1 // 2 // Copyright (C) 2012 The Android Open Source Project 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // http://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 // 16 17 #include "update_engine/payload_consumer/delta_performer.h" 18 19 #include <endian.h> 20 #include <errno.h> 21 #include <linux/fs.h> 22 23 #include <algorithm> 24 #include <cstring> 25 #include <memory> 26 #include <string> 27 #include <vector> 28 29 #include <base/files/file_util.h> 30 #include <base/format_macros.h> 31 #include <base/strings/string_number_conversions.h> 32 #include <base/strings/string_util.h> 33 #include <base/strings/stringprintf.h> 34 #include <brillo/data_encoding.h> 35 #include <brillo/make_unique_ptr.h> 36 #include <google/protobuf/repeated_field.h> 37 38 #include "update_engine/common/constants.h" 39 #include "update_engine/common/hardware_interface.h" 40 #include "update_engine/common/prefs_interface.h" 41 #include "update_engine/common/subprocess.h" 42 #include "update_engine/common/terminator.h" 43 #include "update_engine/payload_consumer/bzip_extent_writer.h" 44 #include "update_engine/payload_consumer/download_action.h" 45 #include "update_engine/payload_consumer/extent_writer.h" 46 #if USE_MTD 47 #include "update_engine/payload_consumer/mtd_file_descriptor.h" 48 #endif 49 #include "update_engine/payload_consumer/payload_constants.h" 50 #include "update_engine/payload_consumer/payload_verifier.h" 51 #include "update_engine/payload_consumer/xz_extent_writer.h" 52 53 using google::protobuf::RepeatedPtrField; 54 using std::min; 55 using std::string; 56 using std::vector; 57 58 namespace chromeos_update_engine { 59 60 const uint64_t DeltaPerformer::kDeltaVersionOffset = sizeof(kDeltaMagic); 61 const uint64_t DeltaPerformer::kDeltaVersionSize = 8; 62 const uint64_t DeltaPerformer::kDeltaManifestSizeOffset = 63 kDeltaVersionOffset + kDeltaVersionSize; 64 const uint64_t DeltaPerformer::kDeltaManifestSizeSize = 8; 65 const uint64_t DeltaPerformer::kDeltaMetadataSignatureSizeSize = 4; 66 const uint64_t DeltaPerformer::kMaxPayloadHeaderSize = 24; 67 const uint64_t DeltaPerformer::kSupportedMajorPayloadVersion = 2; 68 const uint32_t DeltaPerformer::kSupportedMinorPayloadVersion = 3; 69 70 const unsigned DeltaPerformer::kProgressLogMaxChunks = 10; 71 const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30; 72 const unsigned DeltaPerformer::kProgressDownloadWeight = 50; 73 const unsigned DeltaPerformer::kProgressOperationsWeight = 50; 74 75 namespace { 76 const int kUpdateStateOperationInvalid = -1; 77 const int kMaxResumedUpdateFailures = 10; 78 #if USE_MTD 79 const int kUbiVolumeAttachTimeout = 5 * 60; 80 #endif 81 82 FileDescriptorPtr CreateFileDescriptor(const char* path) { 83 FileDescriptorPtr ret; 84 #if USE_MTD 85 if (strstr(path, "/dev/ubi") == path) { 86 if (!UbiFileDescriptor::IsUbi(path)) { 87 // The volume might not have been attached at boot time. 88 int volume_no; 89 if (utils::SplitPartitionName(path, nullptr, &volume_no)) { 90 utils::TryAttachingUbiVolume(volume_no, kUbiVolumeAttachTimeout); 91 } 92 } 93 if (UbiFileDescriptor::IsUbi(path)) { 94 LOG(INFO) << path << " is a UBI device."; 95 ret.reset(new UbiFileDescriptor); 96 } 97 } else if (MtdFileDescriptor::IsMtd(path)) { 98 LOG(INFO) << path << " is an MTD device."; 99 ret.reset(new MtdFileDescriptor); 100 } else { 101 LOG(INFO) << path << " is not an MTD nor a UBI device."; 102 #endif 103 ret.reset(new EintrSafeFileDescriptor); 104 #if USE_MTD 105 } 106 #endif 107 return ret; 108 } 109 110 // Opens path for read/write. On success returns an open FileDescriptor 111 // and sets *err to 0. On failure, sets *err to errno and returns nullptr. 112 FileDescriptorPtr OpenFile(const char* path, int mode, int* err) { 113 // Try to mark the block device read-only based on the mode. Ignore any 114 // failure since this won't work when passing regular files. 115 utils::SetBlockDeviceReadOnly(path, (mode & O_ACCMODE) == O_RDONLY); 116 117 FileDescriptorPtr fd = CreateFileDescriptor(path); 118 #if USE_MTD 119 // On NAND devices, we can either read, or write, but not both. So here we 120 // use O_WRONLY. 121 if (UbiFileDescriptor::IsUbi(path) || MtdFileDescriptor::IsMtd(path)) { 122 mode = O_WRONLY; 123 } 124 #endif 125 if (!fd->Open(path, mode, 000)) { 126 *err = errno; 127 PLOG(ERROR) << "Unable to open file " << path; 128 return nullptr; 129 } 130 *err = 0; 131 return fd; 132 } 133 134 // Discard the tail of the block device referenced by |fd|, from the offset 135 // |data_size| until the end of the block device. Returns whether the data was 136 // discarded. 137 bool DiscardPartitionTail(FileDescriptorPtr fd, uint64_t data_size) { 138 uint64_t part_size = fd->BlockDevSize(); 139 if (!part_size || part_size <= data_size) 140 return false; 141 142 const vector<int> requests = { 143 BLKSECDISCARD, 144 BLKDISCARD, 145 #ifdef BLKZEROOUT 146 BLKZEROOUT, 147 #endif 148 }; 149 for (int request : requests) { 150 int error = 0; 151 if (fd->BlkIoctl(request, data_size, part_size - data_size, &error) && 152 error == 0) { 153 return true; 154 } 155 LOG(WARNING) << "Error discarding the last " 156 << (part_size - data_size) / 1024 << " KiB using ioctl(" 157 << request << ")"; 158 } 159 return false; 160 } 161 162 } // namespace 163 164 165 // Computes the ratio of |part| and |total|, scaled to |norm|, using integer 166 // arithmetic. 167 static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) { 168 return part * norm / total; 169 } 170 171 void DeltaPerformer::LogProgress(const char* message_prefix) { 172 // Format operations total count and percentage. 173 string total_operations_str("?"); 174 string completed_percentage_str(""); 175 if (num_total_operations_) { 176 total_operations_str = std::to_string(num_total_operations_); 177 // Upcasting to 64-bit to avoid overflow, back to size_t for formatting. 178 completed_percentage_str = 179 base::StringPrintf(" (%" PRIu64 "%%)", 180 IntRatio(next_operation_num_, num_total_operations_, 181 100)); 182 } 183 184 // Format download total count and percentage. 185 size_t payload_size = install_plan_->payload_size; 186 string payload_size_str("?"); 187 string downloaded_percentage_str(""); 188 if (payload_size) { 189 payload_size_str = std::to_string(payload_size); 190 // Upcasting to 64-bit to avoid overflow, back to size_t for formatting. 191 downloaded_percentage_str = 192 base::StringPrintf(" (%" PRIu64 "%%)", 193 IntRatio(total_bytes_received_, payload_size, 100)); 194 } 195 196 LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_ 197 << "/" << total_operations_str << " operations" 198 << completed_percentage_str << ", " << total_bytes_received_ 199 << "/" << payload_size_str << " bytes downloaded" 200 << downloaded_percentage_str << ", overall progress " 201 << overall_progress_ << "%"; 202 } 203 204 void DeltaPerformer::UpdateOverallProgress(bool force_log, 205 const char* message_prefix) { 206 // Compute our download and overall progress. 207 unsigned new_overall_progress = 0; 208 static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100, 209 "Progress weights don't add up"); 210 // Only consider download progress if its total size is known; otherwise 211 // adjust the operations weight to compensate for the absence of download 212 // progress. Also, make sure to cap the download portion at 213 // kProgressDownloadWeight, in case we end up downloading more than we 214 // initially expected (this indicates a problem, but could generally happen). 215 // TODO(garnold) the correction of operations weight when we do not have the 216 // total payload size, as well as the conditional guard below, should both be 217 // eliminated once we ensure that the payload_size in the install plan is 218 // always given and is non-zero. This currently isn't the case during unit 219 // tests (see chromium-os:37969). 220 size_t payload_size = install_plan_->payload_size; 221 unsigned actual_operations_weight = kProgressOperationsWeight; 222 if (payload_size) 223 new_overall_progress += min( 224 static_cast<unsigned>(IntRatio(total_bytes_received_, payload_size, 225 kProgressDownloadWeight)), 226 kProgressDownloadWeight); 227 else 228 actual_operations_weight += kProgressDownloadWeight; 229 230 // Only add completed operations if their total number is known; we definitely 231 // expect an update to have at least one operation, so the expectation is that 232 // this will eventually reach |actual_operations_weight|. 233 if (num_total_operations_) 234 new_overall_progress += IntRatio(next_operation_num_, num_total_operations_, 235 actual_operations_weight); 236 237 // Progress ratio cannot recede, unless our assumptions about the total 238 // payload size, total number of operations, or the monotonicity of progress 239 // is breached. 240 if (new_overall_progress < overall_progress_) { 241 LOG(WARNING) << "progress counter receded from " << overall_progress_ 242 << "% down to " << new_overall_progress << "%; this is a bug"; 243 force_log = true; 244 } 245 overall_progress_ = new_overall_progress; 246 247 // Update chunk index, log as needed: if forced by called, or we completed a 248 // progress chunk, or a timeout has expired. 249 base::Time curr_time = base::Time::Now(); 250 unsigned curr_progress_chunk = 251 overall_progress_ * kProgressLogMaxChunks / 100; 252 if (force_log || curr_progress_chunk > last_progress_chunk_ || 253 curr_time > forced_progress_log_time_) { 254 forced_progress_log_time_ = curr_time + forced_progress_log_wait_; 255 LogProgress(message_prefix); 256 } 257 last_progress_chunk_ = curr_progress_chunk; 258 } 259 260 261 size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p, size_t* count_p, 262 size_t max) { 263 const size_t count = *count_p; 264 if (!count) 265 return 0; // Special case shortcut. 266 size_t read_len = min(count, max - buffer_.size()); 267 const char* bytes_start = *bytes_p; 268 const char* bytes_end = bytes_start + read_len; 269 buffer_.insert(buffer_.end(), bytes_start, bytes_end); 270 *bytes_p = bytes_end; 271 *count_p = count - read_len; 272 return read_len; 273 } 274 275 276 bool DeltaPerformer::HandleOpResult(bool op_result, const char* op_type_name, 277 ErrorCode* error) { 278 if (op_result) 279 return true; 280 281 size_t partition_first_op_num = 282 current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0; 283 LOG(ERROR) << "Failed to perform " << op_type_name << " operation " 284 << next_operation_num_ << ", which is the operation " 285 << next_operation_num_ - partition_first_op_num 286 << " in partition \"" 287 << partitions_[current_partition_].partition_name() << "\""; 288 if (*error == ErrorCode::kSuccess) 289 *error = ErrorCode::kDownloadOperationExecutionError; 290 return false; 291 } 292 293 int DeltaPerformer::Close() { 294 int err = -CloseCurrentPartition(); 295 LOG_IF(ERROR, !payload_hash_calculator_.Finalize() || 296 !signed_hash_calculator_.Finalize()) 297 << "Unable to finalize the hash."; 298 if (!buffer_.empty()) { 299 LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes"; 300 if (err >= 0) 301 err = 1; 302 } 303 return -err; 304 } 305 306 int DeltaPerformer::CloseCurrentPartition() { 307 int err = 0; 308 if (source_fd_ && !source_fd_->Close()) { 309 err = errno; 310 PLOG(ERROR) << "Error closing source partition"; 311 if (!err) 312 err = 1; 313 } 314 source_fd_.reset(); 315 source_path_.clear(); 316 317 if (target_fd_ && !target_fd_->Close()) { 318 err = errno; 319 PLOG(ERROR) << "Error closing target partition"; 320 if (!err) 321 err = 1; 322 } 323 target_fd_.reset(); 324 target_path_.clear(); 325 return -err; 326 } 327 328 bool DeltaPerformer::OpenCurrentPartition() { 329 if (current_partition_ >= partitions_.size()) 330 return false; 331 332 const PartitionUpdate& partition = partitions_[current_partition_]; 333 // Open source fds if we have a delta payload with minor version >= 2. 334 if (install_plan_->payload_type == InstallPayloadType::kDelta && 335 GetMinorVersion() != kInPlaceMinorPayloadVersion) { 336 source_path_ = install_plan_->partitions[current_partition_].source_path; 337 int err; 338 source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, &err); 339 if (!source_fd_) { 340 LOG(ERROR) << "Unable to open source partition " 341 << partition.partition_name() << " on slot " 342 << BootControlInterface::SlotName(install_plan_->source_slot) 343 << ", file " << source_path_; 344 return false; 345 } 346 } 347 348 target_path_ = install_plan_->partitions[current_partition_].target_path; 349 int err; 350 target_fd_ = OpenFile(target_path_.c_str(), O_RDWR, &err); 351 if (!target_fd_) { 352 LOG(ERROR) << "Unable to open target partition " 353 << partition.partition_name() << " on slot " 354 << BootControlInterface::SlotName(install_plan_->target_slot) 355 << ", file " << target_path_; 356 return false; 357 } 358 359 LOG(INFO) << "Applying " << partition.operations().size() 360 << " operations to partition \"" << partition.partition_name() 361 << "\""; 362 363 // Discard the end of the partition, but ignore failures. 364 DiscardPartitionTail( 365 target_fd_, install_plan_->partitions[current_partition_].target_size); 366 367 return true; 368 } 369 370 namespace { 371 372 void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) { 373 string sha256 = brillo::data_encoding::Base64Encode(info.hash()); 374 LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256 375 << " size: " << info.size(); 376 } 377 378 void LogPartitionInfo(const vector<PartitionUpdate>& partitions) { 379 for (const PartitionUpdate& partition : partitions) { 380 LogPartitionInfoHash(partition.old_partition_info(), 381 "old " + partition.partition_name()); 382 LogPartitionInfoHash(partition.new_partition_info(), 383 "new " + partition.partition_name()); 384 } 385 } 386 387 } // namespace 388 389 bool DeltaPerformer::GetMetadataSignatureSizeOffset( 390 uint64_t* out_offset) const { 391 if (GetMajorVersion() == kBrilloMajorPayloadVersion) { 392 *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize; 393 return true; 394 } 395 return false; 396 } 397 398 bool DeltaPerformer::GetManifestOffset(uint64_t* out_offset) const { 399 // Actual manifest begins right after the manifest size field or 400 // metadata signature size field if major version >= 2. 401 if (major_payload_version_ == kChromeOSMajorPayloadVersion) { 402 *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize; 403 return true; 404 } 405 if (major_payload_version_ == kBrilloMajorPayloadVersion) { 406 *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize + 407 kDeltaMetadataSignatureSizeSize; 408 return true; 409 } 410 LOG(ERROR) << "Unknown major payload version: " << major_payload_version_; 411 return false; 412 } 413 414 uint64_t DeltaPerformer::GetMetadataSize() const { 415 return metadata_size_; 416 } 417 418 uint64_t DeltaPerformer::GetMajorVersion() const { 419 return major_payload_version_; 420 } 421 422 uint32_t DeltaPerformer::GetMinorVersion() const { 423 if (manifest_.has_minor_version()) { 424 return manifest_.minor_version(); 425 } else { 426 return install_plan_->payload_type == InstallPayloadType::kDelta 427 ? kSupportedMinorPayloadVersion 428 : kFullPayloadMinorVersion; 429 } 430 } 431 432 bool DeltaPerformer::GetManifest(DeltaArchiveManifest* out_manifest_p) const { 433 if (!manifest_parsed_) 434 return false; 435 *out_manifest_p = manifest_; 436 return true; 437 } 438 439 bool DeltaPerformer::IsHeaderParsed() const { 440 return metadata_size_ != 0; 441 } 442 443 DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata( 444 const brillo::Blob& payload, ErrorCode* error) { 445 *error = ErrorCode::kSuccess; 446 uint64_t manifest_offset; 447 448 if (!IsHeaderParsed()) { 449 // Ensure we have data to cover the major payload version. 450 if (payload.size() < kDeltaManifestSizeOffset) 451 return kMetadataParseInsufficientData; 452 453 // Validate the magic string. 454 if (memcmp(payload.data(), kDeltaMagic, sizeof(kDeltaMagic)) != 0) { 455 LOG(ERROR) << "Bad payload format -- invalid delta magic."; 456 *error = ErrorCode::kDownloadInvalidMetadataMagicString; 457 return kMetadataParseError; 458 } 459 460 // Extract the payload version from the metadata. 461 static_assert(sizeof(major_payload_version_) == kDeltaVersionSize, 462 "Major payload version size mismatch"); 463 memcpy(&major_payload_version_, 464 &payload[kDeltaVersionOffset], 465 kDeltaVersionSize); 466 // switch big endian to host 467 major_payload_version_ = be64toh(major_payload_version_); 468 469 if (major_payload_version_ != supported_major_version_ && 470 major_payload_version_ != kChromeOSMajorPayloadVersion) { 471 LOG(ERROR) << "Bad payload format -- unsupported payload version: " 472 << major_payload_version_; 473 *error = ErrorCode::kUnsupportedMajorPayloadVersion; 474 return kMetadataParseError; 475 } 476 477 // Get the manifest offset now that we have payload version. 478 if (!GetManifestOffset(&manifest_offset)) { 479 *error = ErrorCode::kUnsupportedMajorPayloadVersion; 480 return kMetadataParseError; 481 } 482 // Check again with the manifest offset. 483 if (payload.size() < manifest_offset) 484 return kMetadataParseInsufficientData; 485 486 // Next, parse the manifest size. 487 static_assert(sizeof(manifest_size_) == kDeltaManifestSizeSize, 488 "manifest_size size mismatch"); 489 memcpy(&manifest_size_, 490 &payload[kDeltaManifestSizeOffset], 491 kDeltaManifestSizeSize); 492 manifest_size_ = be64toh(manifest_size_); // switch big endian to host 493 494 if (GetMajorVersion() == kBrilloMajorPayloadVersion) { 495 // Parse the metadata signature size. 496 static_assert(sizeof(metadata_signature_size_) == 497 kDeltaMetadataSignatureSizeSize, 498 "metadata_signature_size size mismatch"); 499 uint64_t metadata_signature_size_offset; 500 if (!GetMetadataSignatureSizeOffset(&metadata_signature_size_offset)) { 501 *error = ErrorCode::kError; 502 return kMetadataParseError; 503 } 504 memcpy(&metadata_signature_size_, 505 &payload[metadata_signature_size_offset], 506 kDeltaMetadataSignatureSizeSize); 507 metadata_signature_size_ = be32toh(metadata_signature_size_); 508 } 509 510 // If the metadata size is present in install plan, check for it immediately 511 // even before waiting for that many number of bytes to be downloaded in the 512 // payload. This will prevent any attack which relies on us downloading data 513 // beyond the expected metadata size. 514 metadata_size_ = manifest_offset + manifest_size_; 515 if (install_plan_->hash_checks_mandatory) { 516 if (install_plan_->metadata_size != metadata_size_) { 517 LOG(ERROR) << "Mandatory metadata size in Omaha response (" 518 << install_plan_->metadata_size 519 << ") is missing/incorrect, actual = " << metadata_size_; 520 *error = ErrorCode::kDownloadInvalidMetadataSize; 521 return kMetadataParseError; 522 } 523 } 524 } 525 526 // Now that we have validated the metadata size, we should wait for the full 527 // metadata and its signature (if exist) to be read in before we can parse it. 528 if (payload.size() < metadata_size_ + metadata_signature_size_) 529 return kMetadataParseInsufficientData; 530 531 // Log whether we validated the size or simply trusting what's in the payload 532 // here. This is logged here (after we received the full metadata data) so 533 // that we just log once (instead of logging n times) if it takes n 534 // DeltaPerformer::Write calls to download the full manifest. 535 if (install_plan_->metadata_size == metadata_size_) { 536 LOG(INFO) << "Manifest size in payload matches expected value from Omaha"; 537 } else { 538 // For mandatory-cases, we'd have already returned a kMetadataParseError 539 // above. We'll be here only for non-mandatory cases. Just send a UMA stat. 540 LOG(WARNING) << "Ignoring missing/incorrect metadata size (" 541 << install_plan_->metadata_size 542 << ") in Omaha response as validation is not mandatory. " 543 << "Trusting metadata size in payload = " << metadata_size_; 544 } 545 546 // We have the full metadata in |payload|. Verify its integrity 547 // and authenticity based on the information we have in Omaha response. 548 *error = ValidateMetadataSignature(payload); 549 if (*error != ErrorCode::kSuccess) { 550 if (install_plan_->hash_checks_mandatory) { 551 // The autoupdate_CatchBadSignatures test checks for this string 552 // in log-files. Keep in sync. 553 LOG(ERROR) << "Mandatory metadata signature validation failed"; 554 return kMetadataParseError; 555 } 556 557 // For non-mandatory cases, just send a UMA stat. 558 LOG(WARNING) << "Ignoring metadata signature validation failures"; 559 *error = ErrorCode::kSuccess; 560 } 561 562 if (!GetManifestOffset(&manifest_offset)) { 563 *error = ErrorCode::kUnsupportedMajorPayloadVersion; 564 return kMetadataParseError; 565 } 566 // The payload metadata is deemed valid, it's safe to parse the protobuf. 567 if (!manifest_.ParseFromArray(&payload[manifest_offset], manifest_size_)) { 568 LOG(ERROR) << "Unable to parse manifest in update file."; 569 *error = ErrorCode::kDownloadManifestParseError; 570 return kMetadataParseError; 571 } 572 573 manifest_parsed_ = true; 574 return kMetadataParseSuccess; 575 } 576 577 // Wrapper around write. Returns true if all requested bytes 578 // were written, or false on any error, regardless of progress 579 // and stores an action exit code in |error|. 580 bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode *error) { 581 *error = ErrorCode::kSuccess; 582 583 const char* c_bytes = reinterpret_cast<const char*>(bytes); 584 585 // Update the total byte downloaded count and the progress logs. 586 total_bytes_received_ += count; 587 UpdateOverallProgress(false, "Completed "); 588 589 while (!manifest_valid_) { 590 // Read data up to the needed limit; this is either maximium payload header 591 // size, or the full metadata size (once it becomes known). 592 const bool do_read_header = !IsHeaderParsed(); 593 CopyDataToBuffer(&c_bytes, &count, 594 (do_read_header ? kMaxPayloadHeaderSize : 595 metadata_size_ + metadata_signature_size_)); 596 597 MetadataParseResult result = ParsePayloadMetadata(buffer_, error); 598 if (result == kMetadataParseError) 599 return false; 600 if (result == kMetadataParseInsufficientData) { 601 // If we just processed the header, make an attempt on the manifest. 602 if (do_read_header && IsHeaderParsed()) 603 continue; 604 605 return true; 606 } 607 608 // Checks the integrity of the payload manifest. 609 if ((*error = ValidateManifest()) != ErrorCode::kSuccess) 610 return false; 611 manifest_valid_ = true; 612 613 // Clear the download buffer. 614 DiscardBuffer(false, metadata_size_); 615 616 // This populates |partitions_| and the |install_plan.partitions| with the 617 // list of partitions from the manifest. 618 if (!ParseManifestPartitions(error)) 619 return false; 620 621 num_total_operations_ = 0; 622 for (const auto& partition : partitions_) { 623 num_total_operations_ += partition.operations_size(); 624 acc_num_operations_.push_back(num_total_operations_); 625 } 626 627 LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize, 628 metadata_size_)) 629 << "Unable to save the manifest metadata size."; 630 LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestSignatureSize, 631 metadata_signature_size_)) 632 << "Unable to save the manifest signature size."; 633 634 if (!PrimeUpdateState()) { 635 *error = ErrorCode::kDownloadStateInitializationError; 636 LOG(ERROR) << "Unable to prime the update state."; 637 return false; 638 } 639 640 if (!OpenCurrentPartition()) { 641 *error = ErrorCode::kInstallDeviceOpenError; 642 return false; 643 } 644 645 if (next_operation_num_ > 0) 646 UpdateOverallProgress(true, "Resuming after "); 647 LOG(INFO) << "Starting to apply update payload operations"; 648 } 649 650 while (next_operation_num_ < num_total_operations_) { 651 // Check if we should cancel the current attempt for any reason. 652 // In this case, *error will have already been populated with the reason 653 // why we're canceling. 654 if (download_delegate_ && download_delegate_->ShouldCancel(error)) 655 return false; 656 657 // We know there are more operations to perform because we didn't reach the 658 // |num_total_operations_| limit yet. 659 while (next_operation_num_ >= acc_num_operations_[current_partition_]) { 660 CloseCurrentPartition(); 661 current_partition_++; 662 if (!OpenCurrentPartition()) { 663 *error = ErrorCode::kInstallDeviceOpenError; 664 return false; 665 } 666 } 667 const size_t partition_operation_num = next_operation_num_ - ( 668 current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0); 669 670 const InstallOperation& op = 671 partitions_[current_partition_].operations(partition_operation_num); 672 673 CopyDataToBuffer(&c_bytes, &count, op.data_length()); 674 675 // Check whether we received all of the next operation's data payload. 676 if (!CanPerformInstallOperation(op)) 677 return true; 678 679 // Validate the operation only if the metadata signature is present. 680 // Otherwise, keep the old behavior. This serves as a knob to disable 681 // the validation logic in case we find some regression after rollout. 682 // NOTE: If hash checks are mandatory and if metadata_signature is empty, 683 // we would have already failed in ParsePayloadMetadata method and thus not 684 // even be here. So no need to handle that case again here. 685 if (!install_plan_->metadata_signature.empty()) { 686 // Note: Validate must be called only if CanPerformInstallOperation is 687 // called. Otherwise, we might be failing operations before even if there 688 // isn't sufficient data to compute the proper hash. 689 *error = ValidateOperationHash(op); 690 if (*error != ErrorCode::kSuccess) { 691 if (install_plan_->hash_checks_mandatory) { 692 LOG(ERROR) << "Mandatory operation hash check failed"; 693 return false; 694 } 695 696 // For non-mandatory cases, just send a UMA stat. 697 LOG(WARNING) << "Ignoring operation validation errors"; 698 *error = ErrorCode::kSuccess; 699 } 700 } 701 702 // Makes sure we unblock exit when this operation completes. 703 ScopedTerminatorExitUnblocker exit_unblocker = 704 ScopedTerminatorExitUnblocker(); // Avoids a compiler unused var bug. 705 706 bool op_result; 707 switch (op.type()) { 708 case InstallOperation::REPLACE: 709 case InstallOperation::REPLACE_BZ: 710 case InstallOperation::REPLACE_XZ: 711 op_result = PerformReplaceOperation(op); 712 break; 713 case InstallOperation::ZERO: 714 case InstallOperation::DISCARD: 715 op_result = PerformZeroOrDiscardOperation(op); 716 break; 717 case InstallOperation::MOVE: 718 op_result = PerformMoveOperation(op); 719 break; 720 case InstallOperation::BSDIFF: 721 op_result = PerformBsdiffOperation(op); 722 break; 723 case InstallOperation::SOURCE_COPY: 724 op_result = PerformSourceCopyOperation(op, error); 725 break; 726 case InstallOperation::SOURCE_BSDIFF: 727 op_result = PerformSourceBsdiffOperation(op, error); 728 break; 729 default: 730 op_result = false; 731 } 732 if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error)) 733 return false; 734 735 next_operation_num_++; 736 UpdateOverallProgress(false, "Completed "); 737 CheckpointUpdateProgress(); 738 } 739 740 // In major version 2, we don't add dummy operation to the payload. 741 // If we already extracted the signature we should skip this step. 742 if (major_payload_version_ == kBrilloMajorPayloadVersion && 743 manifest_.has_signatures_offset() && manifest_.has_signatures_size() && 744 signatures_message_data_.empty()) { 745 if (manifest_.signatures_offset() != buffer_offset_) { 746 LOG(ERROR) << "Payload signatures offset points to blob offset " 747 << manifest_.signatures_offset() 748 << " but signatures are expected at offset " 749 << buffer_offset_; 750 *error = ErrorCode::kDownloadPayloadVerificationError; 751 return false; 752 } 753 CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size()); 754 // Needs more data to cover entire signature. 755 if (buffer_.size() < manifest_.signatures_size()) 756 return true; 757 if (!ExtractSignatureMessage()) { 758 LOG(ERROR) << "Extract payload signature failed."; 759 *error = ErrorCode::kDownloadPayloadVerificationError; 760 return false; 761 } 762 DiscardBuffer(true, 0); 763 // Since we extracted the SignatureMessage we need to advance the 764 // checkpoint, otherwise we would reload the signature and try to extract 765 // it again. 766 CheckpointUpdateProgress(); 767 } 768 769 return true; 770 } 771 772 bool DeltaPerformer::IsManifestValid() { 773 return manifest_valid_; 774 } 775 776 bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) { 777 if (major_payload_version_ == kBrilloMajorPayloadVersion) { 778 partitions_.clear(); 779 for (const PartitionUpdate& partition : manifest_.partitions()) { 780 partitions_.push_back(partition); 781 } 782 manifest_.clear_partitions(); 783 } else if (major_payload_version_ == kChromeOSMajorPayloadVersion) { 784 LOG(INFO) << "Converting update information from old format."; 785 PartitionUpdate root_part; 786 root_part.set_partition_name(kLegacyPartitionNameRoot); 787 #ifdef __ANDROID__ 788 LOG(WARNING) << "Legacy payload major version provided to an Android " 789 "build. Assuming no post-install. Please use major version " 790 "2 or newer."; 791 root_part.set_run_postinstall(false); 792 #else 793 root_part.set_run_postinstall(true); 794 #endif // __ANDROID__ 795 if (manifest_.has_old_rootfs_info()) { 796 *root_part.mutable_old_partition_info() = manifest_.old_rootfs_info(); 797 manifest_.clear_old_rootfs_info(); 798 } 799 if (manifest_.has_new_rootfs_info()) { 800 *root_part.mutable_new_partition_info() = manifest_.new_rootfs_info(); 801 manifest_.clear_new_rootfs_info(); 802 } 803 *root_part.mutable_operations() = manifest_.install_operations(); 804 manifest_.clear_install_operations(); 805 partitions_.push_back(std::move(root_part)); 806 807 PartitionUpdate kern_part; 808 kern_part.set_partition_name(kLegacyPartitionNameKernel); 809 kern_part.set_run_postinstall(false); 810 if (manifest_.has_old_kernel_info()) { 811 *kern_part.mutable_old_partition_info() = manifest_.old_kernel_info(); 812 manifest_.clear_old_kernel_info(); 813 } 814 if (manifest_.has_new_kernel_info()) { 815 *kern_part.mutable_new_partition_info() = manifest_.new_kernel_info(); 816 manifest_.clear_new_kernel_info(); 817 } 818 *kern_part.mutable_operations() = manifest_.kernel_install_operations(); 819 manifest_.clear_kernel_install_operations(); 820 partitions_.push_back(std::move(kern_part)); 821 } 822 823 // TODO(deymo): Remove this block of code once we switched to optional 824 // source partition verification. This list of partitions in the InstallPlan 825 // is initialized with the expected hashes in the payload major version 1, 826 // so we need to check those now if already set. See b/23182225. 827 if (!install_plan_->partitions.empty()) { 828 if (!VerifySourcePartitions()) { 829 *error = ErrorCode::kDownloadStateInitializationError; 830 return false; 831 } 832 } 833 834 // Fill in the InstallPlan::partitions based on the partitions from the 835 // payload. 836 install_plan_->partitions.clear(); 837 for (const auto& partition : partitions_) { 838 InstallPlan::Partition install_part; 839 install_part.name = partition.partition_name(); 840 install_part.run_postinstall = 841 partition.has_run_postinstall() && partition.run_postinstall(); 842 if (install_part.run_postinstall) { 843 install_part.postinstall_path = 844 (partition.has_postinstall_path() ? partition.postinstall_path() 845 : kPostinstallDefaultScript); 846 install_part.filesystem_type = partition.filesystem_type(); 847 install_part.postinstall_optional = partition.postinstall_optional(); 848 } 849 850 if (partition.has_old_partition_info()) { 851 const PartitionInfo& info = partition.old_partition_info(); 852 install_part.source_size = info.size(); 853 install_part.source_hash.assign(info.hash().begin(), info.hash().end()); 854 } 855 856 if (!partition.has_new_partition_info()) { 857 LOG(ERROR) << "Unable to get new partition hash info on partition " 858 << install_part.name << "."; 859 *error = ErrorCode::kDownloadNewPartitionInfoError; 860 return false; 861 } 862 const PartitionInfo& info = partition.new_partition_info(); 863 install_part.target_size = info.size(); 864 install_part.target_hash.assign(info.hash().begin(), info.hash().end()); 865 866 install_plan_->partitions.push_back(install_part); 867 } 868 869 if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) { 870 LOG(ERROR) << "Unable to determine all the partition devices."; 871 *error = ErrorCode::kInstallDeviceOpenError; 872 return false; 873 } 874 LogPartitionInfo(partitions_); 875 return true; 876 } 877 878 bool DeltaPerformer::CanPerformInstallOperation( 879 const chromeos_update_engine::InstallOperation& operation) { 880 // If we don't have a data blob we can apply it right away. 881 if (!operation.has_data_offset() && !operation.has_data_length()) 882 return true; 883 884 // See if we have the entire data blob in the buffer 885 if (operation.data_offset() < buffer_offset_) { 886 LOG(ERROR) << "we threw away data it seems?"; 887 return false; 888 } 889 890 return (operation.data_offset() + operation.data_length() <= 891 buffer_offset_ + buffer_.size()); 892 } 893 894 bool DeltaPerformer::PerformReplaceOperation( 895 const InstallOperation& operation) { 896 CHECK(operation.type() == InstallOperation::REPLACE || 897 operation.type() == InstallOperation::REPLACE_BZ || 898 operation.type() == InstallOperation::REPLACE_XZ); 899 900 // Since we delete data off the beginning of the buffer as we use it, 901 // the data we need should be exactly at the beginning of the buffer. 902 TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); 903 TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); 904 905 // Extract the signature message if it's in this operation. 906 if (ExtractSignatureMessageFromOperation(operation)) { 907 // If this is dummy replace operation, we ignore it after extracting the 908 // signature. 909 DiscardBuffer(true, 0); 910 return true; 911 } 912 913 // Setup the ExtentWriter stack based on the operation type. 914 std::unique_ptr<ExtentWriter> writer = 915 brillo::make_unique_ptr(new ZeroPadExtentWriter( 916 brillo::make_unique_ptr(new DirectExtentWriter()))); 917 918 if (operation.type() == InstallOperation::REPLACE_BZ) { 919 writer.reset(new BzipExtentWriter(std::move(writer))); 920 } else if (operation.type() == InstallOperation::REPLACE_XZ) { 921 writer.reset(new XzExtentWriter(std::move(writer))); 922 } 923 924 // Create a vector of extents to pass to the ExtentWriter. 925 vector<Extent> extents; 926 for (int i = 0; i < operation.dst_extents_size(); i++) { 927 extents.push_back(operation.dst_extents(i)); 928 } 929 930 TEST_AND_RETURN_FALSE(writer->Init(target_fd_, extents, block_size_)); 931 TEST_AND_RETURN_FALSE(writer->Write(buffer_.data(), operation.data_length())); 932 TEST_AND_RETURN_FALSE(writer->End()); 933 934 // Update buffer 935 DiscardBuffer(true, buffer_.size()); 936 return true; 937 } 938 939 bool DeltaPerformer::PerformZeroOrDiscardOperation( 940 const InstallOperation& operation) { 941 CHECK(operation.type() == InstallOperation::DISCARD || 942 operation.type() == InstallOperation::ZERO); 943 944 // These operations have no blob. 945 TEST_AND_RETURN_FALSE(!operation.has_data_offset()); 946 TEST_AND_RETURN_FALSE(!operation.has_data_length()); 947 948 #ifdef BLKZEROOUT 949 bool attempt_ioctl = true; 950 int request = 951 (operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD); 952 #else // !defined(BLKZEROOUT) 953 bool attempt_ioctl = false; 954 int request = 0; 955 #endif // !defined(BLKZEROOUT) 956 957 brillo::Blob zeros; 958 for (int i = 0; i < operation.dst_extents_size(); i++) { 959 Extent extent = operation.dst_extents(i); 960 const uint64_t start = extent.start_block() * block_size_; 961 const uint64_t length = extent.num_blocks() * block_size_; 962 if (attempt_ioctl) { 963 int result = 0; 964 if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0) 965 continue; 966 attempt_ioctl = false; 967 zeros.resize(16 * block_size_); 968 } 969 // In case of failure, we fall back to writing 0 to the selected region. 970 for (uint64_t offset = 0; offset < length; offset += zeros.size()) { 971 uint64_t chunk_length = min(length - offset, 972 static_cast<uint64_t>(zeros.size())); 973 TEST_AND_RETURN_FALSE( 974 utils::PWriteAll(target_fd_, zeros.data(), chunk_length, start + offset)); 975 } 976 } 977 return true; 978 } 979 980 bool DeltaPerformer::PerformMoveOperation(const InstallOperation& operation) { 981 // Calculate buffer size. Note, this function doesn't do a sliding 982 // window to copy in case the source and destination blocks overlap. 983 // If we wanted to do a sliding window, we could program the server 984 // to generate deltas that effectively did a sliding window. 985 986 uint64_t blocks_to_read = 0; 987 for (int i = 0; i < operation.src_extents_size(); i++) 988 blocks_to_read += operation.src_extents(i).num_blocks(); 989 990 uint64_t blocks_to_write = 0; 991 for (int i = 0; i < operation.dst_extents_size(); i++) 992 blocks_to_write += operation.dst_extents(i).num_blocks(); 993 994 DCHECK_EQ(blocks_to_write, blocks_to_read); 995 brillo::Blob buf(blocks_to_write * block_size_); 996 997 // Read in bytes. 998 ssize_t bytes_read = 0; 999 for (int i = 0; i < operation.src_extents_size(); i++) { 1000 ssize_t bytes_read_this_iteration = 0; 1001 const Extent& extent = operation.src_extents(i); 1002 const size_t bytes = extent.num_blocks() * block_size_; 1003 TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole); 1004 TEST_AND_RETURN_FALSE(utils::PReadAll(target_fd_, 1005 &buf[bytes_read], 1006 bytes, 1007 extent.start_block() * block_size_, 1008 &bytes_read_this_iteration)); 1009 TEST_AND_RETURN_FALSE( 1010 bytes_read_this_iteration == static_cast<ssize_t>(bytes)); 1011 bytes_read += bytes_read_this_iteration; 1012 } 1013 1014 // Write bytes out. 1015 ssize_t bytes_written = 0; 1016 for (int i = 0; i < operation.dst_extents_size(); i++) { 1017 const Extent& extent = operation.dst_extents(i); 1018 const size_t bytes = extent.num_blocks() * block_size_; 1019 TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole); 1020 TEST_AND_RETURN_FALSE(utils::PWriteAll(target_fd_, 1021 &buf[bytes_written], 1022 bytes, 1023 extent.start_block() * block_size_)); 1024 bytes_written += bytes; 1025 } 1026 DCHECK_EQ(bytes_written, bytes_read); 1027 DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size())); 1028 return true; 1029 } 1030 1031 namespace { 1032 1033 // Takes |extents| and fills an empty vector |blocks| with a block index for 1034 // each block in |extents|. For example, [(3, 2), (8, 1)] would give [3, 4, 8]. 1035 void ExtentsToBlocks(const RepeatedPtrField<Extent>& extents, 1036 vector<uint64_t>* blocks) { 1037 for (Extent ext : extents) { 1038 for (uint64_t j = 0; j < ext.num_blocks(); j++) 1039 blocks->push_back(ext.start_block() + j); 1040 } 1041 } 1042 1043 // Takes |extents| and returns the number of blocks in those extents. 1044 uint64_t GetBlockCount(const RepeatedPtrField<Extent>& extents) { 1045 uint64_t sum = 0; 1046 for (Extent ext : extents) { 1047 sum += ext.num_blocks(); 1048 } 1049 return sum; 1050 } 1051 1052 // Compare |calculated_hash| with source hash in |operation|, return false and 1053 // dump hash and set |error| if don't match. 1054 bool ValidateSourceHash(const brillo::Blob& calculated_hash, 1055 const InstallOperation& operation, 1056 ErrorCode* error) { 1057 brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(), 1058 operation.src_sha256_hash().end()); 1059 if (calculated_hash != expected_source_hash) { 1060 LOG(ERROR) << "The hash of the source data on disk for this operation " 1061 << "doesn't match the expected value. This could mean that the " 1062 << "delta update payload was targeted for another version, or " 1063 << "that the source partition was modified after it was " 1064 << "installed, for example, by mounting a filesystem."; 1065 LOG(ERROR) << "Expected: sha256|hex = " 1066 << base::HexEncode(expected_source_hash.data(), 1067 expected_source_hash.size()); 1068 LOG(ERROR) << "Calculated: sha256|hex = " 1069 << base::HexEncode(calculated_hash.data(), 1070 calculated_hash.size()); 1071 1072 vector<string> source_extents; 1073 for (const Extent& ext : operation.src_extents()) { 1074 source_extents.push_back(base::StringPrintf( 1075 "%" PRIu64 ":%" PRIu64, ext.start_block(), ext.num_blocks())); 1076 } 1077 LOG(ERROR) << "Operation source (offset:size) in blocks: " 1078 << base::JoinString(source_extents, ","); 1079 1080 *error = ErrorCode::kDownloadStateInitializationError; 1081 return false; 1082 } 1083 return true; 1084 } 1085 1086 } // namespace 1087 1088 bool DeltaPerformer::PerformSourceCopyOperation( 1089 const InstallOperation& operation, ErrorCode* error) { 1090 if (operation.has_src_length()) 1091 TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0); 1092 if (operation.has_dst_length()) 1093 TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0); 1094 1095 uint64_t blocks_to_read = GetBlockCount(operation.src_extents()); 1096 uint64_t blocks_to_write = GetBlockCount(operation.dst_extents()); 1097 TEST_AND_RETURN_FALSE(blocks_to_write == blocks_to_read); 1098 1099 // Create vectors of all the individual src/dst blocks. 1100 vector<uint64_t> src_blocks; 1101 vector<uint64_t> dst_blocks; 1102 ExtentsToBlocks(operation.src_extents(), &src_blocks); 1103 ExtentsToBlocks(operation.dst_extents(), &dst_blocks); 1104 DCHECK_EQ(src_blocks.size(), blocks_to_read); 1105 DCHECK_EQ(src_blocks.size(), dst_blocks.size()); 1106 1107 brillo::Blob buf(block_size_); 1108 ssize_t bytes_read = 0; 1109 HashCalculator source_hasher; 1110 // Read/write one block at a time. 1111 for (uint64_t i = 0; i < blocks_to_read; i++) { 1112 ssize_t bytes_read_this_iteration = 0; 1113 uint64_t src_block = src_blocks[i]; 1114 uint64_t dst_block = dst_blocks[i]; 1115 1116 // Read in bytes. 1117 TEST_AND_RETURN_FALSE( 1118 utils::PReadAll(source_fd_, 1119 buf.data(), 1120 block_size_, 1121 src_block * block_size_, 1122 &bytes_read_this_iteration)); 1123 1124 // Write bytes out. 1125 TEST_AND_RETURN_FALSE( 1126 utils::PWriteAll(target_fd_, 1127 buf.data(), 1128 block_size_, 1129 dst_block * block_size_)); 1130 1131 bytes_read += bytes_read_this_iteration; 1132 TEST_AND_RETURN_FALSE(bytes_read_this_iteration == 1133 static_cast<ssize_t>(block_size_)); 1134 1135 if (operation.has_src_sha256_hash()) 1136 TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), buf.size())); 1137 } 1138 1139 if (operation.has_src_sha256_hash()) { 1140 TEST_AND_RETURN_FALSE(source_hasher.Finalize()); 1141 TEST_AND_RETURN_FALSE( 1142 ValidateSourceHash(source_hasher.raw_hash(), operation, error)); 1143 } 1144 1145 DCHECK_EQ(bytes_read, static_cast<ssize_t>(blocks_to_read * block_size_)); 1146 return true; 1147 } 1148 1149 bool DeltaPerformer::ExtentsToBsdiffPositionsString( 1150 const RepeatedPtrField<Extent>& extents, 1151 uint64_t block_size, 1152 uint64_t full_length, 1153 string* positions_string) { 1154 string ret; 1155 uint64_t length = 0; 1156 for (int i = 0; i < extents.size(); i++) { 1157 Extent extent = extents.Get(i); 1158 int64_t start = extent.start_block() * block_size; 1159 uint64_t this_length = min(full_length - length, 1160 extent.num_blocks() * block_size); 1161 ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length); 1162 length += this_length; 1163 } 1164 TEST_AND_RETURN_FALSE(length == full_length); 1165 if (!ret.empty()) 1166 ret.resize(ret.size() - 1); // Strip trailing comma off 1167 *positions_string = ret; 1168 return true; 1169 } 1170 1171 bool DeltaPerformer::PerformBsdiffOperation(const InstallOperation& operation) { 1172 // Since we delete data off the beginning of the buffer as we use it, 1173 // the data we need should be exactly at the beginning of the buffer. 1174 TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); 1175 TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); 1176 1177 string input_positions; 1178 TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(), 1179 block_size_, 1180 operation.src_length(), 1181 &input_positions)); 1182 string output_positions; 1183 TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(), 1184 block_size_, 1185 operation.dst_length(), 1186 &output_positions)); 1187 1188 string temp_filename; 1189 TEST_AND_RETURN_FALSE(utils::MakeTempFile("au_patch.XXXXXX", 1190 &temp_filename, 1191 nullptr)); 1192 ScopedPathUnlinker path_unlinker(temp_filename); 1193 { 1194 int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644); 1195 ScopedFdCloser fd_closer(&fd); 1196 TEST_AND_RETURN_FALSE( 1197 utils::WriteAll(fd, buffer_.data(), operation.data_length())); 1198 } 1199 1200 // Update the buffer to release the patch data memory as soon as the patch 1201 // file is written out. 1202 DiscardBuffer(true, buffer_.size()); 1203 1204 vector<string> cmd{kBspatchPath, target_path_, target_path_, temp_filename, 1205 input_positions, output_positions}; 1206 1207 int return_code = 0; 1208 TEST_AND_RETURN_FALSE( 1209 Subprocess::SynchronousExecFlags(cmd, Subprocess::kSearchPath, 1210 &return_code, nullptr)); 1211 TEST_AND_RETURN_FALSE(return_code == 0); 1212 1213 if (operation.dst_length() % block_size_) { 1214 // Zero out rest of final block. 1215 // TODO(adlr): build this into bspatch; it's more efficient that way. 1216 const Extent& last_extent = 1217 operation.dst_extents(operation.dst_extents_size() - 1); 1218 const uint64_t end_byte = 1219 (last_extent.start_block() + last_extent.num_blocks()) * block_size_; 1220 const uint64_t begin_byte = 1221 end_byte - (block_size_ - operation.dst_length() % block_size_); 1222 brillo::Blob zeros(end_byte - begin_byte); 1223 TEST_AND_RETURN_FALSE( 1224 utils::PWriteAll(target_fd_, zeros.data(), end_byte - begin_byte, begin_byte)); 1225 } 1226 return true; 1227 } 1228 1229 bool DeltaPerformer::PerformSourceBsdiffOperation( 1230 const InstallOperation& operation, ErrorCode* error) { 1231 // Since we delete data off the beginning of the buffer as we use it, 1232 // the data we need should be exactly at the beginning of the buffer. 1233 TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); 1234 TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); 1235 if (operation.has_src_length()) 1236 TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0); 1237 if (operation.has_dst_length()) 1238 TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0); 1239 1240 if (operation.has_src_sha256_hash()) { 1241 HashCalculator source_hasher; 1242 const uint64_t kMaxBlocksToRead = 512; // 2MB if block size is 4KB 1243 brillo::Blob buf(kMaxBlocksToRead * block_size_); 1244 for (const Extent& extent : operation.src_extents()) { 1245 for (uint64_t i = 0; i < extent.num_blocks(); i += kMaxBlocksToRead) { 1246 uint64_t blocks_to_read = 1247 min(kMaxBlocksToRead, extent.num_blocks() - i); 1248 ssize_t bytes_to_read = blocks_to_read * block_size_; 1249 ssize_t bytes_read_this_iteration = 0; 1250 TEST_AND_RETURN_FALSE( 1251 utils::PReadAll(source_fd_, buf.data(), bytes_to_read, 1252 (extent.start_block() + i) * block_size_, 1253 &bytes_read_this_iteration)); 1254 TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read); 1255 TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), bytes_to_read)); 1256 } 1257 } 1258 TEST_AND_RETURN_FALSE(source_hasher.Finalize()); 1259 TEST_AND_RETURN_FALSE( 1260 ValidateSourceHash(source_hasher.raw_hash(), operation, error)); 1261 } 1262 1263 string input_positions; 1264 TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(), 1265 block_size_, 1266 operation.src_length(), 1267 &input_positions)); 1268 string output_positions; 1269 TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(), 1270 block_size_, 1271 operation.dst_length(), 1272 &output_positions)); 1273 1274 string temp_filename; 1275 TEST_AND_RETURN_FALSE(utils::MakeTempFile("au_patch.XXXXXX", 1276 &temp_filename, 1277 nullptr)); 1278 ScopedPathUnlinker path_unlinker(temp_filename); 1279 { 1280 int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644); 1281 ScopedFdCloser fd_closer(&fd); 1282 TEST_AND_RETURN_FALSE( 1283 utils::WriteAll(fd, buffer_.data(), operation.data_length())); 1284 } 1285 1286 // Update the buffer to release the patch data memory as soon as the patch 1287 // file is written out. 1288 DiscardBuffer(true, buffer_.size()); 1289 1290 vector<string> cmd{kBspatchPath, source_path_, target_path_, temp_filename, 1291 input_positions, output_positions}; 1292 1293 int return_code = 0; 1294 TEST_AND_RETURN_FALSE( 1295 Subprocess::SynchronousExecFlags(cmd, Subprocess::kSearchPath, 1296 &return_code, nullptr)); 1297 TEST_AND_RETURN_FALSE(return_code == 0); 1298 return true; 1299 } 1300 1301 bool DeltaPerformer::ExtractSignatureMessageFromOperation( 1302 const InstallOperation& operation) { 1303 if (operation.type() != InstallOperation::REPLACE || 1304 !manifest_.has_signatures_offset() || 1305 manifest_.signatures_offset() != operation.data_offset()) { 1306 return false; 1307 } 1308 TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() && 1309 manifest_.signatures_size() == operation.data_length()); 1310 TEST_AND_RETURN_FALSE(ExtractSignatureMessage()); 1311 return true; 1312 } 1313 1314 bool DeltaPerformer::ExtractSignatureMessage() { 1315 TEST_AND_RETURN_FALSE(signatures_message_data_.empty()); 1316 TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset()); 1317 TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size()); 1318 signatures_message_data_.assign( 1319 buffer_.begin(), 1320 buffer_.begin() + manifest_.signatures_size()); 1321 1322 // Save the signature blob because if the update is interrupted after the 1323 // download phase we don't go through this path anymore. Some alternatives to 1324 // consider: 1325 // 1326 // 1. On resume, re-download the signature blob from the server and re-verify 1327 // it. 1328 // 1329 // 2. Verify the signature as soon as it's received and don't checkpoint the 1330 // blob and the signed sha-256 context. 1331 LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob, 1332 string(signatures_message_data_.begin(), 1333 signatures_message_data_.end()))) 1334 << "Unable to store the signature blob."; 1335 1336 LOG(INFO) << "Extracted signature data of size " 1337 << manifest_.signatures_size() << " at " 1338 << manifest_.signatures_offset(); 1339 return true; 1340 } 1341 1342 bool DeltaPerformer::GetPublicKeyFromResponse(base::FilePath *out_tmp_key) { 1343 if (hardware_->IsOfficialBuild() || 1344 utils::FileExists(public_key_path_.c_str()) || 1345 install_plan_->public_key_rsa.empty()) 1346 return false; 1347 1348 if (!utils::DecodeAndStoreBase64String(install_plan_->public_key_rsa, 1349 out_tmp_key)) 1350 return false; 1351 1352 return true; 1353 } 1354 1355 ErrorCode DeltaPerformer::ValidateMetadataSignature( 1356 const brillo::Blob& payload) { 1357 if (payload.size() < metadata_size_ + metadata_signature_size_) 1358 return ErrorCode::kDownloadMetadataSignatureError; 1359 1360 brillo::Blob metadata_signature_blob, metadata_signature_protobuf_blob; 1361 if (!install_plan_->metadata_signature.empty()) { 1362 // Convert base64-encoded signature to raw bytes. 1363 if (!brillo::data_encoding::Base64Decode( 1364 install_plan_->metadata_signature, &metadata_signature_blob)) { 1365 LOG(ERROR) << "Unable to decode base64 metadata signature: " 1366 << install_plan_->metadata_signature; 1367 return ErrorCode::kDownloadMetadataSignatureError; 1368 } 1369 } else if (major_payload_version_ == kBrilloMajorPayloadVersion) { 1370 metadata_signature_protobuf_blob.assign(payload.begin() + metadata_size_, 1371 payload.begin() + metadata_size_ + 1372 metadata_signature_size_); 1373 } 1374 1375 if (metadata_signature_blob.empty() && 1376 metadata_signature_protobuf_blob.empty()) { 1377 if (install_plan_->hash_checks_mandatory) { 1378 LOG(ERROR) << "Missing mandatory metadata signature in both Omaha " 1379 << "response and payload."; 1380 return ErrorCode::kDownloadMetadataSignatureMissingError; 1381 } 1382 1383 LOG(WARNING) << "Cannot validate metadata as the signature is empty"; 1384 return ErrorCode::kSuccess; 1385 } 1386 1387 // See if we should use the public RSA key in the Omaha response. 1388 base::FilePath path_to_public_key(public_key_path_); 1389 base::FilePath tmp_key; 1390 if (GetPublicKeyFromResponse(&tmp_key)) 1391 path_to_public_key = tmp_key; 1392 ScopedPathUnlinker tmp_key_remover(tmp_key.value()); 1393 if (tmp_key.empty()) 1394 tmp_key_remover.set_should_remove(false); 1395 1396 LOG(INFO) << "Verifying metadata hash signature using public key: " 1397 << path_to_public_key.value(); 1398 1399 HashCalculator metadata_hasher; 1400 metadata_hasher.Update(payload.data(), metadata_size_); 1401 if (!metadata_hasher.Finalize()) { 1402 LOG(ERROR) << "Unable to compute actual hash of manifest"; 1403 return ErrorCode::kDownloadMetadataSignatureVerificationError; 1404 } 1405 1406 brillo::Blob calculated_metadata_hash = metadata_hasher.raw_hash(); 1407 PayloadVerifier::PadRSA2048SHA256Hash(&calculated_metadata_hash); 1408 if (calculated_metadata_hash.empty()) { 1409 LOG(ERROR) << "Computed actual hash of metadata is empty."; 1410 return ErrorCode::kDownloadMetadataSignatureVerificationError; 1411 } 1412 1413 if (!metadata_signature_blob.empty()) { 1414 brillo::Blob expected_metadata_hash; 1415 if (!PayloadVerifier::GetRawHashFromSignature(metadata_signature_blob, 1416 path_to_public_key.value(), 1417 &expected_metadata_hash)) { 1418 LOG(ERROR) << "Unable to compute expected hash from metadata signature"; 1419 return ErrorCode::kDownloadMetadataSignatureError; 1420 } 1421 if (calculated_metadata_hash != expected_metadata_hash) { 1422 LOG(ERROR) << "Manifest hash verification failed. Expected hash = "; 1423 utils::HexDumpVector(expected_metadata_hash); 1424 LOG(ERROR) << "Calculated hash = "; 1425 utils::HexDumpVector(calculated_metadata_hash); 1426 return ErrorCode::kDownloadMetadataSignatureMismatch; 1427 } 1428 } else { 1429 if (!PayloadVerifier::VerifySignature(metadata_signature_protobuf_blob, 1430 path_to_public_key.value(), 1431 calculated_metadata_hash)) { 1432 LOG(ERROR) << "Manifest hash verification failed."; 1433 return ErrorCode::kDownloadMetadataSignatureMismatch; 1434 } 1435 } 1436 1437 // The autoupdate_CatchBadSignatures test checks for this string in 1438 // log-files. Keep in sync. 1439 LOG(INFO) << "Metadata hash signature matches value in Omaha response."; 1440 return ErrorCode::kSuccess; 1441 } 1442 1443 ErrorCode DeltaPerformer::ValidateManifest() { 1444 // Perform assorted checks to sanity check the manifest, make sure it 1445 // matches data from other sources, and that it is a supported version. 1446 1447 bool has_old_fields = 1448 (manifest_.has_old_kernel_info() || manifest_.has_old_rootfs_info()); 1449 for (const PartitionUpdate& partition : manifest_.partitions()) { 1450 has_old_fields = has_old_fields || partition.has_old_partition_info(); 1451 } 1452 1453 // The presence of an old partition hash is the sole indicator for a delta 1454 // update. 1455 InstallPayloadType actual_payload_type = 1456 has_old_fields ? InstallPayloadType::kDelta : InstallPayloadType::kFull; 1457 1458 if (install_plan_->payload_type == InstallPayloadType::kUnknown) { 1459 LOG(INFO) << "Detected a '" 1460 << InstallPayloadTypeToString(actual_payload_type) 1461 << "' payload."; 1462 install_plan_->payload_type = actual_payload_type; 1463 } else if (install_plan_->payload_type != actual_payload_type) { 1464 LOG(ERROR) << "InstallPlan expected a '" 1465 << InstallPayloadTypeToString(install_plan_->payload_type) 1466 << "' payload but the downloaded manifest contains a '" 1467 << InstallPayloadTypeToString(actual_payload_type) 1468 << "' payload."; 1469 return ErrorCode::kPayloadMismatchedType; 1470 } 1471 1472 // Check that the minor version is compatible. 1473 if (actual_payload_type == InstallPayloadType::kFull) { 1474 if (manifest_.minor_version() != kFullPayloadMinorVersion) { 1475 LOG(ERROR) << "Manifest contains minor version " 1476 << manifest_.minor_version() 1477 << ", but all full payloads should have version " 1478 << kFullPayloadMinorVersion << "."; 1479 return ErrorCode::kUnsupportedMinorPayloadVersion; 1480 } 1481 } else { 1482 if (manifest_.minor_version() != supported_minor_version_) { 1483 LOG(ERROR) << "Manifest contains minor version " 1484 << manifest_.minor_version() 1485 << " not the supported " 1486 << supported_minor_version_; 1487 return ErrorCode::kUnsupportedMinorPayloadVersion; 1488 } 1489 } 1490 1491 if (major_payload_version_ != kChromeOSMajorPayloadVersion) { 1492 if (manifest_.has_old_rootfs_info() || 1493 manifest_.has_new_rootfs_info() || 1494 manifest_.has_old_kernel_info() || 1495 manifest_.has_new_kernel_info() || 1496 manifest_.install_operations_size() != 0 || 1497 manifest_.kernel_install_operations_size() != 0) { 1498 LOG(ERROR) << "Manifest contains deprecated field only supported in " 1499 << "major payload version 1, but the payload major version is " 1500 << major_payload_version_; 1501 return ErrorCode::kPayloadMismatchedType; 1502 } 1503 } 1504 1505 // TODO(garnold) we should be adding more and more manifest checks, such as 1506 // partition boundaries etc (see chromium-os:37661). 1507 1508 return ErrorCode::kSuccess; 1509 } 1510 1511 ErrorCode DeltaPerformer::ValidateOperationHash( 1512 const InstallOperation& operation) { 1513 if (!operation.data_sha256_hash().size()) { 1514 if (!operation.data_length()) { 1515 // Operations that do not have any data blob won't have any operation hash 1516 // either. So, these operations are always considered validated since the 1517 // metadata that contains all the non-data-blob portions of the operation 1518 // has already been validated. This is true for both HTTP and HTTPS cases. 1519 return ErrorCode::kSuccess; 1520 } 1521 1522 // No hash is present for an operation that has data blobs. This shouldn't 1523 // happen normally for any client that has this code, because the 1524 // corresponding update should have been produced with the operation 1525 // hashes. So if it happens it means either we've turned operation hash 1526 // generation off in DeltaDiffGenerator or it's a regression of some sort. 1527 // One caveat though: The last operation is a dummy signature operation 1528 // that doesn't have a hash at the time the manifest is created. So we 1529 // should not complaint about that operation. This operation can be 1530 // recognized by the fact that it's offset is mentioned in the manifest. 1531 if (manifest_.signatures_offset() && 1532 manifest_.signatures_offset() == operation.data_offset()) { 1533 LOG(INFO) << "Skipping hash verification for signature operation " 1534 << next_operation_num_ + 1; 1535 } else { 1536 if (install_plan_->hash_checks_mandatory) { 1537 LOG(ERROR) << "Missing mandatory operation hash for operation " 1538 << next_operation_num_ + 1; 1539 return ErrorCode::kDownloadOperationHashMissingError; 1540 } 1541 1542 LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1 1543 << " as there's no operation hash in manifest"; 1544 } 1545 return ErrorCode::kSuccess; 1546 } 1547 1548 brillo::Blob expected_op_hash; 1549 expected_op_hash.assign(operation.data_sha256_hash().data(), 1550 (operation.data_sha256_hash().data() + 1551 operation.data_sha256_hash().size())); 1552 1553 HashCalculator operation_hasher; 1554 operation_hasher.Update(buffer_.data(), operation.data_length()); 1555 if (!operation_hasher.Finalize()) { 1556 LOG(ERROR) << "Unable to compute actual hash of operation " 1557 << next_operation_num_; 1558 return ErrorCode::kDownloadOperationHashVerificationError; 1559 } 1560 1561 brillo::Blob calculated_op_hash = operation_hasher.raw_hash(); 1562 if (calculated_op_hash != expected_op_hash) { 1563 LOG(ERROR) << "Hash verification failed for operation " 1564 << next_operation_num_ << ". Expected hash = "; 1565 utils::HexDumpVector(expected_op_hash); 1566 LOG(ERROR) << "Calculated hash over " << operation.data_length() 1567 << " bytes at offset: " << operation.data_offset() << " = "; 1568 utils::HexDumpVector(calculated_op_hash); 1569 return ErrorCode::kDownloadOperationHashMismatch; 1570 } 1571 1572 return ErrorCode::kSuccess; 1573 } 1574 1575 #define TEST_AND_RETURN_VAL(_retval, _condition) \ 1576 do { \ 1577 if (!(_condition)) { \ 1578 LOG(ERROR) << "VerifyPayload failure: " << #_condition; \ 1579 return _retval; \ 1580 } \ 1581 } while (0); 1582 1583 ErrorCode DeltaPerformer::VerifyPayload( 1584 const string& update_check_response_hash, 1585 const uint64_t update_check_response_size) { 1586 1587 // See if we should use the public RSA key in the Omaha response. 1588 base::FilePath path_to_public_key(public_key_path_); 1589 base::FilePath tmp_key; 1590 if (GetPublicKeyFromResponse(&tmp_key)) 1591 path_to_public_key = tmp_key; 1592 ScopedPathUnlinker tmp_key_remover(tmp_key.value()); 1593 if (tmp_key.empty()) 1594 tmp_key_remover.set_should_remove(false); 1595 1596 LOG(INFO) << "Verifying payload using public key: " 1597 << path_to_public_key.value(); 1598 1599 // Verifies the download size. 1600 TEST_AND_RETURN_VAL(ErrorCode::kPayloadSizeMismatchError, 1601 update_check_response_size == 1602 metadata_size_ + metadata_signature_size_ + 1603 buffer_offset_); 1604 1605 // Verifies the payload hash. 1606 const string& payload_hash_data = payload_hash_calculator_.hash(); 1607 TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError, 1608 !payload_hash_data.empty()); 1609 TEST_AND_RETURN_VAL(ErrorCode::kPayloadHashMismatchError, 1610 payload_hash_data == update_check_response_hash); 1611 1612 // Verifies the signed payload hash. 1613 if (!utils::FileExists(path_to_public_key.value().c_str())) { 1614 LOG(WARNING) << "Not verifying signed delta payload -- missing public key."; 1615 return ErrorCode::kSuccess; 1616 } 1617 TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError, 1618 !signatures_message_data_.empty()); 1619 brillo::Blob hash_data = signed_hash_calculator_.raw_hash(); 1620 TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError, 1621 PayloadVerifier::PadRSA2048SHA256Hash(&hash_data)); 1622 TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError, 1623 !hash_data.empty()); 1624 1625 if (!PayloadVerifier::VerifySignature( 1626 signatures_message_data_, path_to_public_key.value(), hash_data)) { 1627 // The autoupdate_CatchBadSignatures test checks for this string 1628 // in log-files. Keep in sync. 1629 LOG(ERROR) << "Public key verification failed, thus update failed."; 1630 return ErrorCode::kDownloadPayloadPubKeyVerificationError; 1631 } 1632 1633 LOG(INFO) << "Payload hash matches value in payload."; 1634 1635 // At this point, we are guaranteed to have downloaded a full payload, i.e 1636 // the one whose size matches the size mentioned in Omaha response. If any 1637 // errors happen after this, it's likely a problem with the payload itself or 1638 // the state of the system and not a problem with the URL or network. So, 1639 // indicate that to the download delegate so that AU can backoff 1640 // appropriately. 1641 if (download_delegate_) 1642 download_delegate_->DownloadComplete(); 1643 1644 return ErrorCode::kSuccess; 1645 } 1646 1647 namespace { 1648 void LogVerifyError(const string& type, 1649 const string& device, 1650 uint64_t size, 1651 const string& local_hash, 1652 const string& expected_hash) { 1653 LOG(ERROR) << "This is a server-side error due to " 1654 << "mismatched delta update image!"; 1655 LOG(ERROR) << "The delta I've been given contains a " << type << " delta " 1656 << "update that must be applied over a " << type << " with " 1657 << "a specific checksum, but the " << type << " we're starting " 1658 << "with doesn't have that checksum! This means that " 1659 << "the delta I've been given doesn't match my existing " 1660 << "system. The " << type << " partition I have has hash: " 1661 << local_hash << " but the update expected me to have " 1662 << expected_hash << " ."; 1663 LOG(INFO) << "To get the checksum of the " << type << " partition run this" 1664 "command: dd if=" << device << " bs=1M count=" << size 1665 << " iflag=count_bytes 2>/dev/null | openssl dgst -sha256 -binary " 1666 "| openssl base64"; 1667 LOG(INFO) << "To get the checksum of partitions in a bin file, " 1668 << "run: .../src/scripts/sha256_partitions.sh .../file.bin"; 1669 } 1670 1671 string StringForHashBytes(const void* bytes, size_t size) { 1672 return brillo::data_encoding::Base64Encode(bytes, size); 1673 } 1674 } // namespace 1675 1676 bool DeltaPerformer::VerifySourcePartitions() { 1677 LOG(INFO) << "Verifying source partitions."; 1678 CHECK(manifest_valid_); 1679 CHECK(install_plan_); 1680 if (install_plan_->partitions.size() != partitions_.size()) { 1681 DLOG(ERROR) << "The list of partitions in the InstallPlan doesn't match the " 1682 "list received in the payload. The InstallPlan has " 1683 << install_plan_->partitions.size() 1684 << " partitions while the payload has " << partitions_.size() 1685 << " partitions."; 1686 return false; 1687 } 1688 for (size_t i = 0; i < partitions_.size(); ++i) { 1689 if (partitions_[i].partition_name() != install_plan_->partitions[i].name) { 1690 DLOG(ERROR) << "The InstallPlan's partition " << i << " is \"" 1691 << install_plan_->partitions[i].name 1692 << "\" but the payload expects it to be \"" 1693 << partitions_[i].partition_name() 1694 << "\". This is an error in the DeltaPerformer setup."; 1695 return false; 1696 } 1697 if (!partitions_[i].has_old_partition_info()) 1698 continue; 1699 const PartitionInfo& info = partitions_[i].old_partition_info(); 1700 const InstallPlan::Partition& plan_part = install_plan_->partitions[i]; 1701 bool valid = 1702 !plan_part.source_hash.empty() && 1703 plan_part.source_hash.size() == info.hash().size() && 1704 memcmp(plan_part.source_hash.data(), 1705 info.hash().data(), 1706 plan_part.source_hash.size()) == 0; 1707 if (!valid) { 1708 LogVerifyError(partitions_[i].partition_name(), 1709 plan_part.source_path, 1710 info.hash().size(), 1711 StringForHashBytes(plan_part.source_hash.data(), 1712 plan_part.source_hash.size()), 1713 StringForHashBytes(info.hash().data(), 1714 info.hash().size())); 1715 return false; 1716 } 1717 } 1718 return true; 1719 } 1720 1721 void DeltaPerformer::DiscardBuffer(bool do_advance_offset, 1722 size_t signed_hash_buffer_size) { 1723 // Update the buffer offset. 1724 if (do_advance_offset) 1725 buffer_offset_ += buffer_.size(); 1726 1727 // Hash the content. 1728 payload_hash_calculator_.Update(buffer_.data(), buffer_.size()); 1729 signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size); 1730 1731 // Swap content with an empty vector to ensure that all memory is released. 1732 brillo::Blob().swap(buffer_); 1733 } 1734 1735 bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs, 1736 string update_check_response_hash) { 1737 int64_t next_operation = kUpdateStateOperationInvalid; 1738 if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) && 1739 next_operation != kUpdateStateOperationInvalid && 1740 next_operation > 0)) 1741 return false; 1742 1743 string interrupted_hash; 1744 if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) && 1745 !interrupted_hash.empty() && 1746 interrupted_hash == update_check_response_hash)) 1747 return false; 1748 1749 int64_t resumed_update_failures; 1750 // Note that storing this value is optional, but if it is there it should not 1751 // be more than the limit. 1752 if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) && 1753 resumed_update_failures > kMaxResumedUpdateFailures) 1754 return false; 1755 1756 // Sanity check the rest. 1757 int64_t next_data_offset = -1; 1758 if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) && 1759 next_data_offset >= 0)) 1760 return false; 1761 1762 string sha256_context; 1763 if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) && 1764 !sha256_context.empty())) 1765 return false; 1766 1767 int64_t manifest_metadata_size = 0; 1768 if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) && 1769 manifest_metadata_size > 0)) 1770 return false; 1771 1772 int64_t manifest_signature_size = 0; 1773 if (!(prefs->GetInt64(kPrefsManifestSignatureSize, 1774 &manifest_signature_size) && 1775 manifest_signature_size >= 0)) 1776 return false; 1777 1778 return true; 1779 } 1780 1781 bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) { 1782 TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation, 1783 kUpdateStateOperationInvalid)); 1784 if (!quick) { 1785 prefs->SetString(kPrefsUpdateCheckResponseHash, ""); 1786 prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1); 1787 prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0); 1788 prefs->SetString(kPrefsUpdateStateSHA256Context, ""); 1789 prefs->SetString(kPrefsUpdateStateSignedSHA256Context, ""); 1790 prefs->SetString(kPrefsUpdateStateSignatureBlob, ""); 1791 prefs->SetInt64(kPrefsManifestMetadataSize, -1); 1792 prefs->SetInt64(kPrefsManifestSignatureSize, -1); 1793 prefs->SetInt64(kPrefsResumedUpdateFailures, 0); 1794 } 1795 return true; 1796 } 1797 1798 bool DeltaPerformer::CheckpointUpdateProgress() { 1799 Terminator::set_exit_blocked(true); 1800 if (last_updated_buffer_offset_ != buffer_offset_) { 1801 // Resets the progress in case we die in the middle of the state update. 1802 ResetUpdateProgress(prefs_, true); 1803 TEST_AND_RETURN_FALSE( 1804 prefs_->SetString(kPrefsUpdateStateSHA256Context, 1805 payload_hash_calculator_.GetContext())); 1806 TEST_AND_RETURN_FALSE( 1807 prefs_->SetString(kPrefsUpdateStateSignedSHA256Context, 1808 signed_hash_calculator_.GetContext())); 1809 TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset, 1810 buffer_offset_)); 1811 last_updated_buffer_offset_ = buffer_offset_; 1812 1813 if (next_operation_num_ < num_total_operations_) { 1814 size_t partition_index = current_partition_; 1815 while (next_operation_num_ >= acc_num_operations_[partition_index]) 1816 partition_index++; 1817 const size_t partition_operation_num = next_operation_num_ - ( 1818 partition_index ? acc_num_operations_[partition_index - 1] : 0); 1819 const InstallOperation& op = 1820 partitions_[partition_index].operations(partition_operation_num); 1821 TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength, 1822 op.data_length())); 1823 } else { 1824 TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength, 1825 0)); 1826 } 1827 } 1828 TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation, 1829 next_operation_num_)); 1830 return true; 1831 } 1832 1833 bool DeltaPerformer::PrimeUpdateState() { 1834 CHECK(manifest_valid_); 1835 block_size_ = manifest_.block_size(); 1836 1837 int64_t next_operation = kUpdateStateOperationInvalid; 1838 if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) || 1839 next_operation == kUpdateStateOperationInvalid || 1840 next_operation <= 0) { 1841 // Initiating a new update, no more state needs to be initialized. 1842 return true; 1843 } 1844 next_operation_num_ = next_operation; 1845 1846 // Resuming an update -- load the rest of the update state. 1847 int64_t next_data_offset = -1; 1848 TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset, 1849 &next_data_offset) && 1850 next_data_offset >= 0); 1851 buffer_offset_ = next_data_offset; 1852 1853 // The signed hash context and the signature blob may be empty if the 1854 // interrupted update didn't reach the signature. 1855 string signed_hash_context; 1856 if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context, 1857 &signed_hash_context)) { 1858 TEST_AND_RETURN_FALSE( 1859 signed_hash_calculator_.SetContext(signed_hash_context)); 1860 } 1861 1862 string signature_blob; 1863 if (prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signature_blob)) { 1864 signatures_message_data_.assign(signature_blob.begin(), 1865 signature_blob.end()); 1866 } 1867 1868 string hash_context; 1869 TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context, 1870 &hash_context) && 1871 payload_hash_calculator_.SetContext(hash_context)); 1872 1873 int64_t manifest_metadata_size = 0; 1874 TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize, 1875 &manifest_metadata_size) && 1876 manifest_metadata_size > 0); 1877 metadata_size_ = manifest_metadata_size; 1878 1879 int64_t manifest_signature_size = 0; 1880 TEST_AND_RETURN_FALSE( 1881 prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) && 1882 manifest_signature_size >= 0); 1883 metadata_signature_size_ = manifest_signature_size; 1884 1885 // Advance the download progress to reflect what doesn't need to be 1886 // re-downloaded. 1887 total_bytes_received_ += buffer_offset_; 1888 1889 // Speculatively count the resume as a failure. 1890 int64_t resumed_update_failures; 1891 if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) { 1892 resumed_update_failures++; 1893 } else { 1894 resumed_update_failures = 1; 1895 } 1896 prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures); 1897 return true; 1898 } 1899 1900 } // namespace chromeos_update_engine 1901