Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <limits.h>
     12 #include <math.h>
     13 
     14 #include "vpx_dsp/vpx_dsp_common.h"
     15 #include "vpx_ports/system_state.h"
     16 
     17 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
     18 
     19 #include "vp9/common/vp9_seg_common.h"
     20 
     21 #include "vp9/encoder/vp9_ratectrl.h"
     22 #include "vp9/encoder/vp9_segmentation.h"
     23 
     24 CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols) {
     25   size_t last_coded_q_map_size;
     26   size_t consec_zero_mv_size;
     27   CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr));
     28   if (cr == NULL)
     29     return NULL;
     30 
     31   cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map));
     32   if (cr->map == NULL) {
     33     vpx_free(cr);
     34     return NULL;
     35   }
     36   last_coded_q_map_size = mi_rows * mi_cols * sizeof(*cr->last_coded_q_map);
     37   cr->last_coded_q_map = vpx_malloc(last_coded_q_map_size);
     38   if (cr->last_coded_q_map == NULL) {
     39     vpx_free(cr);
     40     return NULL;
     41   }
     42   assert(MAXQ <= 255);
     43   memset(cr->last_coded_q_map, MAXQ, last_coded_q_map_size);
     44 
     45   consec_zero_mv_size = mi_rows * mi_cols * sizeof(*cr->consec_zero_mv);
     46   cr->consec_zero_mv = vpx_malloc(consec_zero_mv_size);
     47   if (cr->consec_zero_mv == NULL) {
     48     vpx_free(cr);
     49     return NULL;
     50   }
     51   memset(cr->consec_zero_mv, 0, consec_zero_mv_size);
     52   return cr;
     53 }
     54 
     55 void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr) {
     56   vpx_free(cr->map);
     57   vpx_free(cr->last_coded_q_map);
     58   vpx_free(cr->consec_zero_mv);
     59   vpx_free(cr);
     60 }
     61 
     62 // Check if we should turn off cyclic refresh based on bitrate condition.
     63 static int apply_cyclic_refresh_bitrate(const VP9_COMMON *cm,
     64                                         const RATE_CONTROL *rc) {
     65   // Turn off cyclic refresh if bits available per frame is not sufficiently
     66   // larger than bit cost of segmentation. Segment map bit cost should scale
     67   // with number of seg blocks, so compare available bits to number of blocks.
     68   // Average bits available per frame = avg_frame_bandwidth
     69   // Number of (8x8) blocks in frame = mi_rows * mi_cols;
     70   const float factor = 0.25;
     71   const int number_blocks = cm->mi_rows  * cm->mi_cols;
     72   // The condition below corresponds to turning off at target bitrates:
     73   // (at 30fps), ~12kbps for CIF, 36kbps for VGA, 100kps for HD/720p.
     74   // Also turn off at very small frame sizes, to avoid too large fraction of
     75   // superblocks to be refreshed per frame. Threshold below is less than QCIF.
     76   if (rc->avg_frame_bandwidth < factor * number_blocks ||
     77       number_blocks / 64 < 5)
     78     return 0;
     79   else
     80     return 1;
     81 }
     82 
     83 // Check if this coding block, of size bsize, should be considered for refresh
     84 // (lower-qp coding). Decision can be based on various factors, such as
     85 // size of the coding block (i.e., below min_block size rejected), coding
     86 // mode, and rate/distortion.
     87 static int candidate_refresh_aq(const CYCLIC_REFRESH *cr,
     88                                 const MB_MODE_INFO *mbmi,
     89                                 int64_t rate,
     90                                 int64_t dist,
     91                                 int bsize) {
     92   MV mv = mbmi->mv[0].as_mv;
     93   // Reject the block for lower-qp coding if projected distortion
     94   // is above the threshold, and any of the following is true:
     95   // 1) mode uses large mv
     96   // 2) mode is an intra-mode
     97   // Otherwise accept for refresh.
     98   if (dist > cr->thresh_dist_sb &&
     99       (mv.row > cr->motion_thresh || mv.row < -cr->motion_thresh ||
    100        mv.col > cr->motion_thresh || mv.col < -cr->motion_thresh ||
    101        !is_inter_block(mbmi)))
    102     return CR_SEGMENT_ID_BASE;
    103   else  if (bsize >= BLOCK_16X16 &&
    104             rate < cr->thresh_rate_sb &&
    105             is_inter_block(mbmi) &&
    106             mbmi->mv[0].as_int == 0 &&
    107             cr->rate_boost_fac > 10)
    108     // More aggressive delta-q for bigger blocks with zero motion.
    109     return CR_SEGMENT_ID_BOOST2;
    110   else
    111     return CR_SEGMENT_ID_BOOST1;
    112 }
    113 
    114 // Compute delta-q for the segment.
    115 static int compute_deltaq(const VP9_COMP *cpi, int q, double rate_factor) {
    116   const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    117   const RATE_CONTROL *const rc = &cpi->rc;
    118   int deltaq = vp9_compute_qdelta_by_rate(rc, cpi->common.frame_type,
    119                                           q, rate_factor,
    120                                           cpi->common.bit_depth);
    121   if ((-deltaq) > cr->max_qdelta_perc * q / 100) {
    122     deltaq = -cr->max_qdelta_perc * q / 100;
    123   }
    124   return deltaq;
    125 }
    126 
    127 // For the just encoded frame, estimate the bits, incorporating the delta-q
    128 // from non-base segment. For now ignore effect of multiple segments
    129 // (with different delta-q). Note this function is called in the postencode
    130 // (called from rc_update_rate_correction_factors()).
    131 int vp9_cyclic_refresh_estimate_bits_at_q(const VP9_COMP *cpi,
    132                                           double correction_factor) {
    133   const VP9_COMMON *const cm = &cpi->common;
    134   const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    135   int estimated_bits;
    136   int mbs = cm->MBs;
    137   int num8x8bl = mbs << 2;
    138   // Weight for non-base segments: use actual number of blocks refreshed in
    139   // previous/just encoded frame. Note number of blocks here is in 8x8 units.
    140   double weight_segment1 = (double)cr->actual_num_seg1_blocks / num8x8bl;
    141   double weight_segment2 = (double)cr->actual_num_seg2_blocks / num8x8bl;
    142   // Take segment weighted average for estimated bits.
    143   estimated_bits = (int)((1.0 - weight_segment1 - weight_segment2) *
    144       vp9_estimate_bits_at_q(cm->frame_type, cm->base_qindex, mbs,
    145                              correction_factor, cm->bit_depth) +
    146                              weight_segment1 *
    147       vp9_estimate_bits_at_q(cm->frame_type,
    148                              cm->base_qindex + cr->qindex_delta[1], mbs,
    149                              correction_factor, cm->bit_depth) +
    150                              weight_segment2 *
    151       vp9_estimate_bits_at_q(cm->frame_type,
    152                              cm->base_qindex + cr->qindex_delta[2], mbs,
    153                              correction_factor, cm->bit_depth));
    154   return estimated_bits;
    155 }
    156 
    157 // Prior to encoding the frame, estimate the bits per mb, for a given q = i and
    158 // a corresponding delta-q (for segment 1). This function is called in the
    159 // rc_regulate_q() to set the base qp index.
    160 // Note: the segment map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or
    161 // to 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock, prior to encoding.
    162 int vp9_cyclic_refresh_rc_bits_per_mb(const VP9_COMP *cpi, int i,
    163                                       double correction_factor) {
    164   const VP9_COMMON *const cm = &cpi->common;
    165   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    166   int bits_per_mb;
    167   int num8x8bl = cm->MBs << 2;
    168   // Weight for segment prior to encoding: take the average of the target
    169   // number for the frame to be encoded and the actual from the previous frame.
    170   int target_refresh = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100;
    171   double weight_segment = (double)((target_refresh +
    172       cr->actual_num_seg1_blocks + cr->actual_num_seg2_blocks) >> 1) /
    173       num8x8bl;
    174   // Compute delta-q corresponding to qindex i.
    175   int deltaq = compute_deltaq(cpi, i, cr->rate_ratio_qdelta);
    176   // Take segment weighted average for bits per mb.
    177   bits_per_mb = (int)((1.0 - weight_segment) *
    178       vp9_rc_bits_per_mb(cm->frame_type, i, correction_factor, cm->bit_depth) +
    179       weight_segment *
    180       vp9_rc_bits_per_mb(cm->frame_type, i + deltaq, correction_factor,
    181                          cm->bit_depth));
    182   return bits_per_mb;
    183 }
    184 
    185 // Prior to coding a given prediction block, of size bsize at (mi_row, mi_col),
    186 // check if we should reset the segment_id, and update the cyclic_refresh map
    187 // and segmentation map.
    188 void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi,
    189                                        MB_MODE_INFO *const mbmi,
    190                                        int mi_row, int mi_col,
    191                                        BLOCK_SIZE bsize,
    192                                        int64_t rate,
    193                                        int64_t dist,
    194                                        int skip) {
    195   const VP9_COMMON *const cm = &cpi->common;
    196   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    197   const int bw = num_8x8_blocks_wide_lookup[bsize];
    198   const int bh = num_8x8_blocks_high_lookup[bsize];
    199   const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
    200   const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
    201   const int block_index = mi_row * cm->mi_cols + mi_col;
    202   const int refresh_this_block = candidate_refresh_aq(cr, mbmi, rate, dist,
    203                                                       bsize);
    204   // Default is to not update the refresh map.
    205   int new_map_value = cr->map[block_index];
    206   int x = 0; int y = 0;
    207 
    208   // If this block is labeled for refresh, check if we should reset the
    209   // segment_id.
    210   if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) {
    211     mbmi->segment_id = refresh_this_block;
    212     // Reset segment_id if it will be skipped.
    213     if (skip)
    214       mbmi->segment_id = CR_SEGMENT_ID_BASE;
    215   }
    216 
    217   // Update the cyclic refresh map, to be used for setting segmentation map
    218   // for the next frame. If the block  will be refreshed this frame, mark it
    219   // as clean. The magnitude of the -ve influences how long before we consider
    220   // it for refresh again.
    221   if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) {
    222     new_map_value = -cr->time_for_refresh;
    223   } else if (refresh_this_block) {
    224     // Else if it is accepted as candidate for refresh, and has not already
    225     // been refreshed (marked as 1) then mark it as a candidate for cleanup
    226     // for future time (marked as 0), otherwise don't update it.
    227     if (cr->map[block_index] == 1)
    228       new_map_value = 0;
    229   } else {
    230     // Leave it marked as block that is not candidate for refresh.
    231     new_map_value = 1;
    232   }
    233 
    234   // Update entries in the cyclic refresh map with new_map_value, and
    235   // copy mbmi->segment_id into global segmentation map.
    236   for (y = 0; y < ymis; y++)
    237     for (x = 0; x < xmis; x++) {
    238       int map_offset = block_index + y * cm->mi_cols + x;
    239       cr->map[map_offset] = new_map_value;
    240       cpi->segmentation_map[map_offset] = mbmi->segment_id;
    241     }
    242 }
    243 
    244 void vp9_cyclic_refresh_update_sb_postencode(VP9_COMP *const cpi,
    245                                              const MB_MODE_INFO *const mbmi,
    246                                              int mi_row, int mi_col,
    247                                              BLOCK_SIZE bsize) {
    248   const VP9_COMMON *const cm = &cpi->common;
    249   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    250   MV mv = mbmi->mv[0].as_mv;
    251   const int bw = num_8x8_blocks_wide_lookup[bsize];
    252   const int bh = num_8x8_blocks_high_lookup[bsize];
    253   const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
    254   const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
    255   const int block_index = mi_row * cm->mi_cols + mi_col;
    256   int x, y;
    257   for (y = 0; y < ymis; y++)
    258     for (x = 0; x < xmis; x++) {
    259       int map_offset = block_index + y * cm->mi_cols + x;
    260       // Inter skip blocks were clearly not coded at the current qindex, so
    261       // don't update the map for them. For cases where motion is non-zero or
    262       // the reference frame isn't the previous frame, the previous value in
    263       // the map for this spatial location is not entirely correct.
    264       if ((!is_inter_block(mbmi) || !mbmi->skip) &&
    265           mbmi->segment_id <= CR_SEGMENT_ID_BOOST2) {
    266         cr->last_coded_q_map[map_offset] = clamp(
    267             cm->base_qindex + cr->qindex_delta[mbmi->segment_id], 0, MAXQ);
    268       } else if (is_inter_block(mbmi) && mbmi->skip &&
    269                  mbmi->segment_id <= CR_SEGMENT_ID_BOOST2) {
    270         cr->last_coded_q_map[map_offset] = VPXMIN(
    271             clamp(cm->base_qindex + cr->qindex_delta[mbmi->segment_id],
    272                   0, MAXQ),
    273             cr->last_coded_q_map[map_offset]);
    274       // Update the consecutive zero/low_mv count.
    275       if (is_inter_block(mbmi) && (abs(mv.row) < 8 && abs(mv.col) < 8)) {
    276         if (cr->consec_zero_mv[map_offset] < 255)
    277           cr->consec_zero_mv[map_offset]++;
    278       } else {
    279         cr->consec_zero_mv[map_offset] = 0;
    280       }
    281     }
    282   }
    283 }
    284 
    285 // Update the actual number of blocks that were applied the segment delta q.
    286 void vp9_cyclic_refresh_postencode(VP9_COMP *const cpi) {
    287   VP9_COMMON *const cm = &cpi->common;
    288   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    289   unsigned char *const seg_map = cpi->segmentation_map;
    290   int mi_row, mi_col;
    291   cr->actual_num_seg1_blocks = 0;
    292   cr->actual_num_seg2_blocks = 0;
    293   for (mi_row = 0; mi_row < cm->mi_rows; mi_row++)
    294     for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
    295       if (cyclic_refresh_segment_id(
    296           seg_map[mi_row * cm->mi_cols + mi_col]) == CR_SEGMENT_ID_BOOST1)
    297         cr->actual_num_seg1_blocks++;
    298       else if (cyclic_refresh_segment_id(
    299           seg_map[mi_row * cm->mi_cols + mi_col]) == CR_SEGMENT_ID_BOOST2)
    300         cr->actual_num_seg2_blocks++;
    301     }
    302 }
    303 
    304 // Set golden frame update interval, for non-svc 1 pass CBR mode.
    305 void vp9_cyclic_refresh_set_golden_update(VP9_COMP *const cpi) {
    306   RATE_CONTROL *const rc = &cpi->rc;
    307   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    308   // Set minimum gf_interval for GF update to a multiple (== 2) of refresh
    309   // period. Depending on past encoding stats, GF flag may be reset and update
    310   // may not occur until next baseline_gf_interval.
    311   if (cr->percent_refresh > 0)
    312     rc->baseline_gf_interval = 4 * (100 / cr->percent_refresh);
    313   else
    314     rc->baseline_gf_interval = 40;
    315 }
    316 
    317 // Update some encoding stats (from the just encoded frame). If this frame's
    318 // background has high motion, refresh the golden frame. Otherwise, if the
    319 // golden reference is to be updated check if we should NOT update the golden
    320 // ref.
    321 void vp9_cyclic_refresh_check_golden_update(VP9_COMP *const cpi) {
    322   VP9_COMMON *const cm = &cpi->common;
    323   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    324   int mi_row, mi_col;
    325   double fraction_low = 0.0;
    326   int low_content_frame = 0;
    327 
    328   MODE_INFO **mi = cm->mi_grid_visible;
    329   RATE_CONTROL *const rc = &cpi->rc;
    330   const int rows = cm->mi_rows, cols = cm->mi_cols;
    331   int cnt1 = 0, cnt2 = 0;
    332   int force_gf_refresh = 0;
    333 
    334   for (mi_row = 0; mi_row < rows; mi_row++) {
    335     for (mi_col = 0; mi_col < cols; mi_col++) {
    336       int16_t abs_mvr = mi[0]->mbmi.mv[0].as_mv.row >= 0 ?
    337           mi[0]->mbmi.mv[0].as_mv.row : -1 * mi[0]->mbmi.mv[0].as_mv.row;
    338       int16_t abs_mvc = mi[0]->mbmi.mv[0].as_mv.col >= 0 ?
    339           mi[0]->mbmi.mv[0].as_mv.col : -1 * mi[0]->mbmi.mv[0].as_mv.col;
    340 
    341       // Calculate the motion of the background.
    342       if (abs_mvr <= 16 && abs_mvc <= 16) {
    343         cnt1++;
    344         if (abs_mvr == 0 && abs_mvc == 0)
    345           cnt2++;
    346       }
    347       mi++;
    348 
    349       // Accumulate low_content_frame.
    350       if (cr->map[mi_row * cols + mi_col] < 1)
    351         low_content_frame++;
    352     }
    353     mi += 8;
    354   }
    355 
    356   // For video conference clips, if the background has high motion in current
    357   // frame because of the camera movement, set this frame as the golden frame.
    358   // Use 70% and 5% as the thresholds for golden frame refreshing.
    359   // Also, force this frame as a golden update frame if this frame will change
    360   // the resolution (resize_pending != 0).
    361   if (cpi->resize_pending != 0 ||
    362      (cnt1 * 10 > (70 * rows * cols) && cnt2 * 20 < cnt1)) {
    363     vp9_cyclic_refresh_set_golden_update(cpi);
    364     rc->frames_till_gf_update_due = rc->baseline_gf_interval;
    365 
    366     if (rc->frames_till_gf_update_due > rc->frames_to_key)
    367       rc->frames_till_gf_update_due = rc->frames_to_key;
    368     cpi->refresh_golden_frame = 1;
    369     force_gf_refresh = 1;
    370   }
    371 
    372   fraction_low =
    373       (double)low_content_frame / (rows * cols);
    374   // Update average.
    375   cr->low_content_avg = (fraction_low + 3 * cr->low_content_avg) / 4;
    376   if (!force_gf_refresh && cpi->refresh_golden_frame == 1) {
    377     // Don't update golden reference if the amount of low_content for the
    378     // current encoded frame is small, or if the recursive average of the
    379     // low_content over the update interval window falls below threshold.
    380     if (fraction_low < 0.8 || cr->low_content_avg < 0.7)
    381       cpi->refresh_golden_frame = 0;
    382     // Reset for next internal.
    383     cr->low_content_avg = fraction_low;
    384   }
    385 }
    386 
    387 // Update the segmentation map, and related quantities: cyclic refresh map,
    388 // refresh sb_index, and target number of blocks to be refreshed.
    389 // The map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or to
    390 // 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock.
    391 // Blocks labeled as BOOST1 may later get set to BOOST2 (during the
    392 // encoding of the superblock).
    393 static void cyclic_refresh_update_map(VP9_COMP *const cpi) {
    394   VP9_COMMON *const cm = &cpi->common;
    395   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    396   unsigned char *const seg_map = cpi->segmentation_map;
    397   int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame;
    398   int xmis, ymis, x, y;
    399   int consec_zero_mv_thresh = 0;
    400   int qindex_thresh = 0;
    401   int count_sel = 0;
    402   int count_tot = 0;
    403   memset(seg_map, CR_SEGMENT_ID_BASE, cm->mi_rows * cm->mi_cols);
    404   sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
    405   sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
    406   sbs_in_frame = sb_cols * sb_rows;
    407   // Number of target blocks to get the q delta (segment 1).
    408   block_count = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100;
    409   // Set the segmentation map: cycle through the superblocks, starting at
    410   // cr->mb_index, and stopping when either block_count blocks have been found
    411   // to be refreshed, or we have passed through whole frame.
    412   assert(cr->sb_index < sbs_in_frame);
    413   i = cr->sb_index;
    414   cr->target_num_seg_blocks = 0;
    415   if (cpi->oxcf.content != VP9E_CONTENT_SCREEN)
    416     consec_zero_mv_thresh = 100;
    417   qindex_thresh =
    418       cpi->oxcf.content == VP9E_CONTENT_SCREEN
    419       ? vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST2, cm->base_qindex)
    420       : vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST1, cm->base_qindex);
    421   do {
    422     int sum_map = 0;
    423     // Get the mi_row/mi_col corresponding to superblock index i.
    424     int sb_row_index = (i / sb_cols);
    425     int sb_col_index = i - sb_row_index * sb_cols;
    426     int mi_row = sb_row_index * MI_BLOCK_SIZE;
    427     int mi_col = sb_col_index * MI_BLOCK_SIZE;
    428     assert(mi_row >= 0 && mi_row < cm->mi_rows);
    429     assert(mi_col >= 0 && mi_col < cm->mi_cols);
    430     bl_index = mi_row * cm->mi_cols + mi_col;
    431     // Loop through all 8x8 blocks in superblock and update map.
    432     xmis =
    433         VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[BLOCK_64X64]);
    434     ymis =
    435         VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[BLOCK_64X64]);
    436     for (y = 0; y < ymis; y++) {
    437       for (x = 0; x < xmis; x++) {
    438         const int bl_index2 = bl_index + y * cm->mi_cols + x;
    439         // If the block is as a candidate for clean up then mark it
    440         // for possible boost/refresh (segment 1). The segment id may get
    441         // reset to 0 later if block gets coded anything other than ZEROMV.
    442         if (cr->map[bl_index2] == 0) {
    443           count_tot++;
    444           if (cr->last_coded_q_map[bl_index2] > qindex_thresh ||
    445               cr->consec_zero_mv[bl_index2] < consec_zero_mv_thresh) {
    446             sum_map++;
    447             count_sel++;
    448           }
    449         } else if (cr->map[bl_index2] < 0) {
    450           cr->map[bl_index2]++;
    451         }
    452       }
    453     }
    454     // Enforce constant segment over superblock.
    455     // If segment is at least half of superblock, set to 1.
    456     if (sum_map >= xmis * ymis / 2) {
    457       for (y = 0; y < ymis; y++)
    458         for (x = 0; x < xmis; x++) {
    459           seg_map[bl_index + y * cm->mi_cols + x] = CR_SEGMENT_ID_BOOST1;
    460         }
    461       cr->target_num_seg_blocks += xmis * ymis;
    462     }
    463     i++;
    464     if (i == sbs_in_frame) {
    465       i = 0;
    466     }
    467   } while (cr->target_num_seg_blocks < block_count && i != cr->sb_index);
    468   cr->sb_index = i;
    469   cr->reduce_refresh = 0;
    470   if (count_sel < (3 * count_tot) >> 2)
    471     cr->reduce_refresh = 1;
    472 }
    473 
    474 // Set cyclic refresh parameters.
    475 void vp9_cyclic_refresh_update_parameters(VP9_COMP *const cpi) {
    476   const RATE_CONTROL *const rc = &cpi->rc;
    477   const VP9_COMMON *const cm = &cpi->common;
    478   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    479   cr->percent_refresh = 10;
    480   if (cr->reduce_refresh)
    481     cr->percent_refresh = 5;
    482   cr->max_qdelta_perc = 50;
    483   cr->time_for_refresh = 0;
    484   // Use larger delta-qp (increase rate_ratio_qdelta) for first few (~4)
    485   // periods of the refresh cycle, after a key frame.
    486   // Account for larger interval on base layer for temporal layers.
    487   if (cr->percent_refresh > 0 &&
    488       rc->frames_since_key <  (4 * cpi->svc.number_temporal_layers) *
    489       (100 / cr->percent_refresh))
    490     cr->rate_ratio_qdelta = 3.0;
    491   else
    492     cr->rate_ratio_qdelta = 2.0;
    493   // Adjust some parameters for low resolutions at low bitrates.
    494   if (cm->width <= 352 &&
    495       cm->height <= 288 &&
    496       rc->avg_frame_bandwidth < 3400) {
    497     cr->motion_thresh = 4;
    498     cr->rate_boost_fac = 10;
    499   } else {
    500     cr->motion_thresh = 32;
    501     cr->rate_boost_fac = 15;
    502   }
    503   if (cpi->svc.spatial_layer_id > 0) {
    504     cr->motion_thresh = 4;
    505     cr->rate_boost_fac = 12;
    506   }
    507 }
    508 
    509 // Setup cyclic background refresh: set delta q and segmentation map.
    510 void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) {
    511   VP9_COMMON *const cm = &cpi->common;
    512   const RATE_CONTROL *const rc = &cpi->rc;
    513   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    514   struct segmentation *const seg = &cm->seg;
    515   const int apply_cyclic_refresh  = apply_cyclic_refresh_bitrate(cm, rc);
    516   if (cm->current_video_frame == 0)
    517     cr->low_content_avg = 0.0;
    518   // Don't apply refresh on key frame or temporal enhancement layer frames.
    519   if (!apply_cyclic_refresh ||
    520       (cm->frame_type == KEY_FRAME) ||
    521       (cpi->svc.temporal_layer_id > 0)) {
    522     // Set segmentation map to 0 and disable.
    523     unsigned char *const seg_map = cpi->segmentation_map;
    524     memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
    525     vp9_disable_segmentation(&cm->seg);
    526     if (cm->frame_type == KEY_FRAME) {
    527       memset(cr->last_coded_q_map, MAXQ,
    528              cm->mi_rows * cm->mi_cols * sizeof(*cr->last_coded_q_map));
    529       memset(cr->consec_zero_mv, 0,
    530              cm->mi_rows * cm->mi_cols * sizeof(*cr->consec_zero_mv));
    531       cr->sb_index = 0;
    532     }
    533     return;
    534   } else {
    535     int qindex_delta = 0;
    536     int qindex2;
    537     const double q = vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth);
    538     vpx_clear_system_state();
    539     // Set rate threshold to some multiple (set to 2 for now) of the target
    540     // rate (target is given by sb64_target_rate and scaled by 256).
    541     cr->thresh_rate_sb = ((int64_t)(rc->sb64_target_rate) << 8) << 2;
    542     // Distortion threshold, quadratic in Q, scale factor to be adjusted.
    543     // q will not exceed 457, so (q * q) is within 32bit; see:
    544     // vp9_convert_qindex_to_q(), vp9_ac_quant(), ac_qlookup*[].
    545     cr->thresh_dist_sb = ((int64_t)(q * q)) << 2;
    546 
    547     // Set up segmentation.
    548     // Clear down the segment map.
    549     vp9_enable_segmentation(&cm->seg);
    550     vp9_clearall_segfeatures(seg);
    551     // Select delta coding method.
    552     seg->abs_delta = SEGMENT_DELTADATA;
    553 
    554     // Note: setting temporal_update has no effect, as the seg-map coding method
    555     // (temporal or spatial) is determined in vp9_choose_segmap_coding_method(),
    556     // based on the coding cost of each method. For error_resilient mode on the
    557     // last_frame_seg_map is set to 0, so if temporal coding is used, it is
    558     // relative to 0 previous map.
    559     // seg->temporal_update = 0;
    560 
    561     // Segment BASE "Q" feature is disabled so it defaults to the baseline Q.
    562     vp9_disable_segfeature(seg, CR_SEGMENT_ID_BASE, SEG_LVL_ALT_Q);
    563     // Use segment BOOST1 for in-frame Q adjustment.
    564     vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q);
    565     // Use segment BOOST2 for more aggressive in-frame Q adjustment.
    566     vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q);
    567 
    568     // Set the q delta for segment BOOST1.
    569     qindex_delta = compute_deltaq(cpi, cm->base_qindex, cr->rate_ratio_qdelta);
    570     cr->qindex_delta[1] = qindex_delta;
    571 
    572     // Compute rd-mult for segment BOOST1.
    573     qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ);
    574 
    575     cr->rdmult = vp9_compute_rd_mult(cpi, qindex2);
    576 
    577     vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q, qindex_delta);
    578 
    579     // Set a more aggressive (higher) q delta for segment BOOST2.
    580     qindex_delta = compute_deltaq(
    581         cpi, cm->base_qindex,
    582         VPXMIN(CR_MAX_RATE_TARGET_RATIO,
    583                0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta));
    584     cr->qindex_delta[2] = qindex_delta;
    585     vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta);
    586 
    587     // Reset if resoluton change has occurred.
    588     if (cpi->resize_pending != 0)
    589       vp9_cyclic_refresh_reset_resize(cpi);
    590 
    591     // Update the segmentation and refresh map.
    592     cyclic_refresh_update_map(cpi);
    593   }
    594 }
    595 
    596 int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) {
    597   return cr->rdmult;
    598 }
    599 
    600 void vp9_cyclic_refresh_reset_resize(VP9_COMP *const cpi) {
    601   const VP9_COMMON *const cm = &cpi->common;
    602   CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
    603   memset(cr->map, 0, cm->mi_rows * cm->mi_cols);
    604   memset(cr->last_coded_q_map, MAXQ, cm->mi_rows * cm->mi_cols);
    605   memset(cr->consec_zero_mv, 0, cm->mi_rows * cm->mi_cols);
    606   cr->sb_index = 0;
    607   cpi->refresh_golden_frame = 1;
    608 }
    609