Home | History | Annotate | Download | only in debug
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_
     18 #define ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_
     19 
     20 #include <unordered_set>
     21 #include <vector>
     22 
     23 #include "compiled_method.h"
     24 #include "debug/dwarf/debug_line_opcode_writer.h"
     25 #include "debug/dwarf/headers.h"
     26 #include "debug/elf_compilation_unit.h"
     27 #include "dex_file-inl.h"
     28 #include "elf_builder.h"
     29 #include "stack_map.h"
     30 
     31 namespace art {
     32 namespace debug {
     33 
     34 typedef std::vector<DexFile::PositionInfo> PositionInfos;
     35 
     36 static bool PositionInfoCallback(void* ctx, const DexFile::PositionInfo& entry) {
     37   static_cast<PositionInfos*>(ctx)->push_back(entry);
     38   return false;
     39 }
     40 
     41 template<typename ElfTypes>
     42 class ElfDebugLineWriter {
     43   using Elf_Addr = typename ElfTypes::Addr;
     44 
     45  public:
     46   explicit ElfDebugLineWriter(ElfBuilder<ElfTypes>* builder) : builder_(builder) {
     47   }
     48 
     49   void Start() {
     50     builder_->GetDebugLine()->Start();
     51   }
     52 
     53   // Write line table for given set of methods.
     54   // Returns the number of bytes written.
     55   size_t WriteCompilationUnit(ElfCompilationUnit& compilation_unit) {
     56     const bool is64bit = Is64BitInstructionSet(builder_->GetIsa());
     57     const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
     58         ? builder_->GetText()->GetAddress()
     59         : 0;
     60 
     61     compilation_unit.debug_line_offset = builder_->GetDebugLine()->GetSize();
     62 
     63     std::vector<dwarf::FileEntry> files;
     64     std::unordered_map<std::string, size_t> files_map;
     65     std::vector<std::string> directories;
     66     std::unordered_map<std::string, size_t> directories_map;
     67     int code_factor_bits_ = 0;
     68     int dwarf_isa = -1;
     69     switch (builder_->GetIsa()) {
     70       case kArm:  // arm actually means thumb2.
     71       case kThumb2:
     72         code_factor_bits_ = 1;  // 16-bit instuctions
     73         dwarf_isa = 1;  // DW_ISA_ARM_thumb.
     74         break;
     75       case kArm64:
     76       case kMips:
     77       case kMips64:
     78         code_factor_bits_ = 2;  // 32-bit instructions
     79         break;
     80       case kNone:
     81       case kX86:
     82       case kX86_64:
     83         break;
     84     }
     85     std::unordered_set<uint64_t> seen_addresses(compilation_unit.methods.size());
     86     dwarf::DebugLineOpCodeWriter<> opcodes(is64bit, code_factor_bits_);
     87     for (const MethodDebugInfo* mi : compilation_unit.methods) {
     88       // Ignore function if we have already generated line table for the same address.
     89       // It would confuse the debugger and the DWARF specification forbids it.
     90       // We allow the line table for method to be replicated in different compilation unit.
     91       // This ensures that each compilation unit contains line table for all its methods.
     92       if (!seen_addresses.insert(mi->code_address).second) {
     93         continue;
     94       }
     95 
     96       uint32_t prologue_end = std::numeric_limits<uint32_t>::max();
     97       std::vector<SrcMapElem> pc2dex_map;
     98       if (mi->code_info != nullptr) {
     99         // Use stack maps to create mapping table from pc to dex.
    100         const CodeInfo code_info(mi->code_info);
    101         const CodeInfoEncoding encoding = code_info.ExtractEncoding();
    102         pc2dex_map.reserve(code_info.GetNumberOfStackMaps(encoding));
    103         for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); s++) {
    104           StackMap stack_map = code_info.GetStackMapAt(s, encoding);
    105           DCHECK(stack_map.IsValid());
    106           const uint32_t pc = stack_map.GetNativePcOffset(encoding.stack_map_encoding);
    107           const int32_t dex = stack_map.GetDexPc(encoding.stack_map_encoding);
    108           pc2dex_map.push_back({pc, dex});
    109           if (stack_map.HasDexRegisterMap(encoding.stack_map_encoding)) {
    110             // Guess that the first map with local variables is the end of prologue.
    111             prologue_end = std::min(prologue_end, pc);
    112           }
    113         }
    114         std::sort(pc2dex_map.begin(), pc2dex_map.end());
    115       }
    116 
    117       if (pc2dex_map.empty()) {
    118         continue;
    119       }
    120 
    121       // Compensate for compiler's off-by-one-instruction error.
    122       //
    123       // The compiler generates stackmap with PC *after* the branch instruction
    124       // (because this is the PC which is easier to obtain when unwinding).
    125       //
    126       // However, the debugger is more clever and it will ask us for line-number
    127       // mapping at the location of the branch instruction (since the following
    128       // instruction could belong to other line, this is the correct thing to do).
    129       //
    130       // So we really want to just decrement the PC by one instruction so that the
    131       // branch instruction is covered as well. However, we do not know the size
    132       // of the previous instruction, and we can not subtract just a fixed amount
    133       // (the debugger would trust us that the PC is valid; it might try to set
    134       // breakpoint there at some point, and setting breakpoint in mid-instruction
    135       // would make the process crash in spectacular way).
    136       //
    137       // Therefore, we say that the PC which the compiler gave us for the stackmap
    138       // is the end of its associated address range, and we use the PC from the
    139       // previous stack map as the start of the range. This ensures that the PC is
    140       // valid and that the branch instruction is covered.
    141       //
    142       // This ensures we have correct line number mapping at call sites (which is
    143       // important for backtraces), but there is nothing we can do for non-call
    144       // sites (so stepping through optimized code in debugger is not possible).
    145       //
    146       // We do not adjust the stackmaps if the code was compiled as debuggable.
    147       // In that case, the stackmaps should accurately cover all instructions.
    148       if (!mi->is_native_debuggable) {
    149         for (size_t i = pc2dex_map.size() - 1; i > 0; --i) {
    150           pc2dex_map[i].from_ = pc2dex_map[i - 1].from_;
    151         }
    152         pc2dex_map[0].from_ = 0;
    153       }
    154 
    155       Elf_Addr method_address = base_address + mi->code_address;
    156 
    157       PositionInfos dex2line_map;
    158       DCHECK(mi->dex_file != nullptr);
    159       const DexFile* dex = mi->dex_file;
    160       if (!dex->DecodeDebugPositionInfo(mi->code_item, PositionInfoCallback, &dex2line_map)) {
    161         continue;
    162       }
    163 
    164       if (dex2line_map.empty()) {
    165         continue;
    166       }
    167 
    168       opcodes.SetAddress(method_address);
    169       if (dwarf_isa != -1) {
    170         opcodes.SetISA(dwarf_isa);
    171       }
    172 
    173       // Get and deduplicate directory and filename.
    174       int file_index = 0;  // 0 - primary source file of the compilation.
    175       auto& dex_class_def = dex->GetClassDef(mi->class_def_index);
    176       const char* source_file = dex->GetSourceFile(dex_class_def);
    177       if (source_file != nullptr) {
    178         std::string file_name(source_file);
    179         size_t file_name_slash = file_name.find_last_of('/');
    180         std::string class_name(dex->GetClassDescriptor(dex_class_def));
    181         size_t class_name_slash = class_name.find_last_of('/');
    182         std::string full_path(file_name);
    183 
    184         // Guess directory from package name.
    185         int directory_index = 0;  // 0 - current directory of the compilation.
    186         if (file_name_slash == std::string::npos &&  // Just filename.
    187             class_name.front() == 'L' &&  // Type descriptor for a class.
    188             class_name_slash != std::string::npos) {  // Has package name.
    189           std::string package_name = class_name.substr(1, class_name_slash - 1);
    190           auto it = directories_map.find(package_name);
    191           if (it == directories_map.end()) {
    192             directory_index = 1 + directories.size();
    193             directories_map.emplace(package_name, directory_index);
    194             directories.push_back(package_name);
    195           } else {
    196             directory_index = it->second;
    197           }
    198           full_path = package_name + "/" + file_name;
    199         }
    200 
    201         // Add file entry.
    202         auto it2 = files_map.find(full_path);
    203         if (it2 == files_map.end()) {
    204           file_index = 1 + files.size();
    205           files_map.emplace(full_path, file_index);
    206           files.push_back(dwarf::FileEntry {
    207             file_name,
    208             directory_index,
    209             0,  // Modification time - NA.
    210             0,  // File size - NA.
    211           });
    212         } else {
    213           file_index = it2->second;
    214         }
    215       }
    216       opcodes.SetFile(file_index);
    217 
    218       // Generate mapping opcodes from PC to Java lines.
    219       if (file_index != 0) {
    220         // If the method was not compiled as native-debuggable, we still generate all available
    221         // lines, but we try to prevent the debugger from stepping and setting breakpoints since
    222         // the information is too inaccurate for that (breakpoints would be set after the calls).
    223         const bool default_is_stmt = mi->is_native_debuggable;
    224         bool first = true;
    225         for (SrcMapElem pc2dex : pc2dex_map) {
    226           uint32_t pc = pc2dex.from_;
    227           int dex_pc = pc2dex.to_;
    228           // Find mapping with address with is greater than our dex pc; then go back one step.
    229           auto dex2line = std::upper_bound(
    230               dex2line_map.begin(),
    231               dex2line_map.end(),
    232               dex_pc,
    233               [](uint32_t address, const DexFile::PositionInfo& entry) {
    234                   return address < entry.address_;
    235               });
    236           // Look for first valid mapping after the prologue.
    237           if (dex2line != dex2line_map.begin() && pc >= prologue_end) {
    238             int line = (--dex2line)->line_;
    239             if (first) {
    240               first = false;
    241               if (pc > 0) {
    242                 // Assume that any preceding code is prologue.
    243                 int first_line = dex2line_map.front().line_;
    244                 // Prologue is not a sensible place for a breakpoint.
    245                 opcodes.SetIsStmt(false);
    246                 opcodes.AddRow(method_address, first_line);
    247                 opcodes.SetPrologueEnd();
    248               }
    249               opcodes.SetIsStmt(default_is_stmt);
    250               opcodes.AddRow(method_address + pc, line);
    251             } else if (line != opcodes.CurrentLine()) {
    252               opcodes.SetIsStmt(default_is_stmt);
    253               opcodes.AddRow(method_address + pc, line);
    254             }
    255           }
    256         }
    257       } else {
    258         // line 0 - instruction cannot be attributed to any source line.
    259         opcodes.AddRow(method_address, 0);
    260       }
    261 
    262       opcodes.AdvancePC(method_address + mi->code_size);
    263       opcodes.EndSequence();
    264     }
    265     std::vector<uint8_t> buffer;
    266     buffer.reserve(opcodes.data()->size() + KB);
    267     size_t offset = builder_->GetDebugLine()->GetSize();
    268     WriteDebugLineTable(directories, files, opcodes, offset, &buffer, &debug_line_patches_);
    269     builder_->GetDebugLine()->WriteFully(buffer.data(), buffer.size());
    270     return buffer.size();
    271   }
    272 
    273   void End(bool write_oat_patches) {
    274     builder_->GetDebugLine()->End();
    275     if (write_oat_patches) {
    276       builder_->WritePatches(".debug_line.oat_patches",
    277                              ArrayRef<const uintptr_t>(debug_line_patches_));
    278     }
    279   }
    280 
    281  private:
    282   ElfBuilder<ElfTypes>* builder_;
    283   std::vector<uintptr_t> debug_line_patches_;
    284 };
    285 
    286 }  // namespace debug
    287 }  // namespace art
    288 
    289 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_
    290 
    291