1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "ext4_utils.h" 18 #include "allocate.h" 19 20 #include <sparse/sparse.h> 21 22 #include <stdio.h> 23 #include <stdlib.h> 24 25 struct xattr_list_element { 26 struct ext4_inode *inode; 27 struct ext4_xattr_header *header; 28 struct xattr_list_element *next; 29 }; 30 31 struct block_allocation *create_allocation() 32 { 33 struct block_allocation *alloc = malloc(sizeof(struct block_allocation)); 34 alloc->list.first = NULL; 35 alloc->list.last = NULL; 36 alloc->oob_list.first = NULL; 37 alloc->oob_list.last = NULL; 38 alloc->list.iter = NULL; 39 alloc->list.partial_iter = 0; 40 alloc->oob_list.iter = NULL; 41 alloc->oob_list.partial_iter = 0; 42 alloc->filename = NULL; 43 alloc->next = NULL; 44 return alloc; 45 } 46 47 static struct ext4_xattr_header *xattr_list_find(struct ext4_inode *inode) 48 { 49 struct xattr_list_element *element; 50 for (element = aux_info.xattrs; element != NULL; element = element->next) { 51 if (element->inode == inode) 52 return element->header; 53 } 54 return NULL; 55 } 56 57 static void xattr_list_insert(struct ext4_inode *inode, struct ext4_xattr_header *header) 58 { 59 struct xattr_list_element *element = malloc(sizeof(struct xattr_list_element)); 60 element->inode = inode; 61 element->header = header; 62 element->next = aux_info.xattrs; 63 aux_info.xattrs = element; 64 } 65 66 static void region_list_remove(struct region_list *list, struct region *reg) 67 { 68 if (reg->prev) 69 reg->prev->next = reg->next; 70 71 if (reg->next) 72 reg->next->prev = reg->prev; 73 74 if (list->first == reg) 75 list->first = reg->next; 76 77 if (list->last == reg) 78 list->last = reg->prev; 79 80 reg->next = NULL; 81 reg->prev = NULL; 82 } 83 84 void region_list_append(struct region_list *list, struct region *reg) 85 { 86 if (list->first == NULL) { 87 list->first = reg; 88 list->last = reg; 89 list->iter = reg; 90 list->partial_iter = 0; 91 reg->prev = NULL; 92 } else { 93 list->last->next = reg; 94 reg->prev = list->last; 95 list->last = reg; 96 } 97 reg->next = NULL; 98 } 99 100 void region_list_merge(struct region_list *list1, struct region_list *list2) 101 { 102 if (list1->first == NULL) { 103 list1->first = list2->first; 104 list1->last = list2->last; 105 list1->iter = list2->first; 106 list1->partial_iter = 0; 107 list1->first->prev = NULL; 108 } else { 109 list1->last->next = list2->first; 110 list2->first->prev = list1->last; 111 list1->last = list2->last; 112 } 113 } 114 #if 0 115 static void dump_starting_from(struct region *reg) 116 { 117 for (; reg; reg = reg->next) { 118 printf("%p: Blocks %d-%d (%d)\n", reg, 119 reg->block, reg->block + reg->len - 1, reg->len) 120 } 121 } 122 123 static void dump_region_lists(struct block_allocation *alloc) { 124 125 printf("Main list:\n"); 126 dump_starting_from(alloc->list.first); 127 128 printf("OOB list:\n"); 129 dump_starting_from(alloc->oob_list.first); 130 } 131 #endif 132 133 void print_blocks(FILE* f, struct block_allocation *alloc, char separator) 134 { 135 struct region *reg; 136 fputc(' ', f); 137 for (reg = alloc->list.first; reg; reg = reg->next) { 138 if (reg->len == 1) { 139 fprintf(f, "%d", reg->block); 140 } else { 141 fprintf(f, "%d-%d", reg->block, reg->block + reg->len - 1); 142 } 143 fputc(separator, f); 144 } 145 fputc('\n', f); 146 } 147 148 void append_region(struct block_allocation *alloc, 149 u32 block, u32 len, int bg_num) 150 { 151 struct region *reg; 152 reg = malloc(sizeof(struct region)); 153 reg->block = block; 154 reg->len = len; 155 reg->bg = bg_num; 156 reg->next = NULL; 157 158 region_list_append(&alloc->list, reg); 159 } 160 161 static void allocate_bg_inode_table(struct block_group_info *bg) 162 { 163 if (bg->inode_table != NULL) 164 return; 165 166 u32 block = bg->first_block + 2; 167 168 if (bg->has_superblock) 169 block += aux_info.bg_desc_blocks + info.bg_desc_reserve_blocks + 1; 170 171 bg->inode_table = calloc(aux_info.inode_table_blocks, info.block_size); 172 if (bg->inode_table == NULL) 173 critical_error_errno("calloc"); 174 175 sparse_file_add_data(ext4_sparse_file, bg->inode_table, 176 aux_info.inode_table_blocks * info.block_size, block); 177 178 bg->flags &= ~EXT4_BG_INODE_UNINIT; 179 } 180 181 static int bitmap_set_bit(u8 *bitmap, u32 bit) 182 { 183 if (bitmap[bit / 8] & 1 << (bit % 8)) 184 return 1; 185 186 bitmap[bit / 8] |= 1 << (bit % 8); 187 return 0; 188 } 189 190 static int bitmap_set_8_bits(u8 *bitmap, u32 bit) 191 { 192 int ret = bitmap[bit / 8]; 193 bitmap[bit / 8] = 0xFF; 194 return ret; 195 } 196 197 /* Marks a the first num_blocks blocks in a block group as used, and accounts 198 for them in the block group free block info. */ 199 static int reserve_blocks(struct block_group_info *bg, u32 bg_num, u32 start, u32 num) 200 { 201 unsigned int i = 0; 202 203 u32 block = start; 204 for (i = 0; i < num && block % 8 != 0; i++, block++) { 205 if (bitmap_set_bit(bg->block_bitmap, block)) { 206 error("attempted to reserve already reserved block %d in block group %d", block, bg_num); 207 return -1; 208 } 209 } 210 211 for (; i + 8 <= (num & ~7); i += 8, block += 8) { 212 if (bitmap_set_8_bits(bg->block_bitmap, block)) { 213 error("attempted to reserve already reserved block %d in block group %d", block, bg_num); 214 return -1; 215 } 216 } 217 218 for (; i < num; i++, block++) { 219 if (bitmap_set_bit(bg->block_bitmap, block)) { 220 error("attempted to reserve already reserved block %d in block group %d", block, bg_num); 221 return -1; 222 } 223 } 224 225 bg->free_blocks -= num; 226 227 return 0; 228 } 229 230 static void free_blocks(struct block_group_info *bg, u32 block, u32 num_blocks) 231 { 232 unsigned int i; 233 for (i = 0; i < num_blocks; i++, block--) 234 bg->block_bitmap[block / 8] &= ~(1 << (block % 8)); 235 bg->free_blocks += num_blocks; 236 } 237 238 /* Reduces an existing allocation by len blocks by return the last blocks 239 to the free pool in their block group. Assumes that the blocks being 240 returned were the last ones allocated out of the block group */ 241 void reduce_allocation(struct block_allocation *alloc, u32 len) 242 { 243 while (len) { 244 struct region *last_reg = alloc->list.last; 245 struct block_group_info *bg = &aux_info.bgs[last_reg->bg]; 246 247 if (last_reg->len > len) { 248 free_blocks(bg, last_reg->block + last_reg->len - bg->first_block - 1, len); 249 last_reg->len -= len; 250 len = 0; 251 } else { 252 struct region *reg = alloc->list.last->prev; 253 free_blocks(bg, last_reg->block + last_reg->len - bg->first_block - 1, last_reg->len); 254 len -= last_reg->len; 255 if (reg) { 256 reg->next = NULL; 257 } else { 258 alloc->list.first = NULL; 259 alloc->list.last = NULL; 260 alloc->list.iter = NULL; 261 alloc->list.partial_iter = 0; 262 } 263 free(last_reg); 264 } 265 } 266 } 267 268 static void init_bg(struct block_group_info *bg, unsigned int i) 269 { 270 int header_blocks = 2 + aux_info.inode_table_blocks; 271 272 bg->has_superblock = ext4_bg_has_super_block(i); 273 274 if (bg->has_superblock) 275 header_blocks += 1 + aux_info.bg_desc_blocks + info.bg_desc_reserve_blocks; 276 277 bg->bitmaps = calloc(info.block_size, 2); 278 bg->block_bitmap = bg->bitmaps; 279 bg->inode_bitmap = bg->bitmaps + info.block_size; 280 281 bg->header_blocks = header_blocks; 282 bg->first_block = aux_info.first_data_block + i * info.blocks_per_group; 283 284 u32 block = bg->first_block; 285 if (bg->has_superblock) 286 block += 1 + aux_info.bg_desc_blocks + info.bg_desc_reserve_blocks; 287 sparse_file_add_data(ext4_sparse_file, bg->bitmaps, 2 * info.block_size, 288 block); 289 290 bg->data_blocks_used = 0; 291 bg->free_blocks = info.blocks_per_group; 292 bg->free_inodes = info.inodes_per_group; 293 bg->first_free_inode = 1; 294 bg->flags = EXT4_BG_INODE_UNINIT; 295 296 bg->chunk_count = 0; 297 bg->max_chunk_count = 1; 298 bg->chunks = (struct region*) calloc(bg->max_chunk_count, sizeof(struct region)); 299 300 if (reserve_blocks(bg, i, 0, bg->header_blocks) < 0) 301 error("failed to reserve %u blocks in block group %u\n", bg->header_blocks, i); 302 // Add empty starting delimiter chunk 303 reserve_bg_chunk(i, bg->header_blocks, 0); 304 305 if (bg->first_block + info.blocks_per_group > aux_info.len_blocks) { 306 u32 overrun = bg->first_block + info.blocks_per_group - aux_info.len_blocks; 307 reserve_blocks(bg, i, info.blocks_per_group - overrun, overrun); 308 // Add empty ending delimiter chunk 309 reserve_bg_chunk(i, info.blocks_per_group - overrun, 0); 310 } else { 311 reserve_bg_chunk(i, info.blocks_per_group - 1, 0); 312 } 313 314 } 315 316 void block_allocator_init() 317 { 318 unsigned int i; 319 320 aux_info.bgs = calloc(sizeof(struct block_group_info), aux_info.groups); 321 if (aux_info.bgs == NULL) 322 critical_error_errno("calloc"); 323 324 for (i = 0; i < aux_info.groups; i++) 325 init_bg(&aux_info.bgs[i], i); 326 } 327 328 void block_allocator_free() 329 { 330 unsigned int i; 331 332 for (i = 0; i < aux_info.groups; i++) { 333 free(aux_info.bgs[i].bitmaps); 334 free(aux_info.bgs[i].inode_table); 335 } 336 free(aux_info.bgs); 337 } 338 339 /* Allocate a single block and return its block number */ 340 u32 allocate_block() 341 { 342 u32 block; 343 struct block_allocation *blk_alloc = allocate_blocks(1); 344 if (!blk_alloc) { 345 return EXT4_ALLOCATE_FAILED; 346 } 347 block = blk_alloc->list.first->block; 348 free_alloc(blk_alloc); 349 return block; 350 } 351 352 static struct region *ext4_allocate_best_fit_partial(u32 len) 353 { 354 unsigned int i, j; 355 unsigned int found_bg = 0, found_prev_chunk = 0, found_block = 0; 356 u32 found_allocate_len = 0; 357 bool minimize = false; 358 struct block_group_info *bgs = aux_info.bgs; 359 struct region *reg; 360 361 for (i = 0; i < aux_info.groups; i++) { 362 for (j = 1; j < bgs[i].chunk_count; j++) { 363 u32 hole_start, hole_size; 364 hole_start = bgs[i].chunks[j-1].block + bgs[i].chunks[j-1].len; 365 hole_size = bgs[i].chunks[j].block - hole_start; 366 if (hole_size == len) { 367 // Perfect fit i.e. right between 2 chunks no need to keep searching 368 found_bg = i; 369 found_prev_chunk = j - 1; 370 found_block = hole_start; 371 found_allocate_len = hole_size; 372 goto done; 373 } else if (hole_size > len && (found_allocate_len == 0 || (found_allocate_len > hole_size))) { 374 found_bg = i; 375 found_prev_chunk = j - 1; 376 found_block = hole_start; 377 found_allocate_len = hole_size; 378 minimize = true; 379 } else if (!minimize) { 380 if (found_allocate_len < hole_size) { 381 found_bg = i; 382 found_prev_chunk = j - 1; 383 found_block = hole_start; 384 found_allocate_len = hole_size; 385 } 386 } 387 } 388 } 389 390 if (found_allocate_len == 0) { 391 error("failed to allocate %u blocks, out of space?", len); 392 return NULL; 393 } 394 if (found_allocate_len > len) found_allocate_len = len; 395 done: 396 // reclaim allocated space in chunk 397 bgs[found_bg].chunks[found_prev_chunk].len += found_allocate_len; 398 if (reserve_blocks(&bgs[found_bg], 399 found_bg, 400 found_block, 401 found_allocate_len) < 0) { 402 error("failed to reserve %u blocks in block group %u\n", found_allocate_len, found_bg); 403 return NULL; 404 } 405 bgs[found_bg].data_blocks_used += found_allocate_len; 406 reg = malloc(sizeof(struct region)); 407 reg->block = found_block + bgs[found_bg].first_block; 408 reg->len = found_allocate_len; 409 reg->next = NULL; 410 reg->prev = NULL; 411 reg->bg = found_bg; 412 return reg; 413 } 414 415 static struct region *ext4_allocate_best_fit(u32 len) 416 { 417 struct region *first_reg = NULL; 418 struct region *prev_reg = NULL; 419 struct region *reg; 420 421 while (len > 0) { 422 reg = ext4_allocate_best_fit_partial(len); 423 if (reg == NULL) 424 return NULL; 425 426 if (first_reg == NULL) 427 first_reg = reg; 428 429 if (prev_reg) { 430 prev_reg->next = reg; 431 reg->prev = prev_reg; 432 } 433 434 prev_reg = reg; 435 len -= reg->len; 436 } 437 438 return first_reg; 439 } 440 441 /* Allocate len blocks. The blocks may be spread across multiple block groups, 442 and are returned in a linked list of the blocks in each block group. The 443 allocation algorithm is: 444 1. If the remaining allocation is larger than any available contiguous region, 445 allocate the largest contiguous region and loop 446 2. Otherwise, allocate the smallest contiguous region that it fits in 447 */ 448 struct block_allocation *allocate_blocks(u32 len) 449 { 450 struct region *reg = ext4_allocate_best_fit(len); 451 452 if (reg == NULL) 453 return NULL; 454 455 struct block_allocation *alloc = create_allocation(); 456 alloc->list.first = reg; 457 while (reg->next != NULL) 458 reg = reg->next; 459 alloc->list.last = reg; 460 alloc->list.iter = alloc->list.first; 461 alloc->list.partial_iter = 0; 462 return alloc; 463 } 464 465 /* Returns the number of discontiguous regions used by an allocation */ 466 int block_allocation_num_regions(struct block_allocation *alloc) 467 { 468 unsigned int i; 469 struct region *reg = alloc->list.first; 470 471 for (i = 0; reg != NULL; reg = reg->next) 472 i++; 473 474 return i; 475 } 476 477 int block_allocation_len(struct block_allocation *alloc) 478 { 479 unsigned int i; 480 struct region *reg = alloc->list.first; 481 482 for (i = 0; reg != NULL; reg = reg->next) 483 i += reg->len; 484 485 return i; 486 } 487 488 /* Returns the block number of the block'th block in an allocation */ 489 u32 get_block(struct block_allocation *alloc, u32 block) 490 { 491 struct region *reg = alloc->list.iter; 492 block += alloc->list.partial_iter; 493 494 for (; reg; reg = reg->next) { 495 if (block < reg->len) 496 return reg->block + block; 497 block -= reg->len; 498 } 499 return EXT4_ALLOCATE_FAILED; 500 } 501 502 u32 get_oob_block(struct block_allocation *alloc, u32 block) 503 { 504 struct region *reg = alloc->oob_list.iter; 505 block += alloc->oob_list.partial_iter; 506 507 for (; reg; reg = reg->next) { 508 if (block < reg->len) 509 return reg->block + block; 510 block -= reg->len; 511 } 512 return EXT4_ALLOCATE_FAILED; 513 } 514 515 /* Gets the starting block and length in blocks of the first region 516 of an allocation */ 517 void get_region(struct block_allocation *alloc, u32 *block, u32 *len) 518 { 519 *block = alloc->list.iter->block; 520 *len = alloc->list.iter->len - alloc->list.partial_iter; 521 } 522 523 /* Move to the next region in an allocation */ 524 void get_next_region(struct block_allocation *alloc) 525 { 526 alloc->list.iter = alloc->list.iter->next; 527 alloc->list.partial_iter = 0; 528 } 529 530 /* Returns the number of free blocks in a block group */ 531 u32 get_free_blocks(u32 bg) 532 { 533 return aux_info.bgs[bg].free_blocks; 534 } 535 536 int last_region(struct block_allocation *alloc) 537 { 538 return (alloc->list.iter == NULL); 539 } 540 541 void rewind_alloc(struct block_allocation *alloc) 542 { 543 alloc->list.iter = alloc->list.first; 544 alloc->list.partial_iter = 0; 545 } 546 547 static struct region *do_split_allocation(struct block_allocation *alloc, u32 len) 548 { 549 struct region *reg = alloc->list.iter; 550 struct region *new; 551 struct region *tmp; 552 553 while (reg && len >= reg->len) { 554 len -= reg->len; 555 reg = reg->next; 556 } 557 558 if (reg == NULL && len > 0) 559 return NULL; 560 561 if (len > 0) { 562 new = malloc(sizeof(struct region)); 563 564 new->bg = reg->bg; 565 new->block = reg->block + len; 566 new->len = reg->len - len; 567 new->next = reg->next; 568 new->prev = reg; 569 570 reg->next = new; 571 reg->len = len; 572 573 tmp = alloc->list.iter; 574 alloc->list.iter = new; 575 return tmp; 576 } else { 577 return reg; 578 } 579 } 580 581 /* Splits an allocation into two allocations. The returned allocation will 582 point to the first half, and the original allocation ptr will point to the 583 second half. */ 584 static struct region *split_allocation(struct block_allocation *alloc, u32 len) 585 { 586 /* First make sure there is a split at the current ptr */ 587 do_split_allocation(alloc, alloc->list.partial_iter); 588 589 /* Then split off len blocks */ 590 struct region *middle = do_split_allocation(alloc, len); 591 alloc->list.partial_iter = 0; 592 return middle; 593 } 594 595 /* Reserve the next blocks for oob data (indirect or extent blocks) */ 596 int reserve_oob_blocks(struct block_allocation *alloc, int blocks) 597 { 598 struct region *oob = split_allocation(alloc, blocks); 599 struct region *next; 600 601 if (oob == NULL) 602 return -1; 603 604 while (oob && oob != alloc->list.iter) { 605 next = oob->next; 606 region_list_remove(&alloc->list, oob); 607 region_list_append(&alloc->oob_list, oob); 608 oob = next; 609 } 610 611 return 0; 612 } 613 614 static int advance_list_ptr(struct region_list *list, int blocks) 615 { 616 struct region *reg = list->iter; 617 618 while (reg != NULL && blocks > 0) { 619 if (reg->len > list->partial_iter + blocks) { 620 list->partial_iter += blocks; 621 return 0; 622 } 623 624 blocks -= (reg->len - list->partial_iter); 625 list->partial_iter = 0; 626 reg = reg->next; 627 } 628 629 if (blocks > 0) 630 return -1; 631 632 return 0; 633 } 634 635 /* Move the allocation pointer forward */ 636 int advance_blocks(struct block_allocation *alloc, int blocks) 637 { 638 return advance_list_ptr(&alloc->list, blocks); 639 } 640 641 int advance_oob_blocks(struct block_allocation *alloc, int blocks) 642 { 643 return advance_list_ptr(&alloc->oob_list, blocks); 644 } 645 646 int append_oob_allocation(struct block_allocation *alloc, u32 len) 647 { 648 struct region *reg = ext4_allocate_best_fit(len); 649 650 if (reg == NULL) { 651 error("failed to allocate %d blocks", len); 652 return -1; 653 } 654 655 for (; reg; reg = reg->next) 656 region_list_append(&alloc->oob_list, reg); 657 658 return 0; 659 } 660 661 /* Returns an ext4_inode structure for an inode number */ 662 struct ext4_inode *get_inode(u32 inode) 663 { 664 inode -= 1; 665 int bg = inode / info.inodes_per_group; 666 inode %= info.inodes_per_group; 667 668 allocate_bg_inode_table(&aux_info.bgs[bg]); 669 return (struct ext4_inode *)(aux_info.bgs[bg].inode_table + inode * 670 info.inode_size); 671 } 672 673 struct ext4_xattr_header *get_xattr_block_for_inode(struct ext4_inode *inode) 674 { 675 struct ext4_xattr_header *block = xattr_list_find(inode); 676 if (block != NULL) 677 return block; 678 679 u32 block_num = allocate_block(); 680 block = calloc(info.block_size, 1); 681 if (block == NULL) { 682 error("get_xattr: failed to allocate %d", info.block_size); 683 return NULL; 684 } 685 686 block->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC); 687 block->h_refcount = cpu_to_le32(1); 688 block->h_blocks = cpu_to_le32(1); 689 inode->i_blocks_lo = cpu_to_le32(le32_to_cpu(inode->i_blocks_lo) + (info.block_size / 512)); 690 inode->i_file_acl_lo = cpu_to_le32(block_num); 691 692 int result = sparse_file_add_data(ext4_sparse_file, block, info.block_size, block_num); 693 if (result != 0) { 694 error("get_xattr: sparse_file_add_data failure %d", result); 695 free(block); 696 return NULL; 697 } 698 xattr_list_insert(inode, block); 699 return block; 700 } 701 702 /* Mark the first len inodes in a block group as used */ 703 u32 reserve_inodes(int bg, u32 num) 704 { 705 unsigned int i; 706 u32 inode; 707 708 if (get_free_inodes(bg) < num) 709 return EXT4_ALLOCATE_FAILED; 710 711 for (i = 0; i < num; i++) { 712 inode = aux_info.bgs[bg].first_free_inode + i - 1; 713 aux_info.bgs[bg].inode_bitmap[inode / 8] |= 1 << (inode % 8); 714 } 715 716 inode = aux_info.bgs[bg].first_free_inode; 717 718 aux_info.bgs[bg].first_free_inode += num; 719 aux_info.bgs[bg].free_inodes -= num; 720 721 return inode; 722 } 723 724 /* Returns the first free inode number 725 TODO: Inodes should be allocated in the block group of the data? */ 726 u32 allocate_inode() 727 { 728 unsigned int bg; 729 u32 inode; 730 731 for (bg = 0; bg < aux_info.groups; bg++) { 732 inode = reserve_inodes(bg, 1); 733 if (inode != EXT4_ALLOCATE_FAILED) 734 return bg * info.inodes_per_group + inode; 735 } 736 737 return EXT4_ALLOCATE_FAILED; 738 } 739 740 /* Returns the number of free inodes in a block group */ 741 u32 get_free_inodes(u32 bg) 742 { 743 return aux_info.bgs[bg].free_inodes; 744 } 745 746 /* Increments the directory count of the block group that contains inode */ 747 void add_directory(u32 inode) 748 { 749 int bg = (inode - 1) / info.inodes_per_group; 750 aux_info.bgs[bg].used_dirs += 1; 751 } 752 753 /* Returns the number of inodes in a block group that are directories */ 754 u16 get_directories(int bg) 755 { 756 return aux_info.bgs[bg].used_dirs; 757 } 758 759 /* Returns the flags for a block group */ 760 u16 get_bg_flags(int bg) 761 { 762 return aux_info.bgs[bg].flags; 763 } 764 765 /* Frees the memory used by a linked list of allocation regions */ 766 void free_alloc(struct block_allocation *alloc) 767 { 768 struct region *reg; 769 770 reg = alloc->list.first; 771 while (reg) { 772 struct region *next = reg->next; 773 free(reg); 774 reg = next; 775 } 776 777 reg = alloc->oob_list.first; 778 while (reg) { 779 struct region *next = reg->next; 780 free(reg); 781 reg = next; 782 } 783 784 free(alloc); 785 } 786 787 void reserve_bg_chunk(int bg, u32 start_block, u32 size) { 788 struct block_group_info *bgs = aux_info.bgs; 789 int chunk_count; 790 if (bgs[bg].chunk_count == bgs[bg].max_chunk_count) { 791 bgs[bg].max_chunk_count *= 2; 792 bgs[bg].chunks = realloc(bgs[bg].chunks, bgs[bg].max_chunk_count * sizeof(struct region)); 793 if (!bgs[bg].chunks) 794 critical_error("realloc failed"); 795 } 796 chunk_count = bgs[bg].chunk_count; 797 bgs[bg].chunks[chunk_count].block = start_block; 798 bgs[bg].chunks[chunk_count].len = size; 799 bgs[bg].chunks[chunk_count].bg = bg; 800 bgs[bg].chunk_count++; 801 } 802 803 int reserve_blocks_for_allocation(struct block_allocation *alloc) { 804 struct region *reg; 805 struct block_group_info *bgs = aux_info.bgs; 806 807 if (!alloc) return 0; 808 reg = alloc->list.first; 809 while (reg != NULL) { 810 if (reserve_blocks(&bgs[reg->bg], reg->bg, reg->block - bgs[reg->bg].first_block, reg->len) < 0) { 811 return -1; 812 } 813 reg = reg->next; 814 } 815 return 0; 816 } 817 818