Home | History | Annotate | Download | only in vpx_dsp
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <math.h>
     12 #include "./vpx_dsp_rtcd.h"
     13 #include "vpx_dsp/ssim.h"
     14 #include "vpx_ports/mem.h"
     15 #include "vpx_ports/system_state.h"
     16 
     17 void vpx_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r,
     18                             int rp, uint32_t *sum_s, uint32_t *sum_r,
     19                             uint32_t *sum_sq_s, uint32_t *sum_sq_r,
     20                             uint32_t *sum_sxr) {
     21   int i, j;
     22   for (i = 0; i < 16; i++, s += sp, r += rp) {
     23     for (j = 0; j < 16; j++) {
     24       *sum_s += s[j];
     25       *sum_r += r[j];
     26       *sum_sq_s += s[j] * s[j];
     27       *sum_sq_r += r[j] * r[j];
     28       *sum_sxr += s[j] * r[j];
     29     }
     30   }
     31 }
     32 void vpx_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
     33                           uint32_t *sum_s, uint32_t *sum_r,
     34                           uint32_t *sum_sq_s, uint32_t *sum_sq_r,
     35                           uint32_t *sum_sxr) {
     36   int i, j;
     37   for (i = 0; i < 8; i++, s += sp, r += rp) {
     38     for (j = 0; j < 8; j++) {
     39       *sum_s += s[j];
     40       *sum_r += r[j];
     41       *sum_sq_s += s[j] * s[j];
     42       *sum_sq_r += r[j] * r[j];
     43       *sum_sxr += s[j] * r[j];
     44     }
     45   }
     46 }
     47 
     48 #if CONFIG_VP9_HIGHBITDEPTH
     49 void vpx_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp,
     50                                  const uint16_t *r, int rp,
     51                                  uint32_t *sum_s, uint32_t *sum_r,
     52                                  uint32_t *sum_sq_s, uint32_t *sum_sq_r,
     53                                  uint32_t *sum_sxr) {
     54   int i, j;
     55   for (i = 0; i < 8; i++, s += sp, r += rp) {
     56     for (j = 0; j < 8; j++) {
     57       *sum_s += s[j];
     58       *sum_r += r[j];
     59       *sum_sq_s += s[j] * s[j];
     60       *sum_sq_r += r[j] * r[j];
     61       *sum_sxr += s[j] * r[j];
     62     }
     63   }
     64 }
     65 #endif  // CONFIG_VP9_HIGHBITDEPTH
     66 
     67 static const int64_t cc1 =  26634;  // (64^2*(.01*255)^2
     68 static const int64_t cc2 = 239708;  // (64^2*(.03*255)^2
     69 
     70 static double similarity(uint32_t sum_s, uint32_t sum_r,
     71                          uint32_t sum_sq_s, uint32_t sum_sq_r,
     72                          uint32_t sum_sxr, int count) {
     73   int64_t ssim_n, ssim_d;
     74   int64_t c1, c2;
     75 
     76   // scale the constants by number of pixels
     77   c1 = (cc1 * count * count) >> 12;
     78   c2 = (cc2 * count * count) >> 12;
     79 
     80   ssim_n = (2 * sum_s * sum_r + c1) * ((int64_t) 2 * count * sum_sxr -
     81                                        (int64_t) 2 * sum_s * sum_r + c2);
     82 
     83   ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
     84            ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
     85             (int64_t)count * sum_sq_r - (int64_t) sum_r * sum_r + c2);
     86 
     87   return ssim_n * 1.0 / ssim_d;
     88 }
     89 
     90 static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
     91   uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
     92   vpx_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
     93                      &sum_sxr);
     94   return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64);
     95 }
     96 
     97 #if CONFIG_VP9_HIGHBITDEPTH
     98 static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
     99                               int rp, unsigned int bd) {
    100   uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
    101   const int oshift = bd - 8;
    102   vpx_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
    103                             &sum_sxr);
    104   return similarity(sum_s >> oshift,
    105                     sum_r >> oshift,
    106                     sum_sq_s >> (2 * oshift),
    107                     sum_sq_r >> (2 * oshift),
    108                     sum_sxr >> (2 * oshift),
    109                     64);
    110 }
    111 #endif  // CONFIG_VP9_HIGHBITDEPTH
    112 
    113 // We are using a 8x8 moving window with starting location of each 8x8 window
    114 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
    115 // block boundaries to penalize blocking artifacts.
    116 static double vpx_ssim2(const uint8_t *img1, const uint8_t *img2,
    117                         int stride_img1, int stride_img2, int width,
    118                         int height) {
    119   int i, j;
    120   int samples = 0;
    121   double ssim_total = 0;
    122 
    123   // sample point start with each 4x4 location
    124   for (i = 0; i <= height - 8;
    125        i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
    126     for (j = 0; j <= width - 8; j += 4) {
    127       double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
    128       ssim_total += v;
    129       samples++;
    130     }
    131   }
    132   ssim_total /= samples;
    133   return ssim_total;
    134 }
    135 
    136 #if CONFIG_VP9_HIGHBITDEPTH
    137 static double vpx_highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
    138                                int stride_img1, int stride_img2, int width,
    139                                int height, unsigned int bd) {
    140   int i, j;
    141   int samples = 0;
    142   double ssim_total = 0;
    143 
    144   // sample point start with each 4x4 location
    145   for (i = 0; i <= height - 8;
    146        i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
    147     for (j = 0; j <= width - 8; j += 4) {
    148       double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
    149                                  CONVERT_TO_SHORTPTR(img2 + j), stride_img2,
    150                                  bd);
    151       ssim_total += v;
    152       samples++;
    153     }
    154   }
    155   ssim_total /= samples;
    156   return ssim_total;
    157 }
    158 #endif  // CONFIG_VP9_HIGHBITDEPTH
    159 
    160 double vpx_calc_ssim(const YV12_BUFFER_CONFIG *source,
    161                      const YV12_BUFFER_CONFIG *dest,
    162                      double *weight) {
    163   double a, b, c;
    164   double ssimv;
    165 
    166   a = vpx_ssim2(source->y_buffer, dest->y_buffer,
    167                 source->y_stride, dest->y_stride,
    168                 source->y_crop_width, source->y_crop_height);
    169 
    170   b = vpx_ssim2(source->u_buffer, dest->u_buffer,
    171                 source->uv_stride, dest->uv_stride,
    172                 source->uv_crop_width, source->uv_crop_height);
    173 
    174   c = vpx_ssim2(source->v_buffer, dest->v_buffer,
    175                 source->uv_stride, dest->uv_stride,
    176                 source->uv_crop_width, source->uv_crop_height);
    177 
    178   ssimv = a * .8 + .1 * (b + c);
    179 
    180   *weight = 1;
    181 
    182   return ssimv;
    183 }
    184 
    185 double vpx_calc_ssimg(const YV12_BUFFER_CONFIG *source,
    186                       const YV12_BUFFER_CONFIG *dest,
    187                       double *ssim_y, double *ssim_u, double *ssim_v) {
    188   double ssim_all = 0;
    189   double a, b, c;
    190 
    191   a = vpx_ssim2(source->y_buffer, dest->y_buffer,
    192                 source->y_stride, dest->y_stride,
    193                 source->y_crop_width, source->y_crop_height);
    194 
    195   b = vpx_ssim2(source->u_buffer, dest->u_buffer,
    196                 source->uv_stride, dest->uv_stride,
    197                 source->uv_crop_width, source->uv_crop_height);
    198 
    199   c = vpx_ssim2(source->v_buffer, dest->v_buffer,
    200                 source->uv_stride, dest->uv_stride,
    201                 source->uv_crop_width, source->uv_crop_height);
    202   *ssim_y = a;
    203   *ssim_u = b;
    204   *ssim_v = c;
    205   ssim_all = (a * 4 + b + c) / 6;
    206 
    207   return ssim_all;
    208 }
    209 
    210 // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
    211 //
    212 // Re working out the math ->
    213 //
    214 // ssim(x,y) =  (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
    215 //   ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
    216 //
    217 // mean(x) = sum(x) / n
    218 //
    219 // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
    220 //
    221 // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
    222 //
    223 // ssim(x,y) =
    224 //   (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
    225 //   (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
    226 //    ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
    227 //     (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
    228 //
    229 // factoring out n*n
    230 //
    231 // ssim(x,y) =
    232 //   (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
    233 //   (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
    234 //    (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
    235 //
    236 // Replace c1 with n*n * c1 for the final step that leads to this code:
    237 // The final step scales by 12 bits so we don't lose precision in the constants.
    238 
    239 static double ssimv_similarity(const Ssimv *sv, int64_t n) {
    240   // Scale the constants by number of pixels.
    241   const int64_t c1 = (cc1 * n * n) >> 12;
    242   const int64_t c2 = (cc2 * n * n) >> 12;
    243 
    244   const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
    245       (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
    246 
    247   // Since these variables are unsigned sums, convert to double so
    248   // math is done in double arithmetic.
    249   const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2)
    250       / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + n * sv->sum_sq_r
    251          - sv->sum_r * sv->sum_r + c2);
    252 
    253   return l * v;
    254 }
    255 
    256 // The first term of the ssim metric is a luminance factor.
    257 //
    258 // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
    259 //
    260 // This luminance factor is super sensitive to the dark side of luminance
    261 // values and completely insensitive on the white side.  check out 2 sets
    262 // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
    263 // 2*250*252/ (250^2+252^2) => .99999997
    264 //
    265 // As a result in this tweaked version of the calculation in which the
    266 // luminance is taken as percentage off from peak possible.
    267 //
    268 // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
    269 //
    270 static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
    271   // Scale the constants by number of pixels.
    272   const int64_t c1 = (cc1 * n * n) >> 12;
    273   const int64_t c2 = (cc2 * n * n) >> 12;
    274 
    275   const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
    276   const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
    277 
    278   // Since these variables are unsigned, sums convert to double so
    279   // math is done in double arithmetic.
    280   const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2)
    281       / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
    282          n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
    283 
    284   return l * v;
    285 }
    286 static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
    287                         int img2_pitch, Ssimv *sv) {
    288   vpx_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch,
    289                      &sv->sum_s, &sv->sum_r, &sv->sum_sq_s, &sv->sum_sq_r,
    290                      &sv->sum_sxr);
    291 }
    292 
    293 double vpx_get_ssim_metrics(uint8_t *img1, int img1_pitch,
    294                             uint8_t *img2, int img2_pitch,
    295                             int width, int height,
    296                             Ssimv *sv2, Metrics *m,
    297                             int do_inconsistency) {
    298   double dssim_total = 0;
    299   double ssim_total = 0;
    300   double ssim2_total = 0;
    301   double inconsistency_total = 0;
    302   int i, j;
    303   int c = 0;
    304   double norm;
    305   double old_ssim_total = 0;
    306   vpx_clear_system_state();
    307   // We can sample points as frequently as we like start with 1 per 4x4.
    308   for (i = 0; i < height; i += 4,
    309        img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
    310     for (j = 0; j < width; j += 4, ++c) {
    311       Ssimv sv = {0};
    312       double ssim;
    313       double ssim2;
    314       double dssim;
    315       uint32_t var_new;
    316       uint32_t var_old;
    317       uint32_t mean_new;
    318       uint32_t mean_old;
    319       double ssim_new;
    320       double ssim_old;
    321 
    322       // Not sure there's a great way to handle the edge pixels
    323       // in ssim when using a window. Seems biased against edge pixels
    324       // however you handle this. This uses only samples that are
    325       // fully in the frame.
    326       if (j + 8 <= width && i + 8 <= height) {
    327         ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
    328       }
    329 
    330       ssim = ssimv_similarity(&sv, 64);
    331       ssim2 = ssimv_similarity2(&sv, 64);
    332 
    333       sv.ssim = ssim2;
    334 
    335       // dssim is calculated to use as an actual error metric and
    336       // is scaled up to the same range as sum square error.
    337       // Since we are subsampling every 16th point maybe this should be
    338       // *16 ?
    339       dssim = 255 * 255 * (1 - ssim2) / 2;
    340 
    341       // Here I introduce a new error metric: consistency-weighted
    342       // SSIM-inconsistency.  This metric isolates frames where the
    343       // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
    344       // sharper or blurrier than the others. Higher values indicate a
    345       // temporally inconsistent SSIM. There are two ideas at work:
    346       //
    347       // 1) 'SSIM-inconsistency': the total inconsistency value
    348       // reflects how much SSIM values are changing between this
    349       // source / reference frame pair and the previous pair.
    350       //
    351       // 2) 'consistency-weighted': weights de-emphasize areas in the
    352       // frame where the scene content has changed. Changes in scene
    353       // content are detected via changes in local variance and local
    354       // mean.
    355       //
    356       // Thus the overall measure reflects how inconsistent the SSIM
    357       // values are, over consistent regions of the frame.
    358       //
    359       // The metric has three terms:
    360       //
    361       // term 1 -> uses change in scene Variance to weight error score
    362       //  2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
    363       //  larger changes from one frame to the next mean we care
    364       //  less about consistency.
    365       //
    366       // term 2 -> uses change in local scene luminance to weight error
    367       //  2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
    368       //  larger changes from one frame to the next mean we care
    369       //  less about consistency.
    370       //
    371       // term3 -> measures inconsistency in ssim scores between frames
    372       //   1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
    373       //
    374       // This term compares the ssim score for the same location in 2
    375       // subsequent frames.
    376       var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
    377       var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
    378       mean_new = sv.sum_s;
    379       mean_old = sv2[c].sum_s;
    380       ssim_new = sv.ssim;
    381       ssim_old = sv2[c].ssim;
    382 
    383       if (do_inconsistency) {
    384         // We do the metric once for every 4x4 block in the image. Since
    385         // we are scaling the error to SSE for use in a psnr calculation
    386         // 1.0 = 4x4x255x255 the worst error we can possibly have.
    387         static const double kScaling = 4. * 4 * 255 * 255;
    388 
    389         // The constants have to be non 0 to avoid potential divide by 0
    390         // issues other than that they affect kind of a weighting between
    391         // the terms.  No testing of what the right terms should be has been
    392         // done.
    393         static const double c1 = 1, c2 = 1, c3 = 1;
    394 
    395         // This measures how much consistent variance is in two consecutive
    396         // source frames. 1.0 means they have exactly the same variance.
    397         const double variance_term = (2.0 * var_old * var_new + c1) /
    398             (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
    399 
    400         // This measures how consistent the local mean are between two
    401         // consecutive frames. 1.0 means they have exactly the same mean.
    402         const double mean_term = (2.0 * mean_old * mean_new + c2) /
    403             (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
    404 
    405         // This measures how consistent the ssims of two
    406         // consecutive frames is. 1.0 means they are exactly the same.
    407         double ssim_term = pow((2.0 * ssim_old * ssim_new + c3) /
    408                                (ssim_old * ssim_old + ssim_new * ssim_new + c3),
    409                                5);
    410 
    411         double this_inconsistency;
    412 
    413         // Floating point math sometimes makes this > 1 by a tiny bit.
    414         // We want the metric to scale between 0 and 1.0 so we can convert
    415         // it to an snr scaled value.
    416         if (ssim_term > 1)
    417           ssim_term = 1;
    418 
    419         // This converts the consistency metric to an inconsistency metric
    420         // ( so we can scale it like psnr to something like sum square error.
    421         // The reason for the variance and mean terms is the assumption that
    422         // if there are big changes in the source we shouldn't penalize
    423         // inconsistency in ssim scores a bit less as it will be less visible
    424         // to the user.
    425         this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
    426 
    427         this_inconsistency *= kScaling;
    428         inconsistency_total += this_inconsistency;
    429       }
    430       sv2[c] = sv;
    431       ssim_total += ssim;
    432       ssim2_total += ssim2;
    433       dssim_total += dssim;
    434 
    435       old_ssim_total += ssim_old;
    436     }
    437     old_ssim_total += 0;
    438   }
    439 
    440   norm = 1. / (width / 4) / (height / 4);
    441   ssim_total *= norm;
    442   ssim2_total *= norm;
    443   m->ssim2 = ssim2_total;
    444   m->ssim = ssim_total;
    445   if (old_ssim_total == 0)
    446     inconsistency_total = 0;
    447 
    448   m->ssimc = inconsistency_total;
    449 
    450   m->dssim = dssim_total;
    451   return inconsistency_total;
    452 }
    453 
    454 
    455 #if CONFIG_VP9_HIGHBITDEPTH
    456 double vpx_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
    457                             const YV12_BUFFER_CONFIG *dest,
    458                             double *weight, unsigned int bd) {
    459   double a, b, c;
    460   double ssimv;
    461 
    462   a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer,
    463                        source->y_stride, dest->y_stride,
    464                        source->y_crop_width, source->y_crop_height, bd);
    465 
    466   b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer,
    467                        source->uv_stride, dest->uv_stride,
    468                        source->uv_crop_width, source->uv_crop_height, bd);
    469 
    470   c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer,
    471                        source->uv_stride, dest->uv_stride,
    472                        source->uv_crop_width, source->uv_crop_height, bd);
    473 
    474   ssimv = a * .8 + .1 * (b + c);
    475 
    476   *weight = 1;
    477 
    478   return ssimv;
    479 }
    480 
    481 double vpx_highbd_calc_ssimg(const YV12_BUFFER_CONFIG *source,
    482                              const YV12_BUFFER_CONFIG *dest, double *ssim_y,
    483                              double *ssim_u, double *ssim_v, unsigned int bd) {
    484   double ssim_all = 0;
    485   double a, b, c;
    486 
    487   a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer,
    488                        source->y_stride, dest->y_stride,
    489                        source->y_crop_width, source->y_crop_height, bd);
    490 
    491   b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer,
    492                        source->uv_stride, dest->uv_stride,
    493                        source->uv_crop_width, source->uv_crop_height, bd);
    494 
    495   c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer,
    496                        source->uv_stride, dest->uv_stride,
    497                        source->uv_crop_width, source->uv_crop_height, bd);
    498   *ssim_y = a;
    499   *ssim_u = b;
    500   *ssim_v = c;
    501   ssim_all = (a * 4 + b + c) / 6;
    502 
    503   return ssim_all;
    504 }
    505 #endif  // CONFIG_VP9_HIGHBITDEPTH
    506