1 /* 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include <math.h> 12 #include "./vpx_dsp_rtcd.h" 13 #include "vpx_dsp/ssim.h" 14 #include "vpx_ports/mem.h" 15 #include "vpx_ports/system_state.h" 16 17 void vpx_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r, 18 int rp, uint32_t *sum_s, uint32_t *sum_r, 19 uint32_t *sum_sq_s, uint32_t *sum_sq_r, 20 uint32_t *sum_sxr) { 21 int i, j; 22 for (i = 0; i < 16; i++, s += sp, r += rp) { 23 for (j = 0; j < 16; j++) { 24 *sum_s += s[j]; 25 *sum_r += r[j]; 26 *sum_sq_s += s[j] * s[j]; 27 *sum_sq_r += r[j] * r[j]; 28 *sum_sxr += s[j] * r[j]; 29 } 30 } 31 } 32 void vpx_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp, 33 uint32_t *sum_s, uint32_t *sum_r, 34 uint32_t *sum_sq_s, uint32_t *sum_sq_r, 35 uint32_t *sum_sxr) { 36 int i, j; 37 for (i = 0; i < 8; i++, s += sp, r += rp) { 38 for (j = 0; j < 8; j++) { 39 *sum_s += s[j]; 40 *sum_r += r[j]; 41 *sum_sq_s += s[j] * s[j]; 42 *sum_sq_r += r[j] * r[j]; 43 *sum_sxr += s[j] * r[j]; 44 } 45 } 46 } 47 48 #if CONFIG_VP9_HIGHBITDEPTH 49 void vpx_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, 50 const uint16_t *r, int rp, 51 uint32_t *sum_s, uint32_t *sum_r, 52 uint32_t *sum_sq_s, uint32_t *sum_sq_r, 53 uint32_t *sum_sxr) { 54 int i, j; 55 for (i = 0; i < 8; i++, s += sp, r += rp) { 56 for (j = 0; j < 8; j++) { 57 *sum_s += s[j]; 58 *sum_r += r[j]; 59 *sum_sq_s += s[j] * s[j]; 60 *sum_sq_r += r[j] * r[j]; 61 *sum_sxr += s[j] * r[j]; 62 } 63 } 64 } 65 #endif // CONFIG_VP9_HIGHBITDEPTH 66 67 static const int64_t cc1 = 26634; // (64^2*(.01*255)^2 68 static const int64_t cc2 = 239708; // (64^2*(.03*255)^2 69 70 static double similarity(uint32_t sum_s, uint32_t sum_r, 71 uint32_t sum_sq_s, uint32_t sum_sq_r, 72 uint32_t sum_sxr, int count) { 73 int64_t ssim_n, ssim_d; 74 int64_t c1, c2; 75 76 // scale the constants by number of pixels 77 c1 = (cc1 * count * count) >> 12; 78 c2 = (cc2 * count * count) >> 12; 79 80 ssim_n = (2 * sum_s * sum_r + c1) * ((int64_t) 2 * count * sum_sxr - 81 (int64_t) 2 * sum_s * sum_r + c2); 82 83 ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) * 84 ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s + 85 (int64_t)count * sum_sq_r - (int64_t) sum_r * sum_r + c2); 86 87 return ssim_n * 1.0 / ssim_d; 88 } 89 90 static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) { 91 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; 92 vpx_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, 93 &sum_sxr); 94 return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64); 95 } 96 97 #if CONFIG_VP9_HIGHBITDEPTH 98 static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r, 99 int rp, unsigned int bd) { 100 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; 101 const int oshift = bd - 8; 102 vpx_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, 103 &sum_sxr); 104 return similarity(sum_s >> oshift, 105 sum_r >> oshift, 106 sum_sq_s >> (2 * oshift), 107 sum_sq_r >> (2 * oshift), 108 sum_sxr >> (2 * oshift), 109 64); 110 } 111 #endif // CONFIG_VP9_HIGHBITDEPTH 112 113 // We are using a 8x8 moving window with starting location of each 8x8 window 114 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap 115 // block boundaries to penalize blocking artifacts. 116 static double vpx_ssim2(const uint8_t *img1, const uint8_t *img2, 117 int stride_img1, int stride_img2, int width, 118 int height) { 119 int i, j; 120 int samples = 0; 121 double ssim_total = 0; 122 123 // sample point start with each 4x4 location 124 for (i = 0; i <= height - 8; 125 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { 126 for (j = 0; j <= width - 8; j += 4) { 127 double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2); 128 ssim_total += v; 129 samples++; 130 } 131 } 132 ssim_total /= samples; 133 return ssim_total; 134 } 135 136 #if CONFIG_VP9_HIGHBITDEPTH 137 static double vpx_highbd_ssim2(const uint8_t *img1, const uint8_t *img2, 138 int stride_img1, int stride_img2, int width, 139 int height, unsigned int bd) { 140 int i, j; 141 int samples = 0; 142 double ssim_total = 0; 143 144 // sample point start with each 4x4 location 145 for (i = 0; i <= height - 8; 146 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { 147 for (j = 0; j <= width - 8; j += 4) { 148 double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1, 149 CONVERT_TO_SHORTPTR(img2 + j), stride_img2, 150 bd); 151 ssim_total += v; 152 samples++; 153 } 154 } 155 ssim_total /= samples; 156 return ssim_total; 157 } 158 #endif // CONFIG_VP9_HIGHBITDEPTH 159 160 double vpx_calc_ssim(const YV12_BUFFER_CONFIG *source, 161 const YV12_BUFFER_CONFIG *dest, 162 double *weight) { 163 double a, b, c; 164 double ssimv; 165 166 a = vpx_ssim2(source->y_buffer, dest->y_buffer, 167 source->y_stride, dest->y_stride, 168 source->y_crop_width, source->y_crop_height); 169 170 b = vpx_ssim2(source->u_buffer, dest->u_buffer, 171 source->uv_stride, dest->uv_stride, 172 source->uv_crop_width, source->uv_crop_height); 173 174 c = vpx_ssim2(source->v_buffer, dest->v_buffer, 175 source->uv_stride, dest->uv_stride, 176 source->uv_crop_width, source->uv_crop_height); 177 178 ssimv = a * .8 + .1 * (b + c); 179 180 *weight = 1; 181 182 return ssimv; 183 } 184 185 double vpx_calc_ssimg(const YV12_BUFFER_CONFIG *source, 186 const YV12_BUFFER_CONFIG *dest, 187 double *ssim_y, double *ssim_u, double *ssim_v) { 188 double ssim_all = 0; 189 double a, b, c; 190 191 a = vpx_ssim2(source->y_buffer, dest->y_buffer, 192 source->y_stride, dest->y_stride, 193 source->y_crop_width, source->y_crop_height); 194 195 b = vpx_ssim2(source->u_buffer, dest->u_buffer, 196 source->uv_stride, dest->uv_stride, 197 source->uv_crop_width, source->uv_crop_height); 198 199 c = vpx_ssim2(source->v_buffer, dest->v_buffer, 200 source->uv_stride, dest->uv_stride, 201 source->uv_crop_width, source->uv_crop_height); 202 *ssim_y = a; 203 *ssim_u = b; 204 *ssim_v = c; 205 ssim_all = (a * 4 + b + c) / 6; 206 207 return ssim_all; 208 } 209 210 // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity 211 // 212 // Re working out the math -> 213 // 214 // ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) / 215 // ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2)) 216 // 217 // mean(x) = sum(x) / n 218 // 219 // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n) 220 // 221 // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n) 222 // 223 // ssim(x,y) = 224 // (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) / 225 // (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) * 226 // ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+ 227 // (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2))) 228 // 229 // factoring out n*n 230 // 231 // ssim(x,y) = 232 // (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) / 233 // (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) * 234 // (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2)) 235 // 236 // Replace c1 with n*n * c1 for the final step that leads to this code: 237 // The final step scales by 12 bits so we don't lose precision in the constants. 238 239 static double ssimv_similarity(const Ssimv *sv, int64_t n) { 240 // Scale the constants by number of pixels. 241 const int64_t c1 = (cc1 * n * n) >> 12; 242 const int64_t c2 = (cc2 * n * n) >> 12; 243 244 const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) / 245 (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1); 246 247 // Since these variables are unsigned sums, convert to double so 248 // math is done in double arithmetic. 249 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) 250 / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + n * sv->sum_sq_r 251 - sv->sum_r * sv->sum_r + c2); 252 253 return l * v; 254 } 255 256 // The first term of the ssim metric is a luminance factor. 257 // 258 // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1) 259 // 260 // This luminance factor is super sensitive to the dark side of luminance 261 // values and completely insensitive on the white side. check out 2 sets 262 // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60 263 // 2*250*252/ (250^2+252^2) => .99999997 264 // 265 // As a result in this tweaked version of the calculation in which the 266 // luminance is taken as percentage off from peak possible. 267 // 268 // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count 269 // 270 static double ssimv_similarity2(const Ssimv *sv, int64_t n) { 271 // Scale the constants by number of pixels. 272 const int64_t c1 = (cc1 * n * n) >> 12; 273 const int64_t c2 = (cc2 * n * n) >> 12; 274 275 const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n; 276 const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1); 277 278 // Since these variables are unsigned, sums convert to double so 279 // math is done in double arithmetic. 280 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) 281 / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + 282 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); 283 284 return l * v; 285 } 286 static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2, 287 int img2_pitch, Ssimv *sv) { 288 vpx_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, 289 &sv->sum_s, &sv->sum_r, &sv->sum_sq_s, &sv->sum_sq_r, 290 &sv->sum_sxr); 291 } 292 293 double vpx_get_ssim_metrics(uint8_t *img1, int img1_pitch, 294 uint8_t *img2, int img2_pitch, 295 int width, int height, 296 Ssimv *sv2, Metrics *m, 297 int do_inconsistency) { 298 double dssim_total = 0; 299 double ssim_total = 0; 300 double ssim2_total = 0; 301 double inconsistency_total = 0; 302 int i, j; 303 int c = 0; 304 double norm; 305 double old_ssim_total = 0; 306 vpx_clear_system_state(); 307 // We can sample points as frequently as we like start with 1 per 4x4. 308 for (i = 0; i < height; i += 4, 309 img1 += img1_pitch * 4, img2 += img2_pitch * 4) { 310 for (j = 0; j < width; j += 4, ++c) { 311 Ssimv sv = {0}; 312 double ssim; 313 double ssim2; 314 double dssim; 315 uint32_t var_new; 316 uint32_t var_old; 317 uint32_t mean_new; 318 uint32_t mean_old; 319 double ssim_new; 320 double ssim_old; 321 322 // Not sure there's a great way to handle the edge pixels 323 // in ssim when using a window. Seems biased against edge pixels 324 // however you handle this. This uses only samples that are 325 // fully in the frame. 326 if (j + 8 <= width && i + 8 <= height) { 327 ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv); 328 } 329 330 ssim = ssimv_similarity(&sv, 64); 331 ssim2 = ssimv_similarity2(&sv, 64); 332 333 sv.ssim = ssim2; 334 335 // dssim is calculated to use as an actual error metric and 336 // is scaled up to the same range as sum square error. 337 // Since we are subsampling every 16th point maybe this should be 338 // *16 ? 339 dssim = 255 * 255 * (1 - ssim2) / 2; 340 341 // Here I introduce a new error metric: consistency-weighted 342 // SSIM-inconsistency. This metric isolates frames where the 343 // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much 344 // sharper or blurrier than the others. Higher values indicate a 345 // temporally inconsistent SSIM. There are two ideas at work: 346 // 347 // 1) 'SSIM-inconsistency': the total inconsistency value 348 // reflects how much SSIM values are changing between this 349 // source / reference frame pair and the previous pair. 350 // 351 // 2) 'consistency-weighted': weights de-emphasize areas in the 352 // frame where the scene content has changed. Changes in scene 353 // content are detected via changes in local variance and local 354 // mean. 355 // 356 // Thus the overall measure reflects how inconsistent the SSIM 357 // values are, over consistent regions of the frame. 358 // 359 // The metric has three terms: 360 // 361 // term 1 -> uses change in scene Variance to weight error score 362 // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2) 363 // larger changes from one frame to the next mean we care 364 // less about consistency. 365 // 366 // term 2 -> uses change in local scene luminance to weight error 367 // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2) 368 // larger changes from one frame to the next mean we care 369 // less about consistency. 370 // 371 // term3 -> measures inconsistency in ssim scores between frames 372 // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2). 373 // 374 // This term compares the ssim score for the same location in 2 375 // subsequent frames. 376 var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64; 377 var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64; 378 mean_new = sv.sum_s; 379 mean_old = sv2[c].sum_s; 380 ssim_new = sv.ssim; 381 ssim_old = sv2[c].ssim; 382 383 if (do_inconsistency) { 384 // We do the metric once for every 4x4 block in the image. Since 385 // we are scaling the error to SSE for use in a psnr calculation 386 // 1.0 = 4x4x255x255 the worst error we can possibly have. 387 static const double kScaling = 4. * 4 * 255 * 255; 388 389 // The constants have to be non 0 to avoid potential divide by 0 390 // issues other than that they affect kind of a weighting between 391 // the terms. No testing of what the right terms should be has been 392 // done. 393 static const double c1 = 1, c2 = 1, c3 = 1; 394 395 // This measures how much consistent variance is in two consecutive 396 // source frames. 1.0 means they have exactly the same variance. 397 const double variance_term = (2.0 * var_old * var_new + c1) / 398 (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1); 399 400 // This measures how consistent the local mean are between two 401 // consecutive frames. 1.0 means they have exactly the same mean. 402 const double mean_term = (2.0 * mean_old * mean_new + c2) / 403 (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2); 404 405 // This measures how consistent the ssims of two 406 // consecutive frames is. 1.0 means they are exactly the same. 407 double ssim_term = pow((2.0 * ssim_old * ssim_new + c3) / 408 (ssim_old * ssim_old + ssim_new * ssim_new + c3), 409 5); 410 411 double this_inconsistency; 412 413 // Floating point math sometimes makes this > 1 by a tiny bit. 414 // We want the metric to scale between 0 and 1.0 so we can convert 415 // it to an snr scaled value. 416 if (ssim_term > 1) 417 ssim_term = 1; 418 419 // This converts the consistency metric to an inconsistency metric 420 // ( so we can scale it like psnr to something like sum square error. 421 // The reason for the variance and mean terms is the assumption that 422 // if there are big changes in the source we shouldn't penalize 423 // inconsistency in ssim scores a bit less as it will be less visible 424 // to the user. 425 this_inconsistency = (1 - ssim_term) * variance_term * mean_term; 426 427 this_inconsistency *= kScaling; 428 inconsistency_total += this_inconsistency; 429 } 430 sv2[c] = sv; 431 ssim_total += ssim; 432 ssim2_total += ssim2; 433 dssim_total += dssim; 434 435 old_ssim_total += ssim_old; 436 } 437 old_ssim_total += 0; 438 } 439 440 norm = 1. / (width / 4) / (height / 4); 441 ssim_total *= norm; 442 ssim2_total *= norm; 443 m->ssim2 = ssim2_total; 444 m->ssim = ssim_total; 445 if (old_ssim_total == 0) 446 inconsistency_total = 0; 447 448 m->ssimc = inconsistency_total; 449 450 m->dssim = dssim_total; 451 return inconsistency_total; 452 } 453 454 455 #if CONFIG_VP9_HIGHBITDEPTH 456 double vpx_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source, 457 const YV12_BUFFER_CONFIG *dest, 458 double *weight, unsigned int bd) { 459 double a, b, c; 460 double ssimv; 461 462 a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer, 463 source->y_stride, dest->y_stride, 464 source->y_crop_width, source->y_crop_height, bd); 465 466 b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer, 467 source->uv_stride, dest->uv_stride, 468 source->uv_crop_width, source->uv_crop_height, bd); 469 470 c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer, 471 source->uv_stride, dest->uv_stride, 472 source->uv_crop_width, source->uv_crop_height, bd); 473 474 ssimv = a * .8 + .1 * (b + c); 475 476 *weight = 1; 477 478 return ssimv; 479 } 480 481 double vpx_highbd_calc_ssimg(const YV12_BUFFER_CONFIG *source, 482 const YV12_BUFFER_CONFIG *dest, double *ssim_y, 483 double *ssim_u, double *ssim_v, unsigned int bd) { 484 double ssim_all = 0; 485 double a, b, c; 486 487 a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer, 488 source->y_stride, dest->y_stride, 489 source->y_crop_width, source->y_crop_height, bd); 490 491 b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer, 492 source->uv_stride, dest->uv_stride, 493 source->uv_crop_width, source->uv_crop_height, bd); 494 495 c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer, 496 source->uv_stride, dest->uv_stride, 497 source->uv_crop_width, source->uv_crop_height, bd); 498 *ssim_y = a; 499 *ssim_u = b; 500 *ssim_v = c; 501 ssim_all = (a * 4 + b + c) / 6; 502 503 return ssim_all; 504 } 505 #endif // CONFIG_VP9_HIGHBITDEPTH 506