Home | History | Annotate | Download | only in CodeGen
      1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Objective-C code as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGDebugInfo.h"
     15 #include "CGObjCRuntime.h"
     16 #include "CodeGenFunction.h"
     17 #include "CodeGenModule.h"
     18 #include "TargetInfo.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/StmtObjC.h"
     22 #include "clang/Basic/Diagnostic.h"
     23 #include "clang/CodeGen/CGFunctionInfo.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 using namespace clang;
     29 using namespace CodeGen;
     30 
     31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
     32 static TryEmitResult
     33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
     34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
     35                                    QualType ET,
     36                                    RValue Result);
     37 
     38 /// Given the address of a variable of pointer type, find the correct
     39 /// null to store into it.
     40 static llvm::Constant *getNullForVariable(Address addr) {
     41   llvm::Type *type = addr.getElementType();
     42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
     43 }
     44 
     45 /// Emits an instance of NSConstantString representing the object.
     46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
     47 {
     48   llvm::Constant *C =
     49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
     50   // FIXME: This bitcast should just be made an invariant on the Runtime.
     51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
     52 }
     53 
     54 /// EmitObjCBoxedExpr - This routine generates code to call
     55 /// the appropriate expression boxing method. This will either be
     56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
     57 /// or [NSValue valueWithBytes:objCType:].
     58 ///
     59 llvm::Value *
     60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
     61   // Generate the correct selector for this literal's concrete type.
     62   // Get the method.
     63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
     64   const Expr *SubExpr = E->getSubExpr();
     65   assert(BoxingMethod && "BoxingMethod is null");
     66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
     67   Selector Sel = BoxingMethod->getSelector();
     68 
     69   // Generate a reference to the class pointer, which will be the receiver.
     70   // Assumes that the method was introduced in the class that should be
     71   // messaged (avoids pulling it out of the result type).
     72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
     73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
     74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
     75 
     76   CallArgList Args;
     77   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
     78   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
     79 
     80   // ObjCBoxedExpr supports boxing of structs and unions
     81   // via [NSValue valueWithBytes:objCType:]
     82   const QualType ValueType(SubExpr->getType().getCanonicalType());
     83   if (ValueType->isObjCBoxableRecordType()) {
     84     // Emit CodeGen for first parameter
     85     // and cast value to correct type
     86     Address Temporary = CreateMemTemp(SubExpr->getType());
     87     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
     88     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
     89     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
     90 
     91     // Create char array to store type encoding
     92     std::string Str;
     93     getContext().getObjCEncodingForType(ValueType, Str);
     94     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
     95 
     96     // Cast type encoding to correct type
     97     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
     98     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
     99     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
    100 
    101     Args.add(RValue::get(Cast), EncodingQT);
    102   } else {
    103     Args.add(EmitAnyExpr(SubExpr), ArgQT);
    104   }
    105 
    106   RValue result = Runtime.GenerateMessageSend(
    107       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
    108       Args, ClassDecl, BoxingMethod);
    109   return Builder.CreateBitCast(result.getScalarVal(),
    110                                ConvertType(E->getType()));
    111 }
    112 
    113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
    114                                     const ObjCMethodDecl *MethodWithObjects) {
    115   ASTContext &Context = CGM.getContext();
    116   const ObjCDictionaryLiteral *DLE = nullptr;
    117   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
    118   if (!ALE)
    119     DLE = cast<ObjCDictionaryLiteral>(E);
    120 
    121   // Compute the type of the array we're initializing.
    122   uint64_t NumElements =
    123     ALE ? ALE->getNumElements() : DLE->getNumElements();
    124   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
    125                             NumElements);
    126   QualType ElementType = Context.getObjCIdType().withConst();
    127   QualType ElementArrayType
    128     = Context.getConstantArrayType(ElementType, APNumElements,
    129                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
    130 
    131   // Allocate the temporary array(s).
    132   Address Objects = CreateMemTemp(ElementArrayType, "objects");
    133   Address Keys = Address::invalid();
    134   if (DLE)
    135     Keys = CreateMemTemp(ElementArrayType, "keys");
    136 
    137   // In ARC, we may need to do extra work to keep all the keys and
    138   // values alive until after the call.
    139   SmallVector<llvm::Value *, 16> NeededObjects;
    140   bool TrackNeededObjects =
    141     (getLangOpts().ObjCAutoRefCount &&
    142     CGM.getCodeGenOpts().OptimizationLevel != 0);
    143 
    144   // Perform the actual initialialization of the array(s).
    145   for (uint64_t i = 0; i < NumElements; i++) {
    146     if (ALE) {
    147       // Emit the element and store it to the appropriate array slot.
    148       const Expr *Rhs = ALE->getElement(i);
    149       LValue LV = MakeAddrLValue(
    150           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
    151           ElementType, AlignmentSource::Decl);
    152 
    153       llvm::Value *value = EmitScalarExpr(Rhs);
    154       EmitStoreThroughLValue(RValue::get(value), LV, true);
    155       if (TrackNeededObjects) {
    156         NeededObjects.push_back(value);
    157       }
    158     } else {
    159       // Emit the key and store it to the appropriate array slot.
    160       const Expr *Key = DLE->getKeyValueElement(i).Key;
    161       LValue KeyLV = MakeAddrLValue(
    162           Builder.CreateConstArrayGEP(Keys, i, getPointerSize()),
    163           ElementType, AlignmentSource::Decl);
    164       llvm::Value *keyValue = EmitScalarExpr(Key);
    165       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
    166 
    167       // Emit the value and store it to the appropriate array slot.
    168       const Expr *Value = DLE->getKeyValueElement(i).Value;
    169       LValue ValueLV = MakeAddrLValue(
    170           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
    171           ElementType, AlignmentSource::Decl);
    172       llvm::Value *valueValue = EmitScalarExpr(Value);
    173       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
    174       if (TrackNeededObjects) {
    175         NeededObjects.push_back(keyValue);
    176         NeededObjects.push_back(valueValue);
    177       }
    178     }
    179   }
    180 
    181   // Generate the argument list.
    182   CallArgList Args;
    183   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
    184   const ParmVarDecl *argDecl = *PI++;
    185   QualType ArgQT = argDecl->getType().getUnqualifiedType();
    186   Args.add(RValue::get(Objects.getPointer()), ArgQT);
    187   if (DLE) {
    188     argDecl = *PI++;
    189     ArgQT = argDecl->getType().getUnqualifiedType();
    190     Args.add(RValue::get(Keys.getPointer()), ArgQT);
    191   }
    192   argDecl = *PI;
    193   ArgQT = argDecl->getType().getUnqualifiedType();
    194   llvm::Value *Count =
    195     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
    196   Args.add(RValue::get(Count), ArgQT);
    197 
    198   // Generate a reference to the class pointer, which will be the receiver.
    199   Selector Sel = MethodWithObjects->getSelector();
    200   QualType ResultType = E->getType();
    201   const ObjCObjectPointerType *InterfacePointerType
    202     = ResultType->getAsObjCInterfacePointerType();
    203   ObjCInterfaceDecl *Class
    204     = InterfacePointerType->getObjectType()->getInterface();
    205   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    206   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
    207 
    208   // Generate the message send.
    209   RValue result = Runtime.GenerateMessageSend(
    210       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
    211       Receiver, Args, Class, MethodWithObjects);
    212 
    213   // The above message send needs these objects, but in ARC they are
    214   // passed in a buffer that is essentially __unsafe_unretained.
    215   // Therefore we must prevent the optimizer from releasing them until
    216   // after the call.
    217   if (TrackNeededObjects) {
    218     EmitARCIntrinsicUse(NeededObjects);
    219   }
    220 
    221   return Builder.CreateBitCast(result.getScalarVal(),
    222                                ConvertType(E->getType()));
    223 }
    224 
    225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
    226   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
    227 }
    228 
    229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
    230                                             const ObjCDictionaryLiteral *E) {
    231   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
    232 }
    233 
    234 /// Emit a selector.
    235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
    236   // Untyped selector.
    237   // Note that this implementation allows for non-constant strings to be passed
    238   // as arguments to @selector().  Currently, the only thing preventing this
    239   // behaviour is the type checking in the front end.
    240   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
    241 }
    242 
    243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
    244   // FIXME: This should pass the Decl not the name.
    245   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
    246 }
    247 
    248 /// \brief Adjust the type of an Objective-C object that doesn't match up due
    249 /// to type erasure at various points, e.g., related result types or the use
    250 /// of parameterized classes.
    251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
    252                                    RValue Result) {
    253   if (!ExpT->isObjCRetainableType())
    254     return Result;
    255 
    256   // If the converted types are the same, we're done.
    257   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
    258   if (ExpLLVMTy == Result.getScalarVal()->getType())
    259     return Result;
    260 
    261   // We have applied a substitution. Cast the rvalue appropriately.
    262   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
    263                                                ExpLLVMTy));
    264 }
    265 
    266 /// Decide whether to extend the lifetime of the receiver of a
    267 /// returns-inner-pointer message.
    268 static bool
    269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
    270   switch (message->getReceiverKind()) {
    271 
    272   // For a normal instance message, we should extend unless the
    273   // receiver is loaded from a variable with precise lifetime.
    274   case ObjCMessageExpr::Instance: {
    275     const Expr *receiver = message->getInstanceReceiver();
    276 
    277     // Look through OVEs.
    278     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
    279       if (opaque->getSourceExpr())
    280         receiver = opaque->getSourceExpr()->IgnoreParens();
    281     }
    282 
    283     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
    284     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
    285     receiver = ice->getSubExpr()->IgnoreParens();
    286 
    287     // Look through OVEs.
    288     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
    289       if (opaque->getSourceExpr())
    290         receiver = opaque->getSourceExpr()->IgnoreParens();
    291     }
    292 
    293     // Only __strong variables.
    294     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
    295       return true;
    296 
    297     // All ivars and fields have precise lifetime.
    298     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
    299       return false;
    300 
    301     // Otherwise, check for variables.
    302     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
    303     if (!declRef) return true;
    304     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
    305     if (!var) return true;
    306 
    307     // All variables have precise lifetime except local variables with
    308     // automatic storage duration that aren't specially marked.
    309     return (var->hasLocalStorage() &&
    310             !var->hasAttr<ObjCPreciseLifetimeAttr>());
    311   }
    312 
    313   case ObjCMessageExpr::Class:
    314   case ObjCMessageExpr::SuperClass:
    315     // It's never necessary for class objects.
    316     return false;
    317 
    318   case ObjCMessageExpr::SuperInstance:
    319     // We generally assume that 'self' lives throughout a method call.
    320     return false;
    321   }
    322 
    323   llvm_unreachable("invalid receiver kind");
    324 }
    325 
    326 /// Given an expression of ObjC pointer type, check whether it was
    327 /// immediately loaded from an ARC __weak l-value.
    328 static const Expr *findWeakLValue(const Expr *E) {
    329   assert(E->getType()->isObjCRetainableType());
    330   E = E->IgnoreParens();
    331   if (auto CE = dyn_cast<CastExpr>(E)) {
    332     if (CE->getCastKind() == CK_LValueToRValue) {
    333       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    334         return CE->getSubExpr();
    335     }
    336   }
    337 
    338   return nullptr;
    339 }
    340 
    341 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
    342                                             ReturnValueSlot Return) {
    343   // Only the lookup mechanism and first two arguments of the method
    344   // implementation vary between runtimes.  We can get the receiver and
    345   // arguments in generic code.
    346 
    347   bool isDelegateInit = E->isDelegateInitCall();
    348 
    349   const ObjCMethodDecl *method = E->getMethodDecl();
    350 
    351   // If the method is -retain, and the receiver's being loaded from
    352   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
    353   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
    354       method->getMethodFamily() == OMF_retain) {
    355     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
    356       LValue lvalue = EmitLValue(lvalueExpr);
    357       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
    358       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
    359     }
    360   }
    361 
    362   // We don't retain the receiver in delegate init calls, and this is
    363   // safe because the receiver value is always loaded from 'self',
    364   // which we zero out.  We don't want to Block_copy block receivers,
    365   // though.
    366   bool retainSelf =
    367     (!isDelegateInit &&
    368      CGM.getLangOpts().ObjCAutoRefCount &&
    369      method &&
    370      method->hasAttr<NSConsumesSelfAttr>());
    371 
    372   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    373   bool isSuperMessage = false;
    374   bool isClassMessage = false;
    375   ObjCInterfaceDecl *OID = nullptr;
    376   // Find the receiver
    377   QualType ReceiverType;
    378   llvm::Value *Receiver = nullptr;
    379   switch (E->getReceiverKind()) {
    380   case ObjCMessageExpr::Instance:
    381     ReceiverType = E->getInstanceReceiver()->getType();
    382     if (retainSelf) {
    383       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
    384                                                    E->getInstanceReceiver());
    385       Receiver = ter.getPointer();
    386       if (ter.getInt()) retainSelf = false;
    387     } else
    388       Receiver = EmitScalarExpr(E->getInstanceReceiver());
    389     break;
    390 
    391   case ObjCMessageExpr::Class: {
    392     ReceiverType = E->getClassReceiver();
    393     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
    394     assert(ObjTy && "Invalid Objective-C class message send");
    395     OID = ObjTy->getInterface();
    396     assert(OID && "Invalid Objective-C class message send");
    397     Receiver = Runtime.GetClass(*this, OID);
    398     isClassMessage = true;
    399     break;
    400   }
    401 
    402   case ObjCMessageExpr::SuperInstance:
    403     ReceiverType = E->getSuperType();
    404     Receiver = LoadObjCSelf();
    405     isSuperMessage = true;
    406     break;
    407 
    408   case ObjCMessageExpr::SuperClass:
    409     ReceiverType = E->getSuperType();
    410     Receiver = LoadObjCSelf();
    411     isSuperMessage = true;
    412     isClassMessage = true;
    413     break;
    414   }
    415 
    416   if (retainSelf)
    417     Receiver = EmitARCRetainNonBlock(Receiver);
    418 
    419   // In ARC, we sometimes want to "extend the lifetime"
    420   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
    421   // messages.
    422   if (getLangOpts().ObjCAutoRefCount && method &&
    423       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
    424       shouldExtendReceiverForInnerPointerMessage(E))
    425     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
    426 
    427   QualType ResultType = method ? method->getReturnType() : E->getType();
    428 
    429   CallArgList Args;
    430   EmitCallArgs(Args, method, E->arguments());
    431 
    432   // For delegate init calls in ARC, do an unsafe store of null into
    433   // self.  This represents the call taking direct ownership of that
    434   // value.  We have to do this after emitting the other call
    435   // arguments because they might also reference self, but we don't
    436   // have to worry about any of them modifying self because that would
    437   // be an undefined read and write of an object in unordered
    438   // expressions.
    439   if (isDelegateInit) {
    440     assert(getLangOpts().ObjCAutoRefCount &&
    441            "delegate init calls should only be marked in ARC");
    442 
    443     // Do an unsafe store of null into self.
    444     Address selfAddr =
    445       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
    446     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
    447   }
    448 
    449   RValue result;
    450   if (isSuperMessage) {
    451     // super is only valid in an Objective-C method
    452     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
    453     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
    454     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
    455                                               E->getSelector(),
    456                                               OMD->getClassInterface(),
    457                                               isCategoryImpl,
    458                                               Receiver,
    459                                               isClassMessage,
    460                                               Args,
    461                                               method);
    462   } else {
    463     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
    464                                          E->getSelector(),
    465                                          Receiver, Args, OID,
    466                                          method);
    467   }
    468 
    469   // For delegate init calls in ARC, implicitly store the result of
    470   // the call back into self.  This takes ownership of the value.
    471   if (isDelegateInit) {
    472     Address selfAddr =
    473       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
    474     llvm::Value *newSelf = result.getScalarVal();
    475 
    476     // The delegate return type isn't necessarily a matching type; in
    477     // fact, it's quite likely to be 'id'.
    478     llvm::Type *selfTy = selfAddr.getElementType();
    479     newSelf = Builder.CreateBitCast(newSelf, selfTy);
    480 
    481     Builder.CreateStore(newSelf, selfAddr);
    482   }
    483 
    484   return AdjustObjCObjectType(*this, E->getType(), result);
    485 }
    486 
    487 namespace {
    488 struct FinishARCDealloc final : EHScopeStack::Cleanup {
    489   void Emit(CodeGenFunction &CGF, Flags flags) override {
    490     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
    491 
    492     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
    493     const ObjCInterfaceDecl *iface = impl->getClassInterface();
    494     if (!iface->getSuperClass()) return;
    495 
    496     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
    497 
    498     // Call [super dealloc] if we have a superclass.
    499     llvm::Value *self = CGF.LoadObjCSelf();
    500 
    501     CallArgList args;
    502     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
    503                                                       CGF.getContext().VoidTy,
    504                                                       method->getSelector(),
    505                                                       iface,
    506                                                       isCategory,
    507                                                       self,
    508                                                       /*is class msg*/ false,
    509                                                       args,
    510                                                       method);
    511   }
    512 };
    513 }
    514 
    515 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
    516 /// the LLVM function and sets the other context used by
    517 /// CodeGenFunction.
    518 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
    519                                       const ObjCContainerDecl *CD) {
    520   SourceLocation StartLoc = OMD->getLocStart();
    521   FunctionArgList args;
    522   // Check if we should generate debug info for this method.
    523   if (OMD->hasAttr<NoDebugAttr>())
    524     DebugInfo = nullptr; // disable debug info indefinitely for this function
    525 
    526   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
    527 
    528   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
    529   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
    530 
    531   args.push_back(OMD->getSelfDecl());
    532   args.push_back(OMD->getCmdDecl());
    533 
    534   args.append(OMD->param_begin(), OMD->param_end());
    535 
    536   CurGD = OMD;
    537   CurEHLocation = OMD->getLocEnd();
    538 
    539   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
    540                 OMD->getLocation(), StartLoc);
    541 
    542   // In ARC, certain methods get an extra cleanup.
    543   if (CGM.getLangOpts().ObjCAutoRefCount &&
    544       OMD->isInstanceMethod() &&
    545       OMD->getSelector().isUnarySelector()) {
    546     const IdentifierInfo *ident =
    547       OMD->getSelector().getIdentifierInfoForSlot(0);
    548     if (ident->isStr("dealloc"))
    549       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
    550   }
    551 }
    552 
    553 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
    554                                               LValue lvalue, QualType type);
    555 
    556 /// Generate an Objective-C method.  An Objective-C method is a C function with
    557 /// its pointer, name, and types registered in the class struture.
    558 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
    559   StartObjCMethod(OMD, OMD->getClassInterface());
    560   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
    561   assert(isa<CompoundStmt>(OMD->getBody()));
    562   incrementProfileCounter(OMD->getBody());
    563   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
    564   FinishFunction(OMD->getBodyRBrace());
    565 }
    566 
    567 /// emitStructGetterCall - Call the runtime function to load a property
    568 /// into the return value slot.
    569 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
    570                                  bool isAtomic, bool hasStrong) {
    571   ASTContext &Context = CGF.getContext();
    572 
    573   Address src =
    574     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
    575        .getAddress();
    576 
    577   // objc_copyStruct (ReturnValue, &structIvar,
    578   //                  sizeof (Type of Ivar), isAtomic, false);
    579   CallArgList args;
    580 
    581   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
    582   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
    583 
    584   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
    585   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
    586 
    587   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
    588   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
    589   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
    590   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
    591 
    592   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
    593   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
    594                                                       FunctionType::ExtInfo(),
    595                                                       RequiredArgs::All),
    596                fn, ReturnValueSlot(), args);
    597 }
    598 
    599 /// Determine whether the given architecture supports unaligned atomic
    600 /// accesses.  They don't have to be fast, just faster than a function
    601 /// call and a mutex.
    602 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
    603   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
    604   // currently supported by the backend.)
    605   return 0;
    606 }
    607 
    608 /// Return the maximum size that permits atomic accesses for the given
    609 /// architecture.
    610 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
    611                                         llvm::Triple::ArchType arch) {
    612   // ARM has 8-byte atomic accesses, but it's not clear whether we
    613   // want to rely on them here.
    614 
    615   // In the default case, just assume that any size up to a pointer is
    616   // fine given adequate alignment.
    617   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
    618 }
    619 
    620 namespace {
    621   class PropertyImplStrategy {
    622   public:
    623     enum StrategyKind {
    624       /// The 'native' strategy is to use the architecture's provided
    625       /// reads and writes.
    626       Native,
    627 
    628       /// Use objc_setProperty and objc_getProperty.
    629       GetSetProperty,
    630 
    631       /// Use objc_setProperty for the setter, but use expression
    632       /// evaluation for the getter.
    633       SetPropertyAndExpressionGet,
    634 
    635       /// Use objc_copyStruct.
    636       CopyStruct,
    637 
    638       /// The 'expression' strategy is to emit normal assignment or
    639       /// lvalue-to-rvalue expressions.
    640       Expression
    641     };
    642 
    643     StrategyKind getKind() const { return StrategyKind(Kind); }
    644 
    645     bool hasStrongMember() const { return HasStrong; }
    646     bool isAtomic() const { return IsAtomic; }
    647     bool isCopy() const { return IsCopy; }
    648 
    649     CharUnits getIvarSize() const { return IvarSize; }
    650     CharUnits getIvarAlignment() const { return IvarAlignment; }
    651 
    652     PropertyImplStrategy(CodeGenModule &CGM,
    653                          const ObjCPropertyImplDecl *propImpl);
    654 
    655   private:
    656     unsigned Kind : 8;
    657     unsigned IsAtomic : 1;
    658     unsigned IsCopy : 1;
    659     unsigned HasStrong : 1;
    660 
    661     CharUnits IvarSize;
    662     CharUnits IvarAlignment;
    663   };
    664 }
    665 
    666 /// Pick an implementation strategy for the given property synthesis.
    667 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
    668                                      const ObjCPropertyImplDecl *propImpl) {
    669   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    670   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
    671 
    672   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
    673   IsAtomic = prop->isAtomic();
    674   HasStrong = false; // doesn't matter here.
    675 
    676   // Evaluate the ivar's size and alignment.
    677   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    678   QualType ivarType = ivar->getType();
    679   std::tie(IvarSize, IvarAlignment) =
    680       CGM.getContext().getTypeInfoInChars(ivarType);
    681 
    682   // If we have a copy property, we always have to use getProperty/setProperty.
    683   // TODO: we could actually use setProperty and an expression for non-atomics.
    684   if (IsCopy) {
    685     Kind = GetSetProperty;
    686     return;
    687   }
    688 
    689   // Handle retain.
    690   if (setterKind == ObjCPropertyDecl::Retain) {
    691     // In GC-only, there's nothing special that needs to be done.
    692     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
    693       // fallthrough
    694 
    695     // In ARC, if the property is non-atomic, use expression emission,
    696     // which translates to objc_storeStrong.  This isn't required, but
    697     // it's slightly nicer.
    698     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
    699       // Using standard expression emission for the setter is only
    700       // acceptable if the ivar is __strong, which won't be true if
    701       // the property is annotated with __attribute__((NSObject)).
    702       // TODO: falling all the way back to objc_setProperty here is
    703       // just laziness, though;  we could still use objc_storeStrong
    704       // if we hacked it right.
    705       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
    706         Kind = Expression;
    707       else
    708         Kind = SetPropertyAndExpressionGet;
    709       return;
    710 
    711     // Otherwise, we need to at least use setProperty.  However, if
    712     // the property isn't atomic, we can use normal expression
    713     // emission for the getter.
    714     } else if (!IsAtomic) {
    715       Kind = SetPropertyAndExpressionGet;
    716       return;
    717 
    718     // Otherwise, we have to use both setProperty and getProperty.
    719     } else {
    720       Kind = GetSetProperty;
    721       return;
    722     }
    723   }
    724 
    725   // If we're not atomic, just use expression accesses.
    726   if (!IsAtomic) {
    727     Kind = Expression;
    728     return;
    729   }
    730 
    731   // Properties on bitfield ivars need to be emitted using expression
    732   // accesses even if they're nominally atomic.
    733   if (ivar->isBitField()) {
    734     Kind = Expression;
    735     return;
    736   }
    737 
    738   // GC-qualified or ARC-qualified ivars need to be emitted as
    739   // expressions.  This actually works out to being atomic anyway,
    740   // except for ARC __strong, but that should trigger the above code.
    741   if (ivarType.hasNonTrivialObjCLifetime() ||
    742       (CGM.getLangOpts().getGC() &&
    743        CGM.getContext().getObjCGCAttrKind(ivarType))) {
    744     Kind = Expression;
    745     return;
    746   }
    747 
    748   // Compute whether the ivar has strong members.
    749   if (CGM.getLangOpts().getGC())
    750     if (const RecordType *recordType = ivarType->getAs<RecordType>())
    751       HasStrong = recordType->getDecl()->hasObjectMember();
    752 
    753   // We can never access structs with object members with a native
    754   // access, because we need to use write barriers.  This is what
    755   // objc_copyStruct is for.
    756   if (HasStrong) {
    757     Kind = CopyStruct;
    758     return;
    759   }
    760 
    761   // Otherwise, this is target-dependent and based on the size and
    762   // alignment of the ivar.
    763 
    764   // If the size of the ivar is not a power of two, give up.  We don't
    765   // want to get into the business of doing compare-and-swaps.
    766   if (!IvarSize.isPowerOfTwo()) {
    767     Kind = CopyStruct;
    768     return;
    769   }
    770 
    771   llvm::Triple::ArchType arch =
    772     CGM.getTarget().getTriple().getArch();
    773 
    774   // Most architectures require memory to fit within a single cache
    775   // line, so the alignment has to be at least the size of the access.
    776   // Otherwise we have to grab a lock.
    777   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
    778     Kind = CopyStruct;
    779     return;
    780   }
    781 
    782   // If the ivar's size exceeds the architecture's maximum atomic
    783   // access size, we have to use CopyStruct.
    784   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
    785     Kind = CopyStruct;
    786     return;
    787   }
    788 
    789   // Otherwise, we can use native loads and stores.
    790   Kind = Native;
    791 }
    792 
    793 /// \brief Generate an Objective-C property getter function.
    794 ///
    795 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
    796 /// is illegal within a category.
    797 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
    798                                          const ObjCPropertyImplDecl *PID) {
    799   llvm::Constant *AtomicHelperFn =
    800       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
    801   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
    802   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
    803   assert(OMD && "Invalid call to generate getter (empty method)");
    804   StartObjCMethod(OMD, IMP->getClassInterface());
    805 
    806   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
    807 
    808   FinishFunction();
    809 }
    810 
    811 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
    812   const Expr *getter = propImpl->getGetterCXXConstructor();
    813   if (!getter) return true;
    814 
    815   // Sema only makes only of these when the ivar has a C++ class type,
    816   // so the form is pretty constrained.
    817 
    818   // If the property has a reference type, we might just be binding a
    819   // reference, in which case the result will be a gl-value.  We should
    820   // treat this as a non-trivial operation.
    821   if (getter->isGLValue())
    822     return false;
    823 
    824   // If we selected a trivial copy-constructor, we're okay.
    825   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
    826     return (construct->getConstructor()->isTrivial());
    827 
    828   // The constructor might require cleanups (in which case it's never
    829   // trivial).
    830   assert(isa<ExprWithCleanups>(getter));
    831   return false;
    832 }
    833 
    834 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
    835 /// copy the ivar into the resturn slot.
    836 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
    837                                           llvm::Value *returnAddr,
    838                                           ObjCIvarDecl *ivar,
    839                                           llvm::Constant *AtomicHelperFn) {
    840   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
    841   //                           AtomicHelperFn);
    842   CallArgList args;
    843 
    844   // The 1st argument is the return Slot.
    845   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
    846 
    847   // The 2nd argument is the address of the ivar.
    848   llvm::Value *ivarAddr =
    849     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    850                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
    851   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    852   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    853 
    854   // Third argument is the helper function.
    855   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
    856 
    857   llvm::Value *copyCppAtomicObjectFn =
    858     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
    859   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
    860                                                       args,
    861                                                       FunctionType::ExtInfo(),
    862                                                       RequiredArgs::All),
    863                copyCppAtomicObjectFn, ReturnValueSlot(), args);
    864 }
    865 
    866 void
    867 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
    868                                         const ObjCPropertyImplDecl *propImpl,
    869                                         const ObjCMethodDecl *GetterMethodDecl,
    870                                         llvm::Constant *AtomicHelperFn) {
    871   // If there's a non-trivial 'get' expression, we just have to emit that.
    872   if (!hasTrivialGetExpr(propImpl)) {
    873     if (!AtomicHelperFn) {
    874       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
    875                      /*nrvo*/ nullptr);
    876       EmitReturnStmt(ret);
    877     }
    878     else {
    879       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    880       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
    881                                     ivar, AtomicHelperFn);
    882     }
    883     return;
    884   }
    885 
    886   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    887   QualType propType = prop->getType();
    888   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
    889 
    890   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    891 
    892   // Pick an implementation strategy.
    893   PropertyImplStrategy strategy(CGM, propImpl);
    894   switch (strategy.getKind()) {
    895   case PropertyImplStrategy::Native: {
    896     // We don't need to do anything for a zero-size struct.
    897     if (strategy.getIvarSize().isZero())
    898       return;
    899 
    900     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    901 
    902     // Currently, all atomic accesses have to be through integer
    903     // types, so there's no point in trying to pick a prettier type.
    904     llvm::Type *bitcastType =
    905       llvm::Type::getIntNTy(getLLVMContext(),
    906                             getContext().toBits(strategy.getIvarSize()));
    907     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
    908 
    909     // Perform an atomic load.  This does not impose ordering constraints.
    910     Address ivarAddr = LV.getAddress();
    911     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
    912     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
    913     load->setAtomic(llvm::Unordered);
    914 
    915     // Store that value into the return address.  Doing this with a
    916     // bitcast is likely to produce some pretty ugly IR, but it's not
    917     // the *most* terrible thing in the world.
    918     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
    919 
    920     // Make sure we don't do an autorelease.
    921     AutoreleaseResult = false;
    922     return;
    923   }
    924 
    925   case PropertyImplStrategy::GetSetProperty: {
    926     llvm::Value *getPropertyFn =
    927       CGM.getObjCRuntime().GetPropertyGetFunction();
    928     if (!getPropertyFn) {
    929       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
    930       return;
    931     }
    932 
    933     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
    934     // FIXME: Can't this be simpler? This might even be worse than the
    935     // corresponding gcc code.
    936     llvm::Value *cmd =
    937       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
    938     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
    939     llvm::Value *ivarOffset =
    940       EmitIvarOffset(classImpl->getClassInterface(), ivar);
    941 
    942     CallArgList args;
    943     args.add(RValue::get(self), getContext().getObjCIdType());
    944     args.add(RValue::get(cmd), getContext().getObjCSelType());
    945     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
    946     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
    947              getContext().BoolTy);
    948 
    949     // FIXME: We shouldn't need to get the function info here, the
    950     // runtime already should have computed it to build the function.
    951     llvm::Instruction *CallInstruction;
    952     RValue RV = EmitCall(
    953         getTypes().arrangeFreeFunctionCall(
    954             propType, args, FunctionType::ExtInfo(), RequiredArgs::All),
    955         getPropertyFn, ReturnValueSlot(), args, CGCalleeInfo(),
    956         &CallInstruction);
    957     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
    958       call->setTailCall();
    959 
    960     // We need to fix the type here. Ivars with copy & retain are
    961     // always objects so we don't need to worry about complex or
    962     // aggregates.
    963     RV = RValue::get(Builder.CreateBitCast(
    964         RV.getScalarVal(),
    965         getTypes().ConvertType(getterMethod->getReturnType())));
    966 
    967     EmitReturnOfRValue(RV, propType);
    968 
    969     // objc_getProperty does an autorelease, so we should suppress ours.
    970     AutoreleaseResult = false;
    971 
    972     return;
    973   }
    974 
    975   case PropertyImplStrategy::CopyStruct:
    976     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
    977                          strategy.hasStrongMember());
    978     return;
    979 
    980   case PropertyImplStrategy::Expression:
    981   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
    982     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    983 
    984     QualType ivarType = ivar->getType();
    985     switch (getEvaluationKind(ivarType)) {
    986     case TEK_Complex: {
    987       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
    988       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
    989                          /*init*/ true);
    990       return;
    991     }
    992     case TEK_Aggregate:
    993       // The return value slot is guaranteed to not be aliased, but
    994       // that's not necessarily the same as "on the stack", so
    995       // we still potentially need objc_memmove_collectable.
    996       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
    997       return;
    998     case TEK_Scalar: {
    999       llvm::Value *value;
   1000       if (propType->isReferenceType()) {
   1001         value = LV.getAddress().getPointer();
   1002       } else {
   1003         // We want to load and autoreleaseReturnValue ARC __weak ivars.
   1004         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
   1005           if (getLangOpts().ObjCAutoRefCount) {
   1006             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
   1007           } else {
   1008             value = EmitARCLoadWeak(LV.getAddress());
   1009           }
   1010 
   1011         // Otherwise we want to do a simple load, suppressing the
   1012         // final autorelease.
   1013         } else {
   1014           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
   1015           AutoreleaseResult = false;
   1016         }
   1017 
   1018         value = Builder.CreateBitCast(value, ConvertType(propType));
   1019         value = Builder.CreateBitCast(
   1020             value, ConvertType(GetterMethodDecl->getReturnType()));
   1021       }
   1022 
   1023       EmitReturnOfRValue(RValue::get(value), propType);
   1024       return;
   1025     }
   1026     }
   1027     llvm_unreachable("bad evaluation kind");
   1028   }
   1029 
   1030   }
   1031   llvm_unreachable("bad @property implementation strategy!");
   1032 }
   1033 
   1034 /// emitStructSetterCall - Call the runtime function to store the value
   1035 /// from the first formal parameter into the given ivar.
   1036 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
   1037                                  ObjCIvarDecl *ivar) {
   1038   // objc_copyStruct (&structIvar, &Arg,
   1039   //                  sizeof (struct something), true, false);
   1040   CallArgList args;
   1041 
   1042   // The first argument is the address of the ivar.
   1043   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
   1044                                                 CGF.LoadObjCSelf(), ivar, 0)
   1045     .getPointer();
   1046   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
   1047   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
   1048 
   1049   // The second argument is the address of the parameter variable.
   1050   ParmVarDecl *argVar = *OMD->param_begin();
   1051   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
   1052                      VK_LValue, SourceLocation());
   1053   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
   1054   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
   1055   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
   1056 
   1057   // The third argument is the sizeof the type.
   1058   llvm::Value *size =
   1059     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
   1060   args.add(RValue::get(size), CGF.getContext().getSizeType());
   1061 
   1062   // The fourth argument is the 'isAtomic' flag.
   1063   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
   1064 
   1065   // The fifth argument is the 'hasStrong' flag.
   1066   // FIXME: should this really always be false?
   1067   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
   1068 
   1069   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
   1070   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
   1071                                                       args,
   1072                                                       FunctionType::ExtInfo(),
   1073                                                       RequiredArgs::All),
   1074                copyStructFn, ReturnValueSlot(), args);
   1075 }
   1076 
   1077 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
   1078 /// the value from the first formal parameter into the given ivar, using
   1079 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
   1080 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
   1081                                           ObjCMethodDecl *OMD,
   1082                                           ObjCIvarDecl *ivar,
   1083                                           llvm::Constant *AtomicHelperFn) {
   1084   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
   1085   //                           AtomicHelperFn);
   1086   CallArgList args;
   1087 
   1088   // The first argument is the address of the ivar.
   1089   llvm::Value *ivarAddr =
   1090     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
   1091                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
   1092   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
   1093   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
   1094 
   1095   // The second argument is the address of the parameter variable.
   1096   ParmVarDecl *argVar = *OMD->param_begin();
   1097   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
   1098                      VK_LValue, SourceLocation());
   1099   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
   1100   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
   1101   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
   1102 
   1103   // Third argument is the helper function.
   1104   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
   1105 
   1106   llvm::Value *copyCppAtomicObjectFn =
   1107     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
   1108   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
   1109                                                       args,
   1110                                                       FunctionType::ExtInfo(),
   1111                                                       RequiredArgs::All),
   1112                copyCppAtomicObjectFn, ReturnValueSlot(), args);
   1113 }
   1114 
   1115 
   1116 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
   1117   Expr *setter = PID->getSetterCXXAssignment();
   1118   if (!setter) return true;
   1119 
   1120   // Sema only makes only of these when the ivar has a C++ class type,
   1121   // so the form is pretty constrained.
   1122 
   1123   // An operator call is trivial if the function it calls is trivial.
   1124   // This also implies that there's nothing non-trivial going on with
   1125   // the arguments, because operator= can only be trivial if it's a
   1126   // synthesized assignment operator and therefore both parameters are
   1127   // references.
   1128   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
   1129     if (const FunctionDecl *callee
   1130           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
   1131       if (callee->isTrivial())
   1132         return true;
   1133     return false;
   1134   }
   1135 
   1136   assert(isa<ExprWithCleanups>(setter));
   1137   return false;
   1138 }
   1139 
   1140 static bool UseOptimizedSetter(CodeGenModule &CGM) {
   1141   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
   1142     return false;
   1143   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
   1144 }
   1145 
   1146 void
   1147 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1148                                         const ObjCPropertyImplDecl *propImpl,
   1149                                         llvm::Constant *AtomicHelperFn) {
   1150   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
   1151   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
   1152   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
   1153 
   1154   // Just use the setter expression if Sema gave us one and it's
   1155   // non-trivial.
   1156   if (!hasTrivialSetExpr(propImpl)) {
   1157     if (!AtomicHelperFn)
   1158       // If non-atomic, assignment is called directly.
   1159       EmitStmt(propImpl->getSetterCXXAssignment());
   1160     else
   1161       // If atomic, assignment is called via a locking api.
   1162       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
   1163                                     AtomicHelperFn);
   1164     return;
   1165   }
   1166 
   1167   PropertyImplStrategy strategy(CGM, propImpl);
   1168   switch (strategy.getKind()) {
   1169   case PropertyImplStrategy::Native: {
   1170     // We don't need to do anything for a zero-size struct.
   1171     if (strategy.getIvarSize().isZero())
   1172       return;
   1173 
   1174     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
   1175 
   1176     LValue ivarLValue =
   1177       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
   1178     Address ivarAddr = ivarLValue.getAddress();
   1179 
   1180     // Currently, all atomic accesses have to be through integer
   1181     // types, so there's no point in trying to pick a prettier type.
   1182     llvm::Type *bitcastType =
   1183       llvm::Type::getIntNTy(getLLVMContext(),
   1184                             getContext().toBits(strategy.getIvarSize()));
   1185 
   1186     // Cast both arguments to the chosen operation type.
   1187     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
   1188     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
   1189 
   1190     // This bitcast load is likely to cause some nasty IR.
   1191     llvm::Value *load = Builder.CreateLoad(argAddr);
   1192 
   1193     // Perform an atomic store.  There are no memory ordering requirements.
   1194     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
   1195     store->setAtomic(llvm::Unordered);
   1196     return;
   1197   }
   1198 
   1199   case PropertyImplStrategy::GetSetProperty:
   1200   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
   1201 
   1202     llvm::Value *setOptimizedPropertyFn = nullptr;
   1203     llvm::Value *setPropertyFn = nullptr;
   1204     if (UseOptimizedSetter(CGM)) {
   1205       // 10.8 and iOS 6.0 code and GC is off
   1206       setOptimizedPropertyFn =
   1207         CGM.getObjCRuntime()
   1208            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
   1209                                             strategy.isCopy());
   1210       if (!setOptimizedPropertyFn) {
   1211         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
   1212         return;
   1213       }
   1214     }
   1215     else {
   1216       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
   1217       if (!setPropertyFn) {
   1218         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
   1219         return;
   1220       }
   1221     }
   1222 
   1223     // Emit objc_setProperty((id) self, _cmd, offset, arg,
   1224     //                       <is-atomic>, <is-copy>).
   1225     llvm::Value *cmd =
   1226       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
   1227     llvm::Value *self =
   1228       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
   1229     llvm::Value *ivarOffset =
   1230       EmitIvarOffset(classImpl->getClassInterface(), ivar);
   1231     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
   1232     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
   1233     arg = Builder.CreateBitCast(arg, VoidPtrTy);
   1234 
   1235     CallArgList args;
   1236     args.add(RValue::get(self), getContext().getObjCIdType());
   1237     args.add(RValue::get(cmd), getContext().getObjCSelType());
   1238     if (setOptimizedPropertyFn) {
   1239       args.add(RValue::get(arg), getContext().getObjCIdType());
   1240       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1241       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
   1242                                                   FunctionType::ExtInfo(),
   1243                                                   RequiredArgs::All),
   1244                setOptimizedPropertyFn, ReturnValueSlot(), args);
   1245     } else {
   1246       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1247       args.add(RValue::get(arg), getContext().getObjCIdType());
   1248       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
   1249                getContext().BoolTy);
   1250       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
   1251                getContext().BoolTy);
   1252       // FIXME: We shouldn't need to get the function info here, the runtime
   1253       // already should have computed it to build the function.
   1254       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
   1255                                                   FunctionType::ExtInfo(),
   1256                                                   RequiredArgs::All),
   1257                setPropertyFn, ReturnValueSlot(), args);
   1258     }
   1259 
   1260     return;
   1261   }
   1262 
   1263   case PropertyImplStrategy::CopyStruct:
   1264     emitStructSetterCall(*this, setterMethod, ivar);
   1265     return;
   1266 
   1267   case PropertyImplStrategy::Expression:
   1268     break;
   1269   }
   1270 
   1271   // Otherwise, fake up some ASTs and emit a normal assignment.
   1272   ValueDecl *selfDecl = setterMethod->getSelfDecl();
   1273   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
   1274                    VK_LValue, SourceLocation());
   1275   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
   1276                             selfDecl->getType(), CK_LValueToRValue, &self,
   1277                             VK_RValue);
   1278   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
   1279                           SourceLocation(), SourceLocation(),
   1280                           &selfLoad, true, true);
   1281 
   1282   ParmVarDecl *argDecl = *setterMethod->param_begin();
   1283   QualType argType = argDecl->getType().getNonReferenceType();
   1284   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
   1285   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
   1286                            argType.getUnqualifiedType(), CK_LValueToRValue,
   1287                            &arg, VK_RValue);
   1288 
   1289   // The property type can differ from the ivar type in some situations with
   1290   // Objective-C pointer types, we can always bit cast the RHS in these cases.
   1291   // The following absurdity is just to ensure well-formed IR.
   1292   CastKind argCK = CK_NoOp;
   1293   if (ivarRef.getType()->isObjCObjectPointerType()) {
   1294     if (argLoad.getType()->isObjCObjectPointerType())
   1295       argCK = CK_BitCast;
   1296     else if (argLoad.getType()->isBlockPointerType())
   1297       argCK = CK_BlockPointerToObjCPointerCast;
   1298     else
   1299       argCK = CK_CPointerToObjCPointerCast;
   1300   } else if (ivarRef.getType()->isBlockPointerType()) {
   1301      if (argLoad.getType()->isBlockPointerType())
   1302       argCK = CK_BitCast;
   1303     else
   1304       argCK = CK_AnyPointerToBlockPointerCast;
   1305   } else if (ivarRef.getType()->isPointerType()) {
   1306     argCK = CK_BitCast;
   1307   }
   1308   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
   1309                            ivarRef.getType(), argCK, &argLoad,
   1310                            VK_RValue);
   1311   Expr *finalArg = &argLoad;
   1312   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
   1313                                            argLoad.getType()))
   1314     finalArg = &argCast;
   1315 
   1316 
   1317   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
   1318                         ivarRef.getType(), VK_RValue, OK_Ordinary,
   1319                         SourceLocation(), false);
   1320   EmitStmt(&assign);
   1321 }
   1322 
   1323 /// \brief Generate an Objective-C property setter function.
   1324 ///
   1325 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
   1326 /// is illegal within a category.
   1327 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1328                                          const ObjCPropertyImplDecl *PID) {
   1329   llvm::Constant *AtomicHelperFn =
   1330       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
   1331   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   1332   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
   1333   assert(OMD && "Invalid call to generate setter (empty method)");
   1334   StartObjCMethod(OMD, IMP->getClassInterface());
   1335 
   1336   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
   1337 
   1338   FinishFunction();
   1339 }
   1340 
   1341 namespace {
   1342   struct DestroyIvar final : EHScopeStack::Cleanup {
   1343   private:
   1344     llvm::Value *addr;
   1345     const ObjCIvarDecl *ivar;
   1346     CodeGenFunction::Destroyer *destroyer;
   1347     bool useEHCleanupForArray;
   1348   public:
   1349     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
   1350                 CodeGenFunction::Destroyer *destroyer,
   1351                 bool useEHCleanupForArray)
   1352       : addr(addr), ivar(ivar), destroyer(destroyer),
   1353         useEHCleanupForArray(useEHCleanupForArray) {}
   1354 
   1355     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1356       LValue lvalue
   1357         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
   1358       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
   1359                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1360     }
   1361   };
   1362 }
   1363 
   1364 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
   1365 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
   1366                                       Address addr,
   1367                                       QualType type) {
   1368   llvm::Value *null = getNullForVariable(addr);
   1369   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
   1370 }
   1371 
   1372 static void emitCXXDestructMethod(CodeGenFunction &CGF,
   1373                                   ObjCImplementationDecl *impl) {
   1374   CodeGenFunction::RunCleanupsScope scope(CGF);
   1375 
   1376   llvm::Value *self = CGF.LoadObjCSelf();
   1377 
   1378   const ObjCInterfaceDecl *iface = impl->getClassInterface();
   1379   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
   1380        ivar; ivar = ivar->getNextIvar()) {
   1381     QualType type = ivar->getType();
   1382 
   1383     // Check whether the ivar is a destructible type.
   1384     QualType::DestructionKind dtorKind = type.isDestructedType();
   1385     if (!dtorKind) continue;
   1386 
   1387     CodeGenFunction::Destroyer *destroyer = nullptr;
   1388 
   1389     // Use a call to objc_storeStrong to destroy strong ivars, for the
   1390     // general benefit of the tools.
   1391     if (dtorKind == QualType::DK_objc_strong_lifetime) {
   1392       destroyer = destroyARCStrongWithStore;
   1393 
   1394     // Otherwise use the default for the destruction kind.
   1395     } else {
   1396       destroyer = CGF.getDestroyer(dtorKind);
   1397     }
   1398 
   1399     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
   1400 
   1401     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
   1402                                          cleanupKind & EHCleanup);
   1403   }
   1404 
   1405   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
   1406 }
   1407 
   1408 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1409                                                  ObjCMethodDecl *MD,
   1410                                                  bool ctor) {
   1411   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
   1412   StartObjCMethod(MD, IMP->getClassInterface());
   1413 
   1414   // Emit .cxx_construct.
   1415   if (ctor) {
   1416     // Suppress the final autorelease in ARC.
   1417     AutoreleaseResult = false;
   1418 
   1419     for (const auto *IvarInit : IMP->inits()) {
   1420       FieldDecl *Field = IvarInit->getAnyMember();
   1421       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
   1422       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
   1423                                     LoadObjCSelf(), Ivar, 0);
   1424       EmitAggExpr(IvarInit->getInit(),
   1425                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
   1426                                           AggValueSlot::DoesNotNeedGCBarriers,
   1427                                           AggValueSlot::IsNotAliased));
   1428     }
   1429     // constructor returns 'self'.
   1430     CodeGenTypes &Types = CGM.getTypes();
   1431     QualType IdTy(CGM.getContext().getObjCIdType());
   1432     llvm::Value *SelfAsId =
   1433       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
   1434     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
   1435 
   1436   // Emit .cxx_destruct.
   1437   } else {
   1438     emitCXXDestructMethod(*this, IMP);
   1439   }
   1440   FinishFunction();
   1441 }
   1442 
   1443 llvm::Value *CodeGenFunction::LoadObjCSelf() {
   1444   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
   1445   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
   1446                   Self->getType(), VK_LValue, SourceLocation());
   1447   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
   1448 }
   1449 
   1450 QualType CodeGenFunction::TypeOfSelfObject() {
   1451   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
   1452   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
   1453   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
   1454     getContext().getCanonicalType(selfDecl->getType()));
   1455   return PTy->getPointeeType();
   1456 }
   1457 
   1458 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
   1459   llvm::Constant *EnumerationMutationFn =
   1460     CGM.getObjCRuntime().EnumerationMutationFunction();
   1461 
   1462   if (!EnumerationMutationFn) {
   1463     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
   1464     return;
   1465   }
   1466 
   1467   CGDebugInfo *DI = getDebugInfo();
   1468   if (DI)
   1469     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
   1470 
   1471   // The local variable comes into scope immediately.
   1472   AutoVarEmission variable = AutoVarEmission::invalid();
   1473   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
   1474     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
   1475 
   1476   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
   1477 
   1478   // Fast enumeration state.
   1479   QualType StateTy = CGM.getObjCFastEnumerationStateType();
   1480   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
   1481   EmitNullInitialization(StatePtr, StateTy);
   1482 
   1483   // Number of elements in the items array.
   1484   static const unsigned NumItems = 16;
   1485 
   1486   // Fetch the countByEnumeratingWithState:objects:count: selector.
   1487   IdentifierInfo *II[] = {
   1488     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
   1489     &CGM.getContext().Idents.get("objects"),
   1490     &CGM.getContext().Idents.get("count")
   1491   };
   1492   Selector FastEnumSel =
   1493     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
   1494 
   1495   QualType ItemsTy =
   1496     getContext().getConstantArrayType(getContext().getObjCIdType(),
   1497                                       llvm::APInt(32, NumItems),
   1498                                       ArrayType::Normal, 0);
   1499   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
   1500 
   1501   // Emit the collection pointer.  In ARC, we do a retain.
   1502   llvm::Value *Collection;
   1503   if (getLangOpts().ObjCAutoRefCount) {
   1504     Collection = EmitARCRetainScalarExpr(S.getCollection());
   1505 
   1506     // Enter a cleanup to do the release.
   1507     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
   1508   } else {
   1509     Collection = EmitScalarExpr(S.getCollection());
   1510   }
   1511 
   1512   // The 'continue' label needs to appear within the cleanup for the
   1513   // collection object.
   1514   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
   1515 
   1516   // Send it our message:
   1517   CallArgList Args;
   1518 
   1519   // The first argument is a temporary of the enumeration-state type.
   1520   Args.add(RValue::get(StatePtr.getPointer()),
   1521            getContext().getPointerType(StateTy));
   1522 
   1523   // The second argument is a temporary array with space for NumItems
   1524   // pointers.  We'll actually be loading elements from the array
   1525   // pointer written into the control state; this buffer is so that
   1526   // collections that *aren't* backed by arrays can still queue up
   1527   // batches of elements.
   1528   Args.add(RValue::get(ItemsPtr.getPointer()),
   1529            getContext().getPointerType(ItemsTy));
   1530 
   1531   // The third argument is the capacity of that temporary array.
   1532   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
   1533   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
   1534   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
   1535 
   1536   // Start the enumeration.
   1537   RValue CountRV =
   1538     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1539                                              getContext().UnsignedLongTy,
   1540                                              FastEnumSel,
   1541                                              Collection, Args);
   1542 
   1543   // The initial number of objects that were returned in the buffer.
   1544   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
   1545 
   1546   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
   1547   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
   1548 
   1549   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
   1550 
   1551   // If the limit pointer was zero to begin with, the collection is
   1552   // empty; skip all this. Set the branch weight assuming this has the same
   1553   // probability of exiting the loop as any other loop exit.
   1554   uint64_t EntryCount = getCurrentProfileCount();
   1555   Builder.CreateCondBr(
   1556       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
   1557       LoopInitBB,
   1558       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
   1559 
   1560   // Otherwise, initialize the loop.
   1561   EmitBlock(LoopInitBB);
   1562 
   1563   // Save the initial mutations value.  This is the value at an
   1564   // address that was written into the state object by
   1565   // countByEnumeratingWithState:objects:count:.
   1566   Address StateMutationsPtrPtr = Builder.CreateStructGEP(
   1567       StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
   1568   llvm::Value *StateMutationsPtr
   1569     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
   1570 
   1571   llvm::Value *initialMutations =
   1572     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
   1573                               "forcoll.initial-mutations");
   1574 
   1575   // Start looping.  This is the point we return to whenever we have a
   1576   // fresh, non-empty batch of objects.
   1577   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
   1578   EmitBlock(LoopBodyBB);
   1579 
   1580   // The current index into the buffer.
   1581   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
   1582   index->addIncoming(zero, LoopInitBB);
   1583 
   1584   // The current buffer size.
   1585   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
   1586   count->addIncoming(initialBufferLimit, LoopInitBB);
   1587 
   1588   incrementProfileCounter(&S);
   1589 
   1590   // Check whether the mutations value has changed from where it was
   1591   // at start.  StateMutationsPtr should actually be invariant between
   1592   // refreshes.
   1593   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
   1594   llvm::Value *currentMutations
   1595     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
   1596                                 "statemutations");
   1597 
   1598   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
   1599   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
   1600 
   1601   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
   1602                        WasNotMutatedBB, WasMutatedBB);
   1603 
   1604   // If so, call the enumeration-mutation function.
   1605   EmitBlock(WasMutatedBB);
   1606   llvm::Value *V =
   1607     Builder.CreateBitCast(Collection,
   1608                           ConvertType(getContext().getObjCIdType()));
   1609   CallArgList Args2;
   1610   Args2.add(RValue::get(V), getContext().getObjCIdType());
   1611   // FIXME: We shouldn't need to get the function info here, the runtime already
   1612   // should have computed it to build the function.
   1613   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
   1614                                                   FunctionType::ExtInfo(),
   1615                                                   RequiredArgs::All),
   1616            EnumerationMutationFn, ReturnValueSlot(), Args2);
   1617 
   1618   // Otherwise, or if the mutation function returns, just continue.
   1619   EmitBlock(WasNotMutatedBB);
   1620 
   1621   // Initialize the element variable.
   1622   RunCleanupsScope elementVariableScope(*this);
   1623   bool elementIsVariable;
   1624   LValue elementLValue;
   1625   QualType elementType;
   1626   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
   1627     // Initialize the variable, in case it's a __block variable or something.
   1628     EmitAutoVarInit(variable);
   1629 
   1630     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
   1631     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
   1632                         VK_LValue, SourceLocation());
   1633     elementLValue = EmitLValue(&tempDRE);
   1634     elementType = D->getType();
   1635     elementIsVariable = true;
   1636 
   1637     if (D->isARCPseudoStrong())
   1638       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
   1639   } else {
   1640     elementLValue = LValue(); // suppress warning
   1641     elementType = cast<Expr>(S.getElement())->getType();
   1642     elementIsVariable = false;
   1643   }
   1644   llvm::Type *convertedElementType = ConvertType(elementType);
   1645 
   1646   // Fetch the buffer out of the enumeration state.
   1647   // TODO: this pointer should actually be invariant between
   1648   // refreshes, which would help us do certain loop optimizations.
   1649   Address StateItemsPtr = Builder.CreateStructGEP(
   1650       StatePtr, 1, getPointerSize(), "stateitems.ptr");
   1651   llvm::Value *EnumStateItems =
   1652     Builder.CreateLoad(StateItemsPtr, "stateitems");
   1653 
   1654   // Fetch the value at the current index from the buffer.
   1655   llvm::Value *CurrentItemPtr =
   1656     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
   1657   llvm::Value *CurrentItem =
   1658     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
   1659 
   1660   // Cast that value to the right type.
   1661   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
   1662                                       "currentitem");
   1663 
   1664   // Make sure we have an l-value.  Yes, this gets evaluated every
   1665   // time through the loop.
   1666   if (!elementIsVariable) {
   1667     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1668     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
   1669   } else {
   1670     EmitScalarInit(CurrentItem, elementLValue);
   1671   }
   1672 
   1673   // If we do have an element variable, this assignment is the end of
   1674   // its initialization.
   1675   if (elementIsVariable)
   1676     EmitAutoVarCleanups(variable);
   1677 
   1678   // Perform the loop body, setting up break and continue labels.
   1679   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
   1680   {
   1681     RunCleanupsScope Scope(*this);
   1682     EmitStmt(S.getBody());
   1683   }
   1684   BreakContinueStack.pop_back();
   1685 
   1686   // Destroy the element variable now.
   1687   elementVariableScope.ForceCleanup();
   1688 
   1689   // Check whether there are more elements.
   1690   EmitBlock(AfterBody.getBlock());
   1691 
   1692   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
   1693 
   1694   // First we check in the local buffer.
   1695   llvm::Value *indexPlusOne
   1696     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
   1697 
   1698   // If we haven't overrun the buffer yet, we can continue.
   1699   // Set the branch weights based on the simplifying assumption that this is
   1700   // like a while-loop, i.e., ignoring that the false branch fetches more
   1701   // elements and then returns to the loop.
   1702   Builder.CreateCondBr(
   1703       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
   1704       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
   1705 
   1706   index->addIncoming(indexPlusOne, AfterBody.getBlock());
   1707   count->addIncoming(count, AfterBody.getBlock());
   1708 
   1709   // Otherwise, we have to fetch more elements.
   1710   EmitBlock(FetchMoreBB);
   1711 
   1712   CountRV =
   1713     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1714                                              getContext().UnsignedLongTy,
   1715                                              FastEnumSel,
   1716                                              Collection, Args);
   1717 
   1718   // If we got a zero count, we're done.
   1719   llvm::Value *refetchCount = CountRV.getScalarVal();
   1720 
   1721   // (note that the message send might split FetchMoreBB)
   1722   index->addIncoming(zero, Builder.GetInsertBlock());
   1723   count->addIncoming(refetchCount, Builder.GetInsertBlock());
   1724 
   1725   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
   1726                        EmptyBB, LoopBodyBB);
   1727 
   1728   // No more elements.
   1729   EmitBlock(EmptyBB);
   1730 
   1731   if (!elementIsVariable) {
   1732     // If the element was not a declaration, set it to be null.
   1733 
   1734     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
   1735     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1736     EmitStoreThroughLValue(RValue::get(null), elementLValue);
   1737   }
   1738 
   1739   if (DI)
   1740     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
   1741 
   1742   // Leave the cleanup we entered in ARC.
   1743   if (getLangOpts().ObjCAutoRefCount)
   1744     PopCleanupBlock();
   1745 
   1746   EmitBlock(LoopEnd.getBlock());
   1747 }
   1748 
   1749 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
   1750   CGM.getObjCRuntime().EmitTryStmt(*this, S);
   1751 }
   1752 
   1753 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
   1754   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
   1755 }
   1756 
   1757 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
   1758                                               const ObjCAtSynchronizedStmt &S) {
   1759   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
   1760 }
   1761 
   1762 namespace {
   1763   struct CallObjCRelease final : EHScopeStack::Cleanup {
   1764     CallObjCRelease(llvm::Value *object) : object(object) {}
   1765     llvm::Value *object;
   1766 
   1767     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1768       // Releases at the end of the full-expression are imprecise.
   1769       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
   1770     }
   1771   };
   1772 }
   1773 
   1774 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
   1775 /// release at the end of the full-expression.
   1776 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
   1777                                                     llvm::Value *object) {
   1778   // If we're in a conditional branch, we need to make the cleanup
   1779   // conditional.
   1780   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
   1781   return object;
   1782 }
   1783 
   1784 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
   1785                                                            llvm::Value *value) {
   1786   return EmitARCRetainAutorelease(type, value);
   1787 }
   1788 
   1789 /// Given a number of pointers, inform the optimizer that they're
   1790 /// being intrinsically used up until this point in the program.
   1791 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
   1792   llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use;
   1793   if (!fn) {
   1794     llvm::FunctionType *fnType =
   1795       llvm::FunctionType::get(CGM.VoidTy, None, true);
   1796     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
   1797   }
   1798 
   1799   // This isn't really a "runtime" function, but as an intrinsic it
   1800   // doesn't really matter as long as we align things up.
   1801   EmitNounwindRuntimeCall(fn, values);
   1802 }
   1803 
   1804 
   1805 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
   1806                                                 llvm::FunctionType *type,
   1807                                                 StringRef fnName) {
   1808   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
   1809 
   1810   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
   1811     // If the target runtime doesn't naturally support ARC, emit weak
   1812     // references to the runtime support library.  We don't really
   1813     // permit this to fail, but we need a particular relocation style.
   1814     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
   1815       f->setLinkage(llvm::Function::ExternalWeakLinkage);
   1816     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
   1817       // If we have Native ARC, set nonlazybind attribute for these APIs for
   1818       // performance.
   1819       f->addFnAttr(llvm::Attribute::NonLazyBind);
   1820     }
   1821   }
   1822 
   1823   return fn;
   1824 }
   1825 
   1826 /// Perform an operation having the signature
   1827 ///   i8* (i8*)
   1828 /// where a null input causes a no-op and returns null.
   1829 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
   1830                                           llvm::Value *value,
   1831                                           llvm::Constant *&fn,
   1832                                           StringRef fnName,
   1833                                           bool isTailCall = false) {
   1834   if (isa<llvm::ConstantPointerNull>(value)) return value;
   1835 
   1836   if (!fn) {
   1837     llvm::FunctionType *fnType =
   1838       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
   1839     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1840   }
   1841 
   1842   // Cast the argument to 'id'.
   1843   llvm::Type *origType = value->getType();
   1844   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
   1845 
   1846   // Call the function.
   1847   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
   1848   if (isTailCall)
   1849     call->setTailCall();
   1850 
   1851   // Cast the result back to the original type.
   1852   return CGF.Builder.CreateBitCast(call, origType);
   1853 }
   1854 
   1855 /// Perform an operation having the following signature:
   1856 ///   i8* (i8**)
   1857 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
   1858                                          Address addr,
   1859                                          llvm::Constant *&fn,
   1860                                          StringRef fnName) {
   1861   if (!fn) {
   1862     llvm::FunctionType *fnType =
   1863       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
   1864     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1865   }
   1866 
   1867   // Cast the argument to 'id*'.
   1868   llvm::Type *origType = addr.getElementType();
   1869   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
   1870 
   1871   // Call the function.
   1872   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
   1873 
   1874   // Cast the result back to a dereference of the original type.
   1875   if (origType != CGF.Int8PtrTy)
   1876     result = CGF.Builder.CreateBitCast(result, origType);
   1877 
   1878   return result;
   1879 }
   1880 
   1881 /// Perform an operation having the following signature:
   1882 ///   i8* (i8**, i8*)
   1883 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
   1884                                           Address addr,
   1885                                           llvm::Value *value,
   1886                                           llvm::Constant *&fn,
   1887                                           StringRef fnName,
   1888                                           bool ignored) {
   1889   assert(addr.getElementType() == value->getType());
   1890 
   1891   if (!fn) {
   1892     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
   1893 
   1894     llvm::FunctionType *fnType
   1895       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
   1896     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1897   }
   1898 
   1899   llvm::Type *origType = value->getType();
   1900 
   1901   llvm::Value *args[] = {
   1902     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
   1903     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
   1904   };
   1905   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
   1906 
   1907   if (ignored) return nullptr;
   1908 
   1909   return CGF.Builder.CreateBitCast(result, origType);
   1910 }
   1911 
   1912 /// Perform an operation having the following signature:
   1913 ///   void (i8**, i8**)
   1914 static void emitARCCopyOperation(CodeGenFunction &CGF,
   1915                                  Address dst,
   1916                                  Address src,
   1917                                  llvm::Constant *&fn,
   1918                                  StringRef fnName) {
   1919   assert(dst.getType() == src.getType());
   1920 
   1921   if (!fn) {
   1922     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
   1923 
   1924     llvm::FunctionType *fnType
   1925       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
   1926     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1927   }
   1928 
   1929   llvm::Value *args[] = {
   1930     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
   1931     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
   1932   };
   1933   CGF.EmitNounwindRuntimeCall(fn, args);
   1934 }
   1935 
   1936 /// Produce the code to do a retain.  Based on the type, calls one of:
   1937 ///   call i8* \@objc_retain(i8* %value)
   1938 ///   call i8* \@objc_retainBlock(i8* %value)
   1939 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
   1940   if (type->isBlockPointerType())
   1941     return EmitARCRetainBlock(value, /*mandatory*/ false);
   1942   else
   1943     return EmitARCRetainNonBlock(value);
   1944 }
   1945 
   1946 /// Retain the given object, with normal retain semantics.
   1947 ///   call i8* \@objc_retain(i8* %value)
   1948 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
   1949   return emitARCValueOperation(*this, value,
   1950                                CGM.getObjCEntrypoints().objc_retain,
   1951                                "objc_retain");
   1952 }
   1953 
   1954 /// Retain the given block, with _Block_copy semantics.
   1955 ///   call i8* \@objc_retainBlock(i8* %value)
   1956 ///
   1957 /// \param mandatory - If false, emit the call with metadata
   1958 /// indicating that it's okay for the optimizer to eliminate this call
   1959 /// if it can prove that the block never escapes except down the stack.
   1960 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
   1961                                                  bool mandatory) {
   1962   llvm::Value *result
   1963     = emitARCValueOperation(*this, value,
   1964                             CGM.getObjCEntrypoints().objc_retainBlock,
   1965                             "objc_retainBlock");
   1966 
   1967   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
   1968   // tell the optimizer that it doesn't need to do this copy if the
   1969   // block doesn't escape, where being passed as an argument doesn't
   1970   // count as escaping.
   1971   if (!mandatory && isa<llvm::Instruction>(result)) {
   1972     llvm::CallInst *call
   1973       = cast<llvm::CallInst>(result->stripPointerCasts());
   1974     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
   1975 
   1976     call->setMetadata("clang.arc.copy_on_escape",
   1977                       llvm::MDNode::get(Builder.getContext(), None));
   1978   }
   1979 
   1980   return result;
   1981 }
   1982 
   1983 /// Retain the given object which is the result of a function call.
   1984 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
   1985 ///
   1986 /// Yes, this function name is one character away from a different
   1987 /// call with completely different semantics.
   1988 llvm::Value *
   1989 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
   1990   // Fetch the void(void) inline asm which marks that we're going to
   1991   // retain the autoreleased return value.
   1992   llvm::InlineAsm *&marker
   1993     = CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
   1994   if (!marker) {
   1995     StringRef assembly
   1996       = CGM.getTargetCodeGenInfo()
   1997            .getARCRetainAutoreleasedReturnValueMarker();
   1998 
   1999     // If we have an empty assembly string, there's nothing to do.
   2000     if (assembly.empty()) {
   2001 
   2002     // Otherwise, at -O0, build an inline asm that we're going to call
   2003     // in a moment.
   2004     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   2005       llvm::FunctionType *type =
   2006         llvm::FunctionType::get(VoidTy, /*variadic*/false);
   2007 
   2008       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
   2009 
   2010     // If we're at -O1 and above, we don't want to litter the code
   2011     // with this marker yet, so leave a breadcrumb for the ARC
   2012     // optimizer to pick up.
   2013     } else {
   2014       llvm::NamedMDNode *metadata =
   2015         CGM.getModule().getOrInsertNamedMetadata(
   2016                             "clang.arc.retainAutoreleasedReturnValueMarker");
   2017       assert(metadata->getNumOperands() <= 1);
   2018       if (metadata->getNumOperands() == 0) {
   2019         metadata->addOperand(llvm::MDNode::get(
   2020             getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly)));
   2021       }
   2022     }
   2023   }
   2024 
   2025   // Call the marker asm if we made one, which we do only at -O0.
   2026   if (marker)
   2027     Builder.CreateCall(marker);
   2028 
   2029   return emitARCValueOperation(*this, value,
   2030                      CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
   2031                                "objc_retainAutoreleasedReturnValue");
   2032 }
   2033 
   2034 /// Release the given object.
   2035 ///   call void \@objc_release(i8* %value)
   2036 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
   2037                                      ARCPreciseLifetime_t precise) {
   2038   if (isa<llvm::ConstantPointerNull>(value)) return;
   2039 
   2040   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release;
   2041   if (!fn) {
   2042     llvm::FunctionType *fnType =
   2043       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
   2044     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
   2045   }
   2046 
   2047   // Cast the argument to 'id'.
   2048   value = Builder.CreateBitCast(value, Int8PtrTy);
   2049 
   2050   // Call objc_release.
   2051   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
   2052 
   2053   if (precise == ARCImpreciseLifetime) {
   2054     call->setMetadata("clang.imprecise_release",
   2055                       llvm::MDNode::get(Builder.getContext(), None));
   2056   }
   2057 }
   2058 
   2059 /// Destroy a __strong variable.
   2060 ///
   2061 /// At -O0, emit a call to store 'null' into the address;
   2062 /// instrumenting tools prefer this because the address is exposed,
   2063 /// but it's relatively cumbersome to optimize.
   2064 ///
   2065 /// At -O1 and above, just load and call objc_release.
   2066 ///
   2067 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
   2068 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
   2069                                            ARCPreciseLifetime_t precise) {
   2070   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   2071     llvm::Value *null = getNullForVariable(addr);
   2072     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
   2073     return;
   2074   }
   2075 
   2076   llvm::Value *value = Builder.CreateLoad(addr);
   2077   EmitARCRelease(value, precise);
   2078 }
   2079 
   2080 /// Store into a strong object.  Always calls this:
   2081 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
   2082 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
   2083                                                      llvm::Value *value,
   2084                                                      bool ignored) {
   2085   assert(addr.getElementType() == value->getType());
   2086 
   2087   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
   2088   if (!fn) {
   2089     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
   2090     llvm::FunctionType *fnType
   2091       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
   2092     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
   2093   }
   2094 
   2095   llvm::Value *args[] = {
   2096     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
   2097     Builder.CreateBitCast(value, Int8PtrTy)
   2098   };
   2099   EmitNounwindRuntimeCall(fn, args);
   2100 
   2101   if (ignored) return nullptr;
   2102   return value;
   2103 }
   2104 
   2105 /// Store into a strong object.  Sometimes calls this:
   2106 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
   2107 /// Other times, breaks it down into components.
   2108 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
   2109                                                  llvm::Value *newValue,
   2110                                                  bool ignored) {
   2111   QualType type = dst.getType();
   2112   bool isBlock = type->isBlockPointerType();
   2113 
   2114   // Use a store barrier at -O0 unless this is a block type or the
   2115   // lvalue is inadequately aligned.
   2116   if (shouldUseFusedARCCalls() &&
   2117       !isBlock &&
   2118       (dst.getAlignment().isZero() ||
   2119        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
   2120     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
   2121   }
   2122 
   2123   // Otherwise, split it out.
   2124 
   2125   // Retain the new value.
   2126   newValue = EmitARCRetain(type, newValue);
   2127 
   2128   // Read the old value.
   2129   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
   2130 
   2131   // Store.  We do this before the release so that any deallocs won't
   2132   // see the old value.
   2133   EmitStoreOfScalar(newValue, dst);
   2134 
   2135   // Finally, release the old value.
   2136   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
   2137 
   2138   return newValue;
   2139 }
   2140 
   2141 /// Autorelease the given object.
   2142 ///   call i8* \@objc_autorelease(i8* %value)
   2143 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
   2144   return emitARCValueOperation(*this, value,
   2145                                CGM.getObjCEntrypoints().objc_autorelease,
   2146                                "objc_autorelease");
   2147 }
   2148 
   2149 /// Autorelease the given object.
   2150 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
   2151 llvm::Value *
   2152 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
   2153   return emitARCValueOperation(*this, value,
   2154                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
   2155                                "objc_autoreleaseReturnValue",
   2156                                /*isTailCall*/ true);
   2157 }
   2158 
   2159 /// Do a fused retain/autorelease of the given object.
   2160 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
   2161 llvm::Value *
   2162 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
   2163   return emitARCValueOperation(*this, value,
   2164                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
   2165                                "objc_retainAutoreleaseReturnValue",
   2166                                /*isTailCall*/ true);
   2167 }
   2168 
   2169 /// Do a fused retain/autorelease of the given object.
   2170 ///   call i8* \@objc_retainAutorelease(i8* %value)
   2171 /// or
   2172 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
   2173 ///   call i8* \@objc_autorelease(i8* %retain)
   2174 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
   2175                                                        llvm::Value *value) {
   2176   if (!type->isBlockPointerType())
   2177     return EmitARCRetainAutoreleaseNonBlock(value);
   2178 
   2179   if (isa<llvm::ConstantPointerNull>(value)) return value;
   2180 
   2181   llvm::Type *origType = value->getType();
   2182   value = Builder.CreateBitCast(value, Int8PtrTy);
   2183   value = EmitARCRetainBlock(value, /*mandatory*/ true);
   2184   value = EmitARCAutorelease(value);
   2185   return Builder.CreateBitCast(value, origType);
   2186 }
   2187 
   2188 /// Do a fused retain/autorelease of the given object.
   2189 ///   call i8* \@objc_retainAutorelease(i8* %value)
   2190 llvm::Value *
   2191 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
   2192   return emitARCValueOperation(*this, value,
   2193                                CGM.getObjCEntrypoints().objc_retainAutorelease,
   2194                                "objc_retainAutorelease");
   2195 }
   2196 
   2197 /// i8* \@objc_loadWeak(i8** %addr)
   2198 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
   2199 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
   2200   return emitARCLoadOperation(*this, addr,
   2201                               CGM.getObjCEntrypoints().objc_loadWeak,
   2202                               "objc_loadWeak");
   2203 }
   2204 
   2205 /// i8* \@objc_loadWeakRetained(i8** %addr)
   2206 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
   2207   return emitARCLoadOperation(*this, addr,
   2208                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
   2209                               "objc_loadWeakRetained");
   2210 }
   2211 
   2212 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
   2213 /// Returns %value.
   2214 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
   2215                                                llvm::Value *value,
   2216                                                bool ignored) {
   2217   return emitARCStoreOperation(*this, addr, value,
   2218                                CGM.getObjCEntrypoints().objc_storeWeak,
   2219                                "objc_storeWeak", ignored);
   2220 }
   2221 
   2222 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
   2223 /// Returns %value.  %addr is known to not have a current weak entry.
   2224 /// Essentially equivalent to:
   2225 ///   *addr = nil; objc_storeWeak(addr, value);
   2226 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
   2227   // If we're initializing to null, just write null to memory; no need
   2228   // to get the runtime involved.  But don't do this if optimization
   2229   // is enabled, because accounting for this would make the optimizer
   2230   // much more complicated.
   2231   if (isa<llvm::ConstantPointerNull>(value) &&
   2232       CGM.getCodeGenOpts().OptimizationLevel == 0) {
   2233     Builder.CreateStore(value, addr);
   2234     return;
   2235   }
   2236 
   2237   emitARCStoreOperation(*this, addr, value,
   2238                         CGM.getObjCEntrypoints().objc_initWeak,
   2239                         "objc_initWeak", /*ignored*/ true);
   2240 }
   2241 
   2242 /// void \@objc_destroyWeak(i8** %addr)
   2243 /// Essentially objc_storeWeak(addr, nil).
   2244 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
   2245   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
   2246   if (!fn) {
   2247     llvm::FunctionType *fnType =
   2248       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
   2249     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
   2250   }
   2251 
   2252   // Cast the argument to 'id*'.
   2253   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
   2254 
   2255   EmitNounwindRuntimeCall(fn, addr.getPointer());
   2256 }
   2257 
   2258 /// void \@objc_moveWeak(i8** %dest, i8** %src)
   2259 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
   2260 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
   2261 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
   2262   emitARCCopyOperation(*this, dst, src,
   2263                        CGM.getObjCEntrypoints().objc_moveWeak,
   2264                        "objc_moveWeak");
   2265 }
   2266 
   2267 /// void \@objc_copyWeak(i8** %dest, i8** %src)
   2268 /// Disregards the current value in %dest.  Essentially
   2269 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
   2270 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
   2271   emitARCCopyOperation(*this, dst, src,
   2272                        CGM.getObjCEntrypoints().objc_copyWeak,
   2273                        "objc_copyWeak");
   2274 }
   2275 
   2276 /// Produce the code to do a objc_autoreleasepool_push.
   2277 ///   call i8* \@objc_autoreleasePoolPush(void)
   2278 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
   2279   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
   2280   if (!fn) {
   2281     llvm::FunctionType *fnType =
   2282       llvm::FunctionType::get(Int8PtrTy, false);
   2283     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
   2284   }
   2285 
   2286   return EmitNounwindRuntimeCall(fn);
   2287 }
   2288 
   2289 /// Produce the code to do a primitive release.
   2290 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
   2291 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
   2292   assert(value->getType() == Int8PtrTy);
   2293 
   2294   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
   2295   if (!fn) {
   2296     llvm::FunctionType *fnType =
   2297       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
   2298 
   2299     // We don't want to use a weak import here; instead we should not
   2300     // fall into this path.
   2301     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
   2302   }
   2303 
   2304   // objc_autoreleasePoolPop can throw.
   2305   EmitRuntimeCallOrInvoke(fn, value);
   2306 }
   2307 
   2308 /// Produce the code to do an MRR version objc_autoreleasepool_push.
   2309 /// Which is: [[NSAutoreleasePool alloc] init];
   2310 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
   2311 /// init is declared as: - (id) init; in its NSObject super class.
   2312 ///
   2313 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
   2314   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   2315   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
   2316   // [NSAutoreleasePool alloc]
   2317   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
   2318   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
   2319   CallArgList Args;
   2320   RValue AllocRV =
   2321     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2322                                 getContext().getObjCIdType(),
   2323                                 AllocSel, Receiver, Args);
   2324 
   2325   // [Receiver init]
   2326   Receiver = AllocRV.getScalarVal();
   2327   II = &CGM.getContext().Idents.get("init");
   2328   Selector InitSel = getContext().Selectors.getSelector(0, &II);
   2329   RValue InitRV =
   2330     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2331                                 getContext().getObjCIdType(),
   2332                                 InitSel, Receiver, Args);
   2333   return InitRV.getScalarVal();
   2334 }
   2335 
   2336 /// Produce the code to do a primitive release.
   2337 /// [tmp drain];
   2338 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
   2339   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
   2340   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
   2341   CallArgList Args;
   2342   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   2343                               getContext().VoidTy, DrainSel, Arg, Args);
   2344 }
   2345 
   2346 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
   2347                                               Address addr,
   2348                                               QualType type) {
   2349   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
   2350 }
   2351 
   2352 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
   2353                                                 Address addr,
   2354                                                 QualType type) {
   2355   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
   2356 }
   2357 
   2358 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
   2359                                      Address addr,
   2360                                      QualType type) {
   2361   CGF.EmitARCDestroyWeak(addr);
   2362 }
   2363 
   2364 namespace {
   2365   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
   2366     llvm::Value *Token;
   2367 
   2368     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2369 
   2370     void Emit(CodeGenFunction &CGF, Flags flags) override {
   2371       CGF.EmitObjCAutoreleasePoolPop(Token);
   2372     }
   2373   };
   2374   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
   2375     llvm::Value *Token;
   2376 
   2377     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2378 
   2379     void Emit(CodeGenFunction &CGF, Flags flags) override {
   2380       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
   2381     }
   2382   };
   2383 }
   2384 
   2385 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
   2386   if (CGM.getLangOpts().ObjCAutoRefCount)
   2387     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
   2388   else
   2389     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
   2390 }
   2391 
   2392 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2393                                                   LValue lvalue,
   2394                                                   QualType type) {
   2395   switch (type.getObjCLifetime()) {
   2396   case Qualifiers::OCL_None:
   2397   case Qualifiers::OCL_ExplicitNone:
   2398   case Qualifiers::OCL_Strong:
   2399   case Qualifiers::OCL_Autoreleasing:
   2400     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
   2401                                               SourceLocation()).getScalarVal(),
   2402                          false);
   2403 
   2404   case Qualifiers::OCL_Weak:
   2405     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
   2406                          true);
   2407   }
   2408 
   2409   llvm_unreachable("impossible lifetime!");
   2410 }
   2411 
   2412 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2413                                                   const Expr *e) {
   2414   e = e->IgnoreParens();
   2415   QualType type = e->getType();
   2416 
   2417   // If we're loading retained from a __strong xvalue, we can avoid
   2418   // an extra retain/release pair by zeroing out the source of this
   2419   // "move" operation.
   2420   if (e->isXValue() &&
   2421       !type.isConstQualified() &&
   2422       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
   2423     // Emit the lvalue.
   2424     LValue lv = CGF.EmitLValue(e);
   2425 
   2426     // Load the object pointer.
   2427     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
   2428                                                SourceLocation()).getScalarVal();
   2429 
   2430     // Set the source pointer to NULL.
   2431     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
   2432 
   2433     return TryEmitResult(result, true);
   2434   }
   2435 
   2436   // As a very special optimization, in ARC++, if the l-value is the
   2437   // result of a non-volatile assignment, do a simple retain of the
   2438   // result of the call to objc_storeWeak instead of reloading.
   2439   if (CGF.getLangOpts().CPlusPlus &&
   2440       !type.isVolatileQualified() &&
   2441       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
   2442       isa<BinaryOperator>(e) &&
   2443       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
   2444     return TryEmitResult(CGF.EmitScalarExpr(e), false);
   2445 
   2446   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
   2447 }
   2448 
   2449 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2450                                            llvm::Value *value);
   2451 
   2452 /// Given that the given expression is some sort of call (which does
   2453 /// not return retained), emit a retain following it.
   2454 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
   2455   llvm::Value *value = CGF.EmitScalarExpr(e);
   2456   return emitARCRetainAfterCall(CGF, value);
   2457 }
   2458 
   2459 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2460                                            llvm::Value *value) {
   2461   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
   2462     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2463 
   2464     // Place the retain immediately following the call.
   2465     CGF.Builder.SetInsertPoint(call->getParent(),
   2466                                ++llvm::BasicBlock::iterator(call));
   2467     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2468 
   2469     CGF.Builder.restoreIP(ip);
   2470     return value;
   2471   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
   2472     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2473 
   2474     // Place the retain at the beginning of the normal destination block.
   2475     llvm::BasicBlock *BB = invoke->getNormalDest();
   2476     CGF.Builder.SetInsertPoint(BB, BB->begin());
   2477     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2478 
   2479     CGF.Builder.restoreIP(ip);
   2480     return value;
   2481 
   2482   // Bitcasts can arise because of related-result returns.  Rewrite
   2483   // the operand.
   2484   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
   2485     llvm::Value *operand = bitcast->getOperand(0);
   2486     operand = emitARCRetainAfterCall(CGF, operand);
   2487     bitcast->setOperand(0, operand);
   2488     return bitcast;
   2489 
   2490   // Generic fall-back case.
   2491   } else {
   2492     // Retain using the non-block variant: we never need to do a copy
   2493     // of a block that's been returned to us.
   2494     return CGF.EmitARCRetainNonBlock(value);
   2495   }
   2496 }
   2497 
   2498 /// Determine whether it might be important to emit a separate
   2499 /// objc_retain_block on the result of the given expression, or
   2500 /// whether it's okay to just emit it in a +1 context.
   2501 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
   2502   assert(e->getType()->isBlockPointerType());
   2503   e = e->IgnoreParens();
   2504 
   2505   // For future goodness, emit block expressions directly in +1
   2506   // contexts if we can.
   2507   if (isa<BlockExpr>(e))
   2508     return false;
   2509 
   2510   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
   2511     switch (cast->getCastKind()) {
   2512     // Emitting these operations in +1 contexts is goodness.
   2513     case CK_LValueToRValue:
   2514     case CK_ARCReclaimReturnedObject:
   2515     case CK_ARCConsumeObject:
   2516     case CK_ARCProduceObject:
   2517       return false;
   2518 
   2519     // These operations preserve a block type.
   2520     case CK_NoOp:
   2521     case CK_BitCast:
   2522       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
   2523 
   2524     // These operations are known to be bad (or haven't been considered).
   2525     case CK_AnyPointerToBlockPointerCast:
   2526     default:
   2527       return true;
   2528     }
   2529   }
   2530 
   2531   return true;
   2532 }
   2533 
   2534 /// Try to emit a PseudoObjectExpr at +1.
   2535 ///
   2536 /// This massively duplicates emitPseudoObjectRValue.
   2537 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
   2538                                                   const PseudoObjectExpr *E) {
   2539   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   2540 
   2541   // Find the result expression.
   2542   const Expr *resultExpr = E->getResultExpr();
   2543   assert(resultExpr);
   2544   TryEmitResult result;
   2545 
   2546   for (PseudoObjectExpr::const_semantics_iterator
   2547          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   2548     const Expr *semantic = *i;
   2549 
   2550     // If this semantic expression is an opaque value, bind it
   2551     // to the result of its source expression.
   2552     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   2553       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   2554       OVMA opaqueData;
   2555 
   2556       // If this semantic is the result of the pseudo-object
   2557       // expression, try to evaluate the source as +1.
   2558       if (ov == resultExpr) {
   2559         assert(!OVMA::shouldBindAsLValue(ov));
   2560         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
   2561         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
   2562 
   2563       // Otherwise, just bind it.
   2564       } else {
   2565         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   2566       }
   2567       opaques.push_back(opaqueData);
   2568 
   2569     // Otherwise, if the expression is the result, evaluate it
   2570     // and remember the result.
   2571     } else if (semantic == resultExpr) {
   2572       result = tryEmitARCRetainScalarExpr(CGF, semantic);
   2573 
   2574     // Otherwise, evaluate the expression in an ignored context.
   2575     } else {
   2576       CGF.EmitIgnoredExpr(semantic);
   2577     }
   2578   }
   2579 
   2580   // Unbind all the opaques now.
   2581   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   2582     opaques[i].unbind(CGF);
   2583 
   2584   return result;
   2585 }
   2586 
   2587 static TryEmitResult
   2588 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
   2589   // We should *never* see a nested full-expression here, because if
   2590   // we fail to emit at +1, our caller must not retain after we close
   2591   // out the full-expression.
   2592   assert(!isa<ExprWithCleanups>(e));
   2593 
   2594   // The desired result type, if it differs from the type of the
   2595   // ultimate opaque expression.
   2596   llvm::Type *resultType = nullptr;
   2597 
   2598   while (true) {
   2599     e = e->IgnoreParens();
   2600 
   2601     // There's a break at the end of this if-chain;  anything
   2602     // that wants to keep looping has to explicitly continue.
   2603     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
   2604       switch (ce->getCastKind()) {
   2605       // No-op casts don't change the type, so we just ignore them.
   2606       case CK_NoOp:
   2607         e = ce->getSubExpr();
   2608         continue;
   2609 
   2610       case CK_LValueToRValue: {
   2611         TryEmitResult loadResult
   2612           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
   2613         if (resultType) {
   2614           llvm::Value *value = loadResult.getPointer();
   2615           value = CGF.Builder.CreateBitCast(value, resultType);
   2616           loadResult.setPointer(value);
   2617         }
   2618         return loadResult;
   2619       }
   2620 
   2621       // These casts can change the type, so remember that and
   2622       // soldier on.  We only need to remember the outermost such
   2623       // cast, though.
   2624       case CK_CPointerToObjCPointerCast:
   2625       case CK_BlockPointerToObjCPointerCast:
   2626       case CK_AnyPointerToBlockPointerCast:
   2627       case CK_BitCast:
   2628         if (!resultType)
   2629           resultType = CGF.ConvertType(ce->getType());
   2630         e = ce->getSubExpr();
   2631         assert(e->getType()->hasPointerRepresentation());
   2632         continue;
   2633 
   2634       // For consumptions, just emit the subexpression and thus elide
   2635       // the retain/release pair.
   2636       case CK_ARCConsumeObject: {
   2637         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
   2638         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2639         return TryEmitResult(result, true);
   2640       }
   2641 
   2642       // Block extends are net +0.  Naively, we could just recurse on
   2643       // the subexpression, but actually we need to ensure that the
   2644       // value is copied as a block, so there's a little filter here.
   2645       case CK_ARCExtendBlockObject: {
   2646         llvm::Value *result; // will be a +0 value
   2647 
   2648         // If we can't safely assume the sub-expression will produce a
   2649         // block-copied value, emit the sub-expression at +0.
   2650         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
   2651           result = CGF.EmitScalarExpr(ce->getSubExpr());
   2652 
   2653         // Otherwise, try to emit the sub-expression at +1 recursively.
   2654         } else {
   2655           TryEmitResult subresult
   2656             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
   2657           result = subresult.getPointer();
   2658 
   2659           // If that produced a retained value, just use that,
   2660           // possibly casting down.
   2661           if (subresult.getInt()) {
   2662             if (resultType)
   2663               result = CGF.Builder.CreateBitCast(result, resultType);
   2664             return TryEmitResult(result, true);
   2665           }
   2666 
   2667           // Otherwise it's +0.
   2668         }
   2669 
   2670         // Retain the object as a block, then cast down.
   2671         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
   2672         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2673         return TryEmitResult(result, true);
   2674       }
   2675 
   2676       // For reclaims, emit the subexpression as a retained call and
   2677       // skip the consumption.
   2678       case CK_ARCReclaimReturnedObject: {
   2679         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
   2680         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2681         return TryEmitResult(result, true);
   2682       }
   2683 
   2684       default:
   2685         break;
   2686       }
   2687 
   2688     // Skip __extension__.
   2689     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
   2690       if (op->getOpcode() == UO_Extension) {
   2691         e = op->getSubExpr();
   2692         continue;
   2693       }
   2694 
   2695     // For calls and message sends, use the retained-call logic.
   2696     // Delegate inits are a special case in that they're the only
   2697     // returns-retained expression that *isn't* surrounded by
   2698     // a consume.
   2699     } else if (isa<CallExpr>(e) ||
   2700                (isa<ObjCMessageExpr>(e) &&
   2701                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
   2702       llvm::Value *result = emitARCRetainCall(CGF, e);
   2703       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2704       return TryEmitResult(result, true);
   2705 
   2706     // Look through pseudo-object expressions.
   2707     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
   2708       TryEmitResult result
   2709         = tryEmitARCRetainPseudoObject(CGF, pseudo);
   2710       if (resultType) {
   2711         llvm::Value *value = result.getPointer();
   2712         value = CGF.Builder.CreateBitCast(value, resultType);
   2713         result.setPointer(value);
   2714       }
   2715       return result;
   2716     }
   2717 
   2718     // Conservatively halt the search at any other expression kind.
   2719     break;
   2720   }
   2721 
   2722   // We didn't find an obvious production, so emit what we've got and
   2723   // tell the caller that we didn't manage to retain.
   2724   llvm::Value *result = CGF.EmitScalarExpr(e);
   2725   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2726   return TryEmitResult(result, false);
   2727 }
   2728 
   2729 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2730                                                 LValue lvalue,
   2731                                                 QualType type) {
   2732   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
   2733   llvm::Value *value = result.getPointer();
   2734   if (!result.getInt())
   2735     value = CGF.EmitARCRetain(type, value);
   2736   return value;
   2737 }
   2738 
   2739 /// EmitARCRetainScalarExpr - Semantically equivalent to
   2740 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
   2741 /// best-effort attempt to peephole expressions that naturally produce
   2742 /// retained objects.
   2743 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
   2744   // The retain needs to happen within the full-expression.
   2745   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
   2746     enterFullExpression(cleanups);
   2747     RunCleanupsScope scope(*this);
   2748     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
   2749   }
   2750 
   2751   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2752   llvm::Value *value = result.getPointer();
   2753   if (!result.getInt())
   2754     value = EmitARCRetain(e->getType(), value);
   2755   return value;
   2756 }
   2757 
   2758 llvm::Value *
   2759 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
   2760   // The retain needs to happen within the full-expression.
   2761   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
   2762     enterFullExpression(cleanups);
   2763     RunCleanupsScope scope(*this);
   2764     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
   2765   }
   2766 
   2767   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2768   llvm::Value *value = result.getPointer();
   2769   if (result.getInt())
   2770     value = EmitARCAutorelease(value);
   2771   else
   2772     value = EmitARCRetainAutorelease(e->getType(), value);
   2773   return value;
   2774 }
   2775 
   2776 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
   2777   llvm::Value *result;
   2778   bool doRetain;
   2779 
   2780   if (shouldEmitSeparateBlockRetain(e)) {
   2781     result = EmitScalarExpr(e);
   2782     doRetain = true;
   2783   } else {
   2784     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
   2785     result = subresult.getPointer();
   2786     doRetain = !subresult.getInt();
   2787   }
   2788 
   2789   if (doRetain)
   2790     result = EmitARCRetainBlock(result, /*mandatory*/ true);
   2791   return EmitObjCConsumeObject(e->getType(), result);
   2792 }
   2793 
   2794 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
   2795   // In ARC, retain and autorelease the expression.
   2796   if (getLangOpts().ObjCAutoRefCount) {
   2797     // Do so before running any cleanups for the full-expression.
   2798     // EmitARCRetainAutoreleaseScalarExpr does this for us.
   2799     return EmitARCRetainAutoreleaseScalarExpr(expr);
   2800   }
   2801 
   2802   // Otherwise, use the normal scalar-expression emission.  The
   2803   // exception machinery doesn't do anything special with the
   2804   // exception like retaining it, so there's no safety associated with
   2805   // only running cleanups after the throw has started, and when it
   2806   // matters it tends to be substantially inferior code.
   2807   return EmitScalarExpr(expr);
   2808 }
   2809 
   2810 std::pair<LValue,llvm::Value*>
   2811 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
   2812                                     bool ignored) {
   2813   // Evaluate the RHS first.
   2814   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
   2815   llvm::Value *value = result.getPointer();
   2816 
   2817   bool hasImmediateRetain = result.getInt();
   2818 
   2819   // If we didn't emit a retained object, and the l-value is of block
   2820   // type, then we need to emit the block-retain immediately in case
   2821   // it invalidates the l-value.
   2822   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
   2823     value = EmitARCRetainBlock(value, /*mandatory*/ false);
   2824     hasImmediateRetain = true;
   2825   }
   2826 
   2827   LValue lvalue = EmitLValue(e->getLHS());
   2828 
   2829   // If the RHS was emitted retained, expand this.
   2830   if (hasImmediateRetain) {
   2831     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
   2832     EmitStoreOfScalar(value, lvalue);
   2833     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
   2834   } else {
   2835     value = EmitARCStoreStrong(lvalue, value, ignored);
   2836   }
   2837 
   2838   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2839 }
   2840 
   2841 std::pair<LValue,llvm::Value*>
   2842 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
   2843   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
   2844   LValue lvalue = EmitLValue(e->getLHS());
   2845 
   2846   EmitStoreOfScalar(value, lvalue);
   2847 
   2848   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2849 }
   2850 
   2851 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
   2852                                           const ObjCAutoreleasePoolStmt &ARPS) {
   2853   const Stmt *subStmt = ARPS.getSubStmt();
   2854   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
   2855 
   2856   CGDebugInfo *DI = getDebugInfo();
   2857   if (DI)
   2858     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
   2859 
   2860   // Keep track of the current cleanup stack depth.
   2861   RunCleanupsScope Scope(*this);
   2862   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
   2863     llvm::Value *token = EmitObjCAutoreleasePoolPush();
   2864     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
   2865   } else {
   2866     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
   2867     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
   2868   }
   2869 
   2870   for (const auto *I : S.body())
   2871     EmitStmt(I);
   2872 
   2873   if (DI)
   2874     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
   2875 }
   2876 
   2877 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2878 /// make sure it survives garbage collection until this point.
   2879 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
   2880   // We just use an inline assembly.
   2881   llvm::FunctionType *extenderType
   2882     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
   2883   llvm::Value *extender
   2884     = llvm::InlineAsm::get(extenderType,
   2885                            /* assembly */ "",
   2886                            /* constraints */ "r",
   2887                            /* side effects */ true);
   2888 
   2889   object = Builder.CreateBitCast(object, VoidPtrTy);
   2890   EmitNounwindRuntimeCall(extender, object);
   2891 }
   2892 
   2893 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
   2894 /// non-trivial copy assignment function, produce following helper function.
   2895 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
   2896 ///
   2897 llvm::Constant *
   2898 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
   2899                                         const ObjCPropertyImplDecl *PID) {
   2900   if (!getLangOpts().CPlusPlus ||
   2901       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
   2902     return nullptr;
   2903   QualType Ty = PID->getPropertyIvarDecl()->getType();
   2904   if (!Ty->isRecordType())
   2905     return nullptr;
   2906   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2907   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2908     return nullptr;
   2909   llvm::Constant *HelperFn = nullptr;
   2910   if (hasTrivialSetExpr(PID))
   2911     return nullptr;
   2912   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
   2913   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
   2914     return HelperFn;
   2915 
   2916   ASTContext &C = getContext();
   2917   IdentifierInfo *II
   2918     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
   2919   FunctionDecl *FD = FunctionDecl::Create(C,
   2920                                           C.getTranslationUnitDecl(),
   2921                                           SourceLocation(),
   2922                                           SourceLocation(), II, C.VoidTy,
   2923                                           nullptr, SC_Static,
   2924                                           false,
   2925                                           false);
   2926 
   2927   QualType DestTy = C.getPointerType(Ty);
   2928   QualType SrcTy = Ty;
   2929   SrcTy.addConst();
   2930   SrcTy = C.getPointerType(SrcTy);
   2931 
   2932   FunctionArgList args;
   2933   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
   2934   args.push_back(&dstDecl);
   2935   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
   2936   args.push_back(&srcDecl);
   2937 
   2938   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
   2939       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
   2940 
   2941   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2942 
   2943   llvm::Function *Fn =
   2944     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2945                            "__assign_helper_atomic_property_",
   2946                            &CGM.getModule());
   2947 
   2948   CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
   2949 
   2950   StartFunction(FD, C.VoidTy, Fn, FI, args);
   2951 
   2952   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   2953                       VK_RValue, SourceLocation());
   2954   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
   2955                     VK_LValue, OK_Ordinary, SourceLocation());
   2956 
   2957   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   2958                       VK_RValue, SourceLocation());
   2959   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   2960                     VK_LValue, OK_Ordinary, SourceLocation());
   2961 
   2962   Expr *Args[2] = { &DST, &SRC };
   2963   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
   2964   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
   2965                               Args, DestTy->getPointeeType(),
   2966                               VK_LValue, SourceLocation(), false);
   2967 
   2968   EmitStmt(&TheCall);
   2969 
   2970   FinishFunction();
   2971   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   2972   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
   2973   return HelperFn;
   2974 }
   2975 
   2976 llvm::Constant *
   2977 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
   2978                                             const ObjCPropertyImplDecl *PID) {
   2979   if (!getLangOpts().CPlusPlus ||
   2980       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
   2981     return nullptr;
   2982   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2983   QualType Ty = PD->getType();
   2984   if (!Ty->isRecordType())
   2985     return nullptr;
   2986   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2987     return nullptr;
   2988   llvm::Constant *HelperFn = nullptr;
   2989 
   2990   if (hasTrivialGetExpr(PID))
   2991     return nullptr;
   2992   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
   2993   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
   2994     return HelperFn;
   2995 
   2996 
   2997   ASTContext &C = getContext();
   2998   IdentifierInfo *II
   2999   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
   3000   FunctionDecl *FD = FunctionDecl::Create(C,
   3001                                           C.getTranslationUnitDecl(),
   3002                                           SourceLocation(),
   3003                                           SourceLocation(), II, C.VoidTy,
   3004                                           nullptr, SC_Static,
   3005                                           false,
   3006                                           false);
   3007 
   3008   QualType DestTy = C.getPointerType(Ty);
   3009   QualType SrcTy = Ty;
   3010   SrcTy.addConst();
   3011   SrcTy = C.getPointerType(SrcTy);
   3012 
   3013   FunctionArgList args;
   3014   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
   3015   args.push_back(&dstDecl);
   3016   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
   3017   args.push_back(&srcDecl);
   3018 
   3019   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
   3020       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
   3021 
   3022   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   3023 
   3024   llvm::Function *Fn =
   3025   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   3026                          "__copy_helper_atomic_property_", &CGM.getModule());
   3027 
   3028   CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
   3029 
   3030   StartFunction(FD, C.VoidTy, Fn, FI, args);
   3031 
   3032   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   3033                       VK_RValue, SourceLocation());
   3034 
   3035   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   3036                     VK_LValue, OK_Ordinary, SourceLocation());
   3037 
   3038   CXXConstructExpr *CXXConstExpr =
   3039     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
   3040 
   3041   SmallVector<Expr*, 4> ConstructorArgs;
   3042   ConstructorArgs.push_back(&SRC);
   3043   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
   3044                          CXXConstExpr->arg_end());
   3045 
   3046   CXXConstructExpr *TheCXXConstructExpr =
   3047     CXXConstructExpr::Create(C, Ty, SourceLocation(),
   3048                              CXXConstExpr->getConstructor(),
   3049                              CXXConstExpr->isElidable(),
   3050                              ConstructorArgs,
   3051                              CXXConstExpr->hadMultipleCandidates(),
   3052                              CXXConstExpr->isListInitialization(),
   3053                              CXXConstExpr->isStdInitListInitialization(),
   3054                              CXXConstExpr->requiresZeroInitialization(),
   3055                              CXXConstExpr->getConstructionKind(),
   3056                              SourceRange());
   3057 
   3058   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   3059                       VK_RValue, SourceLocation());
   3060 
   3061   RValue DV = EmitAnyExpr(&DstExpr);
   3062   CharUnits Alignment
   3063     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
   3064   EmitAggExpr(TheCXXConstructExpr,
   3065               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
   3066                                     Qualifiers(),
   3067                                     AggValueSlot::IsDestructed,
   3068                                     AggValueSlot::DoesNotNeedGCBarriers,
   3069                                     AggValueSlot::IsNotAliased));
   3070 
   3071   FinishFunction();
   3072   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   3073   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
   3074   return HelperFn;
   3075 }
   3076 
   3077 llvm::Value *
   3078 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
   3079   // Get selectors for retain/autorelease.
   3080   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
   3081   Selector CopySelector =
   3082       getContext().Selectors.getNullarySelector(CopyID);
   3083   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
   3084   Selector AutoreleaseSelector =
   3085       getContext().Selectors.getNullarySelector(AutoreleaseID);
   3086 
   3087   // Emit calls to retain/autorelease.
   3088   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   3089   llvm::Value *Val = Block;
   3090   RValue Result;
   3091   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   3092                                        Ty, CopySelector,
   3093                                        Val, CallArgList(), nullptr, nullptr);
   3094   Val = Result.getScalarVal();
   3095   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   3096                                        Ty, AutoreleaseSelector,
   3097                                        Val, CallArgList(), nullptr, nullptr);
   3098   Val = Result.getScalarVal();
   3099   return Val;
   3100 }
   3101 
   3102 
   3103 CGObjCRuntime::~CGObjCRuntime() {}
   3104