1 /*********************************************************************** 2 * Software License Agreement (BSD License) 3 * 4 * Copyright 2008-2009 Marius Muja (mariusm (at) cs.ubc.ca). All rights reserved. 5 * Copyright 2008-2009 David G. Lowe (lowe (at) cs.ubc.ca). All rights reserved. 6 * 7 * THE BSD LICENSE 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 *************************************************************************/ 30 31 #ifndef OPENCV_FLANN_INDEX_TESTING_H_ 32 #define OPENCV_FLANN_INDEX_TESTING_H_ 33 34 #include <cstring> 35 #include <cassert> 36 #include <cmath> 37 38 #include "matrix.h" 39 #include "nn_index.h" 40 #include "result_set.h" 41 #include "logger.h" 42 #include "timer.h" 43 44 45 namespace cvflann 46 { 47 48 inline int countCorrectMatches(int* neighbors, int* groundTruth, int n) 49 { 50 int count = 0; 51 for (int i=0; i<n; ++i) { 52 for (int k=0; k<n; ++k) { 53 if (neighbors[i]==groundTruth[k]) { 54 count++; 55 break; 56 } 57 } 58 } 59 return count; 60 } 61 62 63 template <typename Distance> 64 typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target, 65 int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance) 66 { 67 typedef typename Distance::ResultType DistanceType; 68 69 DistanceType ret = 0; 70 for (int i=0; i<n; ++i) { 71 DistanceType den = distance(inputData[groundTruth[i]], target, veclen); 72 DistanceType num = distance(inputData[neighbors[i]], target, veclen); 73 74 if ((den==0)&&(num==0)) { 75 ret += 1; 76 } 77 else { 78 ret += num/den; 79 } 80 } 81 82 return ret; 83 } 84 85 template <typename Distance> 86 float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, 87 const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks, 88 float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches) 89 { 90 typedef typename Distance::ResultType DistanceType; 91 92 if (matches.cols<size_t(nn)) { 93 Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn); 94 95 throw FLANNException("Ground truth is not computed for as many neighbors as requested"); 96 } 97 98 KNNResultSet<DistanceType> resultSet(nn+skipMatches); 99 SearchParams searchParams(checks); 100 101 std::vector<int> indices(nn+skipMatches); 102 std::vector<DistanceType> dists(nn+skipMatches); 103 int* neighbors = &indices[skipMatches]; 104 105 int correct = 0; 106 DistanceType distR = 0; 107 StartStopTimer t; 108 int repeats = 0; 109 while (t.value<0.2) { 110 repeats++; 111 t.start(); 112 correct = 0; 113 distR = 0; 114 for (size_t i = 0; i < testData.rows; i++) { 115 resultSet.init(&indices[0], &dists[0]); 116 index.findNeighbors(resultSet, testData[i], searchParams); 117 118 correct += countCorrectMatches(neighbors,matches[i], nn); 119 distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance); 120 } 121 t.stop(); 122 } 123 time = float(t.value/repeats); 124 125 float precicion = (float)correct/(nn*testData.rows); 126 127 dist = distR/(testData.rows*nn); 128 129 Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n", 130 checks, precicion, time, 1000.0 * time / testData.rows, dist); 131 132 return precicion; 133 } 134 135 136 template <typename Distance> 137 float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, 138 const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, 139 int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0) 140 { 141 typedef typename Distance::ResultType DistanceType; 142 143 Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); 144 Logger::info("---------------------------------------------------------\n"); 145 146 float time = 0; 147 DistanceType dist = 0; 148 precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches); 149 150 return time; 151 } 152 153 template <typename Distance> 154 float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, 155 const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, 156 float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0) 157 { 158 typedef typename Distance::ResultType DistanceType; 159 const float SEARCH_EPS = 0.001f; 160 161 Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); 162 Logger::info("---------------------------------------------------------\n"); 163 164 int c2 = 1; 165 float p2; 166 int c1 = 1; 167 //float p1; 168 float time; 169 DistanceType dist; 170 171 p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); 172 173 if (p2>precision) { 174 Logger::info("Got as close as I can\n"); 175 checks = c2; 176 return time; 177 } 178 179 while (p2<precision) { 180 c1 = c2; 181 //p1 = p2; 182 c2 *=2; 183 p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); 184 } 185 186 int cx; 187 float realPrecision; 188 if (fabs(p2-precision)>SEARCH_EPS) { 189 Logger::info("Start linear estimation\n"); 190 // after we got to values in the vecinity of the desired precision 191 // use linear approximation get a better estimation 192 193 cx = (c1+c2)/2; 194 realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); 195 while (fabs(realPrecision-precision)>SEARCH_EPS) { 196 197 if (realPrecision<precision) { 198 c1 = cx; 199 } 200 else { 201 c2 = cx; 202 } 203 cx = (c1+c2)/2; 204 if (cx==c1) { 205 Logger::info("Got as close as I can\n"); 206 break; 207 } 208 realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); 209 } 210 211 c2 = cx; 212 p2 = realPrecision; 213 214 } 215 else { 216 Logger::info("No need for linear estimation\n"); 217 cx = c2; 218 realPrecision = p2; 219 } 220 221 checks = cx; 222 return time; 223 } 224 225 226 template <typename Distance> 227 void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, 228 const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, 229 float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0) 230 { 231 typedef typename Distance::ResultType DistanceType; 232 233 const float SEARCH_EPS = 0.001; 234 235 // make sure precisions array is sorted 236 std::sort(precisions, precisions+precisions_length); 237 238 int pindex = 0; 239 float precision = precisions[pindex]; 240 241 Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); 242 Logger::info("---------------------------------------------------------\n"); 243 244 int c2 = 1; 245 float p2; 246 247 int c1 = 1; 248 float p1; 249 250 float time; 251 DistanceType dist; 252 253 p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); 254 255 // if precision for 1 run down the tree is already 256 // better then some of the requested precisions, then 257 // skip those 258 while (precisions[pindex]<p2 && pindex<precisions_length) { 259 pindex++; 260 } 261 262 if (pindex==precisions_length) { 263 Logger::info("Got as close as I can\n"); 264 return; 265 } 266 267 for (int i=pindex; i<precisions_length; ++i) { 268 269 precision = precisions[i]; 270 while (p2<precision) { 271 c1 = c2; 272 p1 = p2; 273 c2 *=2; 274 p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); 275 if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return; 276 } 277 278 int cx; 279 float realPrecision; 280 if (fabs(p2-precision)>SEARCH_EPS) { 281 Logger::info("Start linear estimation\n"); 282 // after we got to values in the vecinity of the desired precision 283 // use linear approximation get a better estimation 284 285 cx = (c1+c2)/2; 286 realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); 287 while (fabs(realPrecision-precision)>SEARCH_EPS) { 288 289 if (realPrecision<precision) { 290 c1 = cx; 291 } 292 else { 293 c2 = cx; 294 } 295 cx = (c1+c2)/2; 296 if (cx==c1) { 297 Logger::info("Got as close as I can\n"); 298 break; 299 } 300 realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); 301 } 302 303 c2 = cx; 304 p2 = realPrecision; 305 306 } 307 else { 308 Logger::info("No need for linear estimation\n"); 309 cx = c2; 310 realPrecision = p2; 311 } 312 313 } 314 } 315 316 } 317 318 #endif //OPENCV_FLANN_INDEX_TESTING_H_ 319