Home | History | Annotate | Download | only in Core
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_STABLENORM_H
     11 #define EIGEN_STABLENORM_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 template<typename ExpressionType, typename Scalar>
     18 inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
     19 {
     20   using std::max;
     21   Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
     22 
     23   if (maxCoeff>scale)
     24   {
     25     ssq = ssq * numext::abs2(scale/maxCoeff);
     26     Scalar tmp = Scalar(1)/maxCoeff;
     27     if(tmp > NumTraits<Scalar>::highest())
     28     {
     29       invScale = NumTraits<Scalar>::highest();
     30       scale = Scalar(1)/invScale;
     31     }
     32     else
     33     {
     34       scale = maxCoeff;
     35       invScale = tmp;
     36     }
     37   }
     38 
     39   // TODO if the maxCoeff is much much smaller than the current scale,
     40   // then we can neglect this sub vector
     41   if(scale>Scalar(0)) // if scale==0, then bl is 0
     42     ssq += (bl*invScale).squaredNorm();
     43 }
     44 
     45 template<typename Derived>
     46 inline typename NumTraits<typename traits<Derived>::Scalar>::Real
     47 blueNorm_impl(const EigenBase<Derived>& _vec)
     48 {
     49   typedef typename Derived::RealScalar RealScalar;
     50   typedef typename Derived::Index Index;
     51   using std::pow;
     52   using std::min;
     53   using std::max;
     54   using std::sqrt;
     55   using std::abs;
     56   const Derived& vec(_vec.derived());
     57   static bool initialized = false;
     58   static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
     59   if(!initialized)
     60   {
     61     int ibeta, it, iemin, iemax, iexp;
     62     RealScalar eps;
     63     // This program calculates the machine-dependent constants
     64     // bl, b2, slm, s2m, relerr overfl
     65     // from the "basic" machine-dependent numbers
     66     // nbig, ibeta, it, iemin, iemax, rbig.
     67     // The following define the basic machine-dependent constants.
     68     // For portability, the PORT subprograms "ilmaeh" and "rlmach"
     69     // are used. For any specific computer, each of the assignment
     70     // statements can be replaced
     71     ibeta = std::numeric_limits<RealScalar>::radix;                 // base for floating-point numbers
     72     it    = std::numeric_limits<RealScalar>::digits;                // number of base-beta digits in mantissa
     73     iemin = std::numeric_limits<RealScalar>::min_exponent;          // minimum exponent
     74     iemax = std::numeric_limits<RealScalar>::max_exponent;          // maximum exponent
     75     rbig  = (std::numeric_limits<RealScalar>::max)();               // largest floating-point number
     76 
     77     iexp  = -((1-iemin)/2);
     78     b1    = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // lower boundary of midrange
     79     iexp  = (iemax + 1 - it)/2;
     80     b2    = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // upper boundary of midrange
     81 
     82     iexp  = (2-iemin)/2;
     83     s1m   = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // scaling factor for lower range
     84     iexp  = - ((iemax+it)/2);
     85     s2m   = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // scaling factor for upper range
     86 
     87     overfl  = rbig*s2m;                                             // overflow boundary for abig
     88     eps     = RealScalar(pow(double(ibeta), 1-it));
     89     relerr  = sqrt(eps);                                            // tolerance for neglecting asml
     90     initialized = true;
     91   }
     92   Index n = vec.size();
     93   RealScalar ab2 = b2 / RealScalar(n);
     94   RealScalar asml = RealScalar(0);
     95   RealScalar amed = RealScalar(0);
     96   RealScalar abig = RealScalar(0);
     97   for(typename Derived::InnerIterator it(vec, 0); it; ++it)
     98   {
     99     RealScalar ax = abs(it.value());
    100     if(ax > ab2)     abig += numext::abs2(ax*s2m);
    101     else if(ax < b1) asml += numext::abs2(ax*s1m);
    102     else             amed += numext::abs2(ax);
    103   }
    104   if(abig > RealScalar(0))
    105   {
    106     abig = sqrt(abig);
    107     if(abig > overfl)
    108     {
    109       return rbig;
    110     }
    111     if(amed > RealScalar(0))
    112     {
    113       abig = abig/s2m;
    114       amed = sqrt(amed);
    115     }
    116     else
    117       return abig/s2m;
    118   }
    119   else if(asml > RealScalar(0))
    120   {
    121     if (amed > RealScalar(0))
    122     {
    123       abig = sqrt(amed);
    124       amed = sqrt(asml) / s1m;
    125     }
    126     else
    127       return sqrt(asml)/s1m;
    128   }
    129   else
    130     return sqrt(amed);
    131   asml = (min)(abig, amed);
    132   abig = (max)(abig, amed);
    133   if(asml <= abig*relerr)
    134     return abig;
    135   else
    136     return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
    137 }
    138 
    139 } // end namespace internal
    140 
    141 /** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
    142   * This version use a blockwise two passes algorithm:
    143   *  1 - find the absolute largest coefficient \c s
    144   *  2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
    145   *
    146   * For architecture/scalar types supporting vectorization, this version
    147   * is faster than blueNorm(). Otherwise the blueNorm() is much faster.
    148   *
    149   * \sa norm(), blueNorm(), hypotNorm()
    150   */
    151 template<typename Derived>
    152 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
    153 MatrixBase<Derived>::stableNorm() const
    154 {
    155   using std::min;
    156   using std::sqrt;
    157   const Index blockSize = 4096;
    158   RealScalar scale(0);
    159   RealScalar invScale(1);
    160   RealScalar ssq(0); // sum of square
    161   enum {
    162     Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
    163   };
    164   Index n = size();
    165   Index bi = internal::first_aligned(derived());
    166   if (bi>0)
    167     internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
    168   for (; bi<n; bi+=blockSize)
    169     internal::stable_norm_kernel(this->segment(bi,(min)(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
    170   return scale * sqrt(ssq);
    171 }
    172 
    173 /** \returns the \em l2 norm of \c *this using the Blue's algorithm.
    174   * A Portable Fortran Program to Find the Euclidean Norm of a Vector,
    175   * ACM TOMS, Vol 4, Issue 1, 1978.
    176   *
    177   * For architecture/scalar types without vectorization, this version
    178   * is much faster than stableNorm(). Otherwise the stableNorm() is faster.
    179   *
    180   * \sa norm(), stableNorm(), hypotNorm()
    181   */
    182 template<typename Derived>
    183 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
    184 MatrixBase<Derived>::blueNorm() const
    185 {
    186   return internal::blueNorm_impl(*this);
    187 }
    188 
    189 /** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
    190   * This version use a concatenation of hypot() calls, and it is very slow.
    191   *
    192   * \sa norm(), stableNorm()
    193   */
    194 template<typename Derived>
    195 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
    196 MatrixBase<Derived>::hypotNorm() const
    197 {
    198   return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
    199 }
    200 
    201 } // end namespace Eigen
    202 
    203 #endif // EIGEN_STABLENORM_H
    204