1 /* 2 * Copyright (C) 2013 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include <math.h> 18 19 #include "Blur.h" 20 #include "MathUtils.h" 21 22 namespace android { 23 namespace uirenderer { 24 25 // This constant approximates the scaling done in the software path's 26 // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)). 27 static const float BLUR_SIGMA_SCALE = 0.57735f; 28 29 float Blur::convertRadiusToSigma(float radius) { 30 return radius > 0 ? BLUR_SIGMA_SCALE * radius + 0.5f : 0.0f; 31 } 32 33 float Blur::convertSigmaToRadius(float sigma) { 34 return sigma > 0.5f ? (sigma - 0.5f) / BLUR_SIGMA_SCALE : 0.0f; 35 } 36 37 // if the original radius was on an integer boundary and the resulting radius 38 // is within the conversion error tolerance then we attempt to snap to the 39 // original integer boundary. 40 uint32_t Blur::convertRadiusToInt(float radius) { 41 const float radiusCeil = ceilf(radius); 42 if (MathUtils::areEqual(radiusCeil, radius)) { 43 return radiusCeil; 44 } 45 return radius; 46 } 47 48 /** 49 * HWUI has used a slightly different equation than Skia to generate the value 50 * for sigma and to preserve compatibility we have kept that logic. 51 * 52 * Based on some experimental radius and sigma values we approximate the 53 * equation sigma = f(radius) as sigma = radius * 0.3 + 0.6. The larger the 54 * radius gets, the more our gaussian blur will resemble a box blur since with 55 * large sigma the gaussian curve begins to lose its shape. 56 */ 57 static float legacyConvertRadiusToSigma(float radius) { 58 return radius > 0 ? 0.3f * radius + 0.6f : 0.0f; 59 } 60 61 void Blur::generateGaussianWeights(float* weights, float radius) { 62 int32_t intRadius = convertRadiusToInt(radius); 63 64 // Compute gaussian weights for the blur 65 // e is the euler's number 66 static float e = 2.718281828459045f; 67 static float pi = 3.1415926535897932f; 68 // g(x) = ( 1 / sqrt( 2 * pi ) * sigma) * e ^ ( -x^2 / 2 * sigma^2 ) 69 // x is of the form [-radius .. 0 .. radius] 70 // and sigma varies with radius. 71 float sigma = legacyConvertRadiusToSigma(radius); 72 73 // Now compute the coefficints 74 // We will store some redundant values to save some math during 75 // the blur calculations 76 // precompute some values 77 float coeff1 = 1.0f / (sqrt(2.0f * pi) * sigma); 78 float coeff2 = - 1.0f / (2.0f * sigma * sigma); 79 80 float normalizeFactor = 0.0f; 81 for (int32_t r = -intRadius; r <= intRadius; r ++) { 82 float floatR = (float) r; 83 weights[r + intRadius] = coeff1 * pow(e, floatR * floatR * coeff2); 84 normalizeFactor += weights[r + intRadius]; 85 } 86 87 //Now we need to normalize the weights because all our coefficients need to add up to one 88 normalizeFactor = 1.0f / normalizeFactor; 89 for (int32_t r = -intRadius; r <= intRadius; r ++) { 90 weights[r + intRadius] *= normalizeFactor; 91 } 92 } 93 94 void Blur::horizontal(float* weights, int32_t radius, 95 const uint8_t* source, uint8_t* dest, int32_t width, int32_t height) { 96 float blurredPixel = 0.0f; 97 float currentPixel = 0.0f; 98 99 for (int32_t y = 0; y < height; y ++) { 100 101 const uint8_t* input = source + y * width; 102 uint8_t* output = dest + y * width; 103 104 for (int32_t x = 0; x < width; x ++) { 105 blurredPixel = 0.0f; 106 const float* gPtr = weights; 107 // Optimization for non-border pixels 108 if (x > radius && x < (width - radius)) { 109 const uint8_t *i = input + (x - radius); 110 for (int r = -radius; r <= radius; r ++) { 111 currentPixel = (float) (*i); 112 blurredPixel += currentPixel * gPtr[0]; 113 gPtr++; 114 i++; 115 } 116 } else { 117 for (int32_t r = -radius; r <= radius; r ++) { 118 // Stepping left and right away from the pixel 119 int validW = x + r; 120 if (validW < 0) { 121 validW = 0; 122 } 123 if (validW > width - 1) { 124 validW = width - 1; 125 } 126 127 currentPixel = (float) input[validW]; 128 blurredPixel += currentPixel * gPtr[0]; 129 gPtr++; 130 } 131 } 132 *output = (uint8_t)blurredPixel; 133 output ++; 134 } 135 } 136 } 137 138 void Blur::vertical(float* weights, int32_t radius, 139 const uint8_t* source, uint8_t* dest, int32_t width, int32_t height) { 140 float blurredPixel = 0.0f; 141 float currentPixel = 0.0f; 142 143 for (int32_t y = 0; y < height; y ++) { 144 uint8_t* output = dest + y * width; 145 146 for (int32_t x = 0; x < width; x ++) { 147 blurredPixel = 0.0f; 148 const float* gPtr = weights; 149 const uint8_t* input = source + x; 150 // Optimization for non-border pixels 151 if (y > radius && y < (height - radius)) { 152 const uint8_t *i = input + ((y - radius) * width); 153 for (int32_t r = -radius; r <= radius; r ++) { 154 currentPixel = (float) (*i); 155 blurredPixel += currentPixel * gPtr[0]; 156 gPtr++; 157 i += width; 158 } 159 } else { 160 for (int32_t r = -radius; r <= radius; r ++) { 161 int validH = y + r; 162 // Clamp to zero and width 163 if (validH < 0) { 164 validH = 0; 165 } 166 if (validH > height - 1) { 167 validH = height - 1; 168 } 169 170 const uint8_t *i = input + validH * width; 171 currentPixel = (float) (*i); 172 blurredPixel += currentPixel * gPtr[0]; 173 gPtr++; 174 } 175 } 176 *output = (uint8_t) blurredPixel; 177 output++; 178 } 179 } 180 } 181 182 }; // namespace uirenderer 183 }; // namespace android 184