540 		VK_FORMAT_R16G16B16A16_SSCALED,
   1541 
   1542 		// SRGB formats
   1543 		VK_FORMAT_R8_SRGB,
   1544 		VK_FORMAT_R8G8_SRGB,
   1545 		VK_FORMAT_R8G8B8_SRGB,
   1546 		VK_FORMAT_B8G8R8_SRGB,
   1547 		VK_FORMAT_R8G8B8A8_SRGB,
   1548 		VK_FORMAT_B8G8R8A8_SRGB,
   1549 
   1550 		// Double formats
   1551 		VK_FORMAT_R64_SFLOAT,
   1552 		VK_FORMAT_R64G64_SFLOAT,
   1553 		VK_FORMAT_R64G64B64_SFLOAT,
   1554 		VK_FORMAT_R64G64B64A64_SFLOAT,
   1555 	};
   1556 
   1557 	de::MovePtr<tcu::TestCaseGroup>	singleAttributeTests (new tcu::TestCaseGroup(testCtx, "single_attribute", "Uses one attribute"));
   1558 
   1559 	for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(vertexFormats); formatNdx++)
   1560 	{
   1561 		for (int glslTypeNdx = 0; glslTypeNdx < VertexInputTest::GLSL_TYPE_COUNT; glslTypeNdx++)
   1562 		{
   1563 			if (VertexInputTest::isCompatibleType(vertexFormats[formatNdx], (VertexInputTest::GlslType)glslTypeNdx))
   1564 			{
   1565 				// Create test case for RATE_VERTEX
   1566 				VertexInputTest::AttributeInfo attributeInfo;
   1567 				attributeInfo.vkType	= vertexFormats[formatNdx];
   1568 				attributeInfo.glslType	= (VertexInputTest::GlslType)glslTypeNdx;
   1569 				attributeInfo.inputRate	= VK_VERTEX_INPUT_RATE_VERTEX;
   1570 
   1571 				singleAttributeTests->addChild(new VertexInputTest(testCtx,
   1572 																   getAttributeInfoCaseName(attributeInfo),
   1573 																   getAttributeInfoDescription(attributeInfo),
   1574 																   std::vector<VertexInputTest::AttributeInfo>(1, attributeInfo),
   1575 																   VertexInputTest::BINDING_MAPPING_ONE_TO_ONE));
   1576 
   1577 				// Create test case for RATE_INSTANCE
   1578 				attributeInfo.inputRate	= VK_VERTEX_INPUT_RATE_INSTANCE;
   1579 
   1580 				singleAttributeTests->addChild(new VertexInputTest(testCtx,
   1581 																   getAttributeInfoCaseName(attributeInfo),
   1582 																   getAttributeInfoDescription(attributeInfo),
   1583 																   std::vector<VertexInputTest::AttributeInfo>(1, attributeInfo),
   1584 																   VertexInputTest::BINDING_MAPPING_ONE_TO_ONE));
   1585 			}
   1586 		}
   1587 	}
   1588 
   1589 	return singleAttributeTests;
   1590 }
   1591 
   1592 de::MovePtr<tcu::TestCaseGroup> createMultipleAttributeTests (tcu::TestContext& testCtx)
   1593 {
   1594 	// Required vertex formats, unpacked
   1595 	const VkFormat vertexFormats[] =
   1596 	{
   1597 		VK_FORMAT_R8_UNORM,
   1598 		VK_FORMAT_R8_SNORM,
   1599 		VK_FORMAT_R8_UINT,
   1600 		VK_FORMAT_R8_SINT,
   1601 		VK_FORMAT_R8G8_UNORM,
   1602 		VK_FORMAT_R8G8_SNORM,
   1603 		VK_FORMAT_R8G8_UINT,
   1604 		VK_FORMAT_R8G8_SINT,
   1605 		VK_FORMAT_R8G8B8A8_UNORM,
   1606 		VK_FORMAT_R8G8B8A8_SNORM,
   1607 		VK_FORMAT_R8G8B8A8_UINT,
   1608 		VK_FORMAT_R8G8B8A8_SINT,
   1609 		VK_FORMAT_B8G8R8A8_UNORM,
   1610 		VK_FORMAT_R16_UNORM,
   1611 		VK_FORMAT_R16_SNORM,
   1612 		VK_FORMAT_R16_UINT,
   1613 		VK_FORMAT_R16_SINT,
   1614 		VK_FORMAT_R16_SFLOAT,
   1615 		VK_FORMAT_R16G16_UNORM,
   1616 		VK_FORMAT_R16G16_SNORM,
   1617 		VK_FORMAT_R16G16_UINT,
   1618 		VK_FORMAT_R16G16_SINT,
   1619 		VK_FORMAT_R16G16_SFLOAT,
   1620 		VK_FORMAT_R16G16B16A16_UNORM,
   1621 		VK_FORMAT_R16G16B16A16_SNORM,
   1622 		VK_FORMAT_R16G16B16A16_UINT,
   1623 		VK_FORMAT_R16G16B16A16_SINT,
   1624 		VK_FORMAT_R16G16B16A16_SFLOAT,
   1625 		VK_FORMAT_R32_UINT,
   1626 		VK_FORMAT_R32_SINT,
   1627 		VK_FORMAT_R32_SFLOAT,
   1628 		VK_FORMAT_R32G32_UINT,
   1629 		VK_FORMAT_R32G32_SINT,
   1630 		VK_FORMAT_R32G32_SFLOAT,
   1631 		VK_FORMAT_R32G32B32_UINT,
   1632 		VK_FORMAT_R32G32B32_SINT,
   1633 		VK_FORMAT_R32G32B32_SFLOAT,
   1634 		VK_FORMAT_R32G32B32A32_UINT,
   1635 		VK_FORMAT_R32G32B32A32_SINT,
   1636 		VK_FORMAT_R32G32B32A32_SFLOAT
   1637 	};
   1638 
   1639 	de::MovePtr<tcu::TestCaseGroup>	multipleAttributeTests (new tcu::TestCaseGroup(testCtx, "multiple_attributes", "Uses more than one attribute"));
   1640 
   1641 	// Find compatible VK formats for each GLSL vertex type
   1642 	CompatibleFormats compatibleFormats[VertexInputTest::GLSL_TYPE_COUNT];
   1643 	{
   1644 		for (int glslTypeNdx = 0; glslTypeNdx < VertexInputTest::GLSL_TYPE_COUNT; glslTypeNdx++)
   1645 		{
   1646 			for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(vertexFormats); formatNdx++)
   1647 			{
   1648 				if (VertexInputTest::isCompatibleType(vertexFormats[formatNdx], (VertexInputTest::GlslType)glslTypeNdx))
   1649 					compatibleFormats[glslTypeNdx].compatibleVkFormats.push_back(vertexFormats[formatNdx]);
   1650 			}
   1651 		}
   1652 	}
   1653 
   1654 	de::Random						randomFunc				(102030);
   1655 	GlslTypeCombinationsIterator	glslTypeCombinationsItr	(VertexInputTest::GLSL_TYPE_DOUBLE, 3); // Exclude double values, which are not included in vertexFormats
   1656 	de::MovePtr<tcu::TestCaseGroup> oneToOneAttributeTests	(new tcu::TestCaseGroup(testCtx, "attributes", ""));
   1657 	de::MovePtr<tcu::TestCaseGroup> oneToManyAttributeTests	(new tcu::TestCaseGroup(testCtx, "attributes", ""));
   1658 
   1659 	while (glslTypeCombinationsItr.hasNext())
   1660 	{
   1661 		const std::vector<VertexInputTest::GlslType>	glslTypes		= glslTypeCombinationsItr.next();
   1662 		std::vector<VertexInputTest::AttributeInfo>		attributeInfos	(glslTypes.size());
   1663 
   1664 		for (size_t attributeNdx = 0; attributeNdx < attributeInfos.size(); attributeNdx++)
   1665 		{
   1666 			DE_ASSERT(!compatibleFormats[glslTypes[attributeNdx]].compatibleVkFormats.empty());
   1667 
   1668 			// Select a random compatible format
   1669 			const std::vector<VkFormat>& formats = compatibleFormats[glslTypes[attributeNdx]].compatibleVkFormats;
   1670 			const VkFormat format = formats[randomFunc.getUint32() % formats.size()];
   1671 
   1672 			attributeInfos[attributeNdx].glslType	= glslTypes[attributeNdx];
   1673 			attributeInfos[attributeNdx].inputRate	= (attributeNdx % 2 == 0) ? VK_VERTEX_INPUT_RATE_VERTEX : VK_VERTEX_INPUT_RATE_INSTANCE;
   1674 			attributeInfos[attributeNdx].vkType		= format;
   1675 		}
   1676 
   1677 		const std::string	caseName	= getAttributeInfosCaseName(attributeInfos);
   1678 		const std::string	caseDesc	= getAttributeInfosDescription(attributeInfos);
   1679 
   1680 		oneToOneAttributeTests->addChild(new VertexInputTest(testCtx, caseName, caseDesc, attributeInfos, VertexInputTest::BINDING_MAPPING_ONE_TO_ONE));
   1681 		oneToManyAttributeTests->addChild(new VertexInputTest(testCtx, caseName, caseDesc, attributeInfos, VertexInputTest::BINDING_MAPPING_ONE_TO_MANY));
   1682 	}
   1683 
   1684 	de::MovePtr<tcu::TestCaseGroup> bindingOneToOneTests	(new tcu::TestCaseGroup(testCtx, "binding_one_to_one", "Each attribute uses a unique binding"));
   1685 	bindingOneToOneTests->addChild(oneToOneAttributeTests.release());
   1686 	multipleAttributeTests->addChild(bindingOneToOneTests.release());
   1687 
   1688 	de::MovePtr<tcu::TestCaseGroup> bindingOneToManyTests	(new tcu::TestCaseGroup(testCtx, "binding_one_to_many", "Attributes share the same binding"));
   1689 	bindingOneToManyTests->addChild(oneToManyAttributeTests.release());
   1690 	multipleAttributeTests->addChild(bindingOneToManyTests.release());
   1691 
   1692 	return multipleAttributeTests;
   1693 }
   1694 
   1695 } // anonymous
   1696 
   1697 tcu::TestCaseGroup* createVertexInputTests (tcu::TestContext& testCtx)
   1698 {
   1699 	de::MovePtr<tcu::TestCaseGroup>	vertexInputTests (new tcu::TestCaseGroup(testCtx, "vertex_input", ""));
   1700 
   1701 	vertexInputTests->addChild(createSingleAttributeTests(testCtx).release());
   1702 	vertexInputTests->addChild(createMultipleAttributeTests(testCtx).release());
   1703 
   1704 	return vertexInputTests.release();
   1705 }
   1706 
   1707 } // pipeline
   1708 } // vkt
   1709