1 /* Vector API for GNU compiler. 2 Copyright (C) 2004-2013 Free Software Foundation, Inc. 3 Contributed by Nathan Sidwell <nathan (at) codesourcery.com> 4 Re-implemented in C++ by Diego Novillo <dnovillo (at) google.com> 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify it under 9 the terms of the GNU General Public License as published by the Free 10 Software Foundation; either version 3, or (at your option) any later 11 version. 12 13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 14 WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING3. If not see 20 <http://www.gnu.org/licenses/>. */ 21 22 #ifndef GCC_VEC_H 23 #define GCC_VEC_H 24 25 /* FIXME - When compiling some of the gen* binaries, we cannot enable GC 26 support because the headers generated by gengtype are still not 27 present. In particular, the header file gtype-desc.h is missing, 28 so compilation may fail if we try to include ggc.h. 29 30 Since we use some of those declarations, we need to provide them 31 (even if the GC-based templates are not used). This is not a 32 problem because the code that runs before gengtype is built will 33 never need to use GC vectors. But it does force us to declare 34 these functions more than once. */ 35 #ifdef GENERATOR_FILE 36 #define VEC_GC_ENABLED 0 37 #else 38 #define VEC_GC_ENABLED 1 39 #endif // GENERATOR_FILE 40 41 #include "statistics.h" // For CXX_MEM_STAT_INFO. 42 43 #if VEC_GC_ENABLED 44 #include "ggc.h" 45 #else 46 # ifndef GCC_GGC_H 47 /* Even if we think that GC is not enabled, the test that sets it is 48 weak. There are files compiled with -DGENERATOR_FILE that already 49 include ggc.h. We only need to provide these definitions if ggc.h 50 has not been included. Sigh. */ 51 extern void ggc_free (void *); 52 extern size_t ggc_round_alloc_size (size_t requested_size); 53 extern void *ggc_realloc_stat (void *, size_t MEM_STAT_DECL); 54 # endif // GCC_GGC_H 55 #endif // VEC_GC_ENABLED 56 57 /* Templated vector type and associated interfaces. 58 59 The interface functions are typesafe and use inline functions, 60 sometimes backed by out-of-line generic functions. The vectors are 61 designed to interoperate with the GTY machinery. 62 63 There are both 'index' and 'iterate' accessors. The index accessor 64 is implemented by operator[]. The iterator returns a boolean 65 iteration condition and updates the iteration variable passed by 66 reference. Because the iterator will be inlined, the address-of 67 can be optimized away. 68 69 Each operation that increases the number of active elements is 70 available in 'quick' and 'safe' variants. The former presumes that 71 there is sufficient allocated space for the operation to succeed 72 (it dies if there is not). The latter will reallocate the 73 vector, if needed. Reallocation causes an exponential increase in 74 vector size. If you know you will be adding N elements, it would 75 be more efficient to use the reserve operation before adding the 76 elements with the 'quick' operation. This will ensure there are at 77 least as many elements as you ask for, it will exponentially 78 increase if there are too few spare slots. If you want reserve a 79 specific number of slots, but do not want the exponential increase 80 (for instance, you know this is the last allocation), use the 81 reserve_exact operation. You can also create a vector of a 82 specific size from the get go. 83 84 You should prefer the push and pop operations, as they append and 85 remove from the end of the vector. If you need to remove several 86 items in one go, use the truncate operation. The insert and remove 87 operations allow you to change elements in the middle of the 88 vector. There are two remove operations, one which preserves the 89 element ordering 'ordered_remove', and one which does not 90 'unordered_remove'. The latter function copies the end element 91 into the removed slot, rather than invoke a memmove operation. The 92 'lower_bound' function will determine where to place an item in the 93 array using insert that will maintain sorted order. 94 95 Vectors are template types with three arguments: the type of the 96 elements in the vector, the allocation strategy, and the physical 97 layout to use 98 99 Four allocation strategies are supported: 100 101 - Heap: allocation is done using malloc/free. This is the 102 default allocation strategy. 103 104 - Stack: allocation is done using alloca. 105 106 - GC: allocation is done using ggc_alloc/ggc_free. 107 108 - GC atomic: same as GC with the exception that the elements 109 themselves are assumed to be of an atomic type that does 110 not need to be garbage collected. This means that marking 111 routines do not need to traverse the array marking the 112 individual elements. This increases the performance of 113 GC activities. 114 115 Two physical layouts are supported: 116 117 - Embedded: The vector is structured using the trailing array 118 idiom. The last member of the structure is an array of size 119 1. When the vector is initially allocated, a single memory 120 block is created to hold the vector's control data and the 121 array of elements. These vectors cannot grow without 122 reallocation (see discussion on embeddable vectors below). 123 124 - Space efficient: The vector is structured as a pointer to an 125 embedded vector. This is the default layout. It means that 126 vectors occupy a single word of storage before initial 127 allocation. Vectors are allowed to grow (the internal 128 pointer is reallocated but the main vector instance does not 129 need to relocate). 130 131 The type, allocation and layout are specified when the vector is 132 declared. 133 134 If you need to directly manipulate a vector, then the 'address' 135 accessor will return the address of the start of the vector. Also 136 the 'space' predicate will tell you whether there is spare capacity 137 in the vector. You will not normally need to use these two functions. 138 139 Notes on the different layout strategies 140 141 * Embeddable vectors (vec<T, A, vl_embed>) 142 143 These vectors are suitable to be embedded in other data 144 structures so that they can be pre-allocated in a contiguous 145 memory block. 146 147 Embeddable vectors are implemented using the trailing array 148 idiom, thus they are not resizeable without changing the address 149 of the vector object itself. This means you cannot have 150 variables or fields of embeddable vector type -- always use a 151 pointer to a vector. The one exception is the final field of a 152 structure, which could be a vector type. 153 154 You will have to use the embedded_size & embedded_init calls to 155 create such objects, and they will not be resizeable (so the 156 'safe' allocation variants are not available). 157 158 Properties of embeddable vectors: 159 160 - The whole vector and control data are allocated in a single 161 contiguous block. It uses the trailing-vector idiom, so 162 allocation must reserve enough space for all the elements 163 in the vector plus its control data. 164 - The vector cannot be re-allocated. 165 - The vector cannot grow nor shrink. 166 - No indirections needed for access/manipulation. 167 - It requires 2 words of storage (prior to vector allocation). 168 169 170 * Space efficient vector (vec<T, A, vl_ptr>) 171 172 These vectors can grow dynamically and are allocated together 173 with their control data. They are suited to be included in data 174 structures. Prior to initial allocation, they only take a single 175 word of storage. 176 177 These vectors are implemented as a pointer to embeddable vectors. 178 The semantics allow for this pointer to be NULL to represent 179 empty vectors. This way, empty vectors occupy minimal space in 180 the structure containing them. 181 182 Properties: 183 184 - The whole vector and control data are allocated in a single 185 contiguous block. 186 - The whole vector may be re-allocated. 187 - Vector data may grow and shrink. 188 - Access and manipulation requires a pointer test and 189 indirection. 190 - It requires 1 word of storage (prior to vector allocation). 191 192 An example of their use would be, 193 194 struct my_struct { 195 // A space-efficient vector of tree pointers in GC memory. 196 vec<tree, va_gc, vl_ptr> v; 197 }; 198 199 struct my_struct *s; 200 201 if (s->v.length ()) { we have some contents } 202 s->v.safe_push (decl); // append some decl onto the end 203 for (ix = 0; s->v.iterate (ix, &elt); ix++) 204 { do something with elt } 205 */ 206 207 /* Support function for statistics. */ 208 extern void dump_vec_loc_statistics (void); 209 210 211 /* Control data for vectors. This contains the number of allocated 212 and used slots inside a vector. */ 213 214 struct vec_prefix 215 { 216 /* FIXME - These fields should be private, but we need to cater to 217 compilers that have stricter notions of PODness for types. */ 218 219 /* Memory allocation support routines in vec.c. */ 220 void register_overhead (size_t, const char *, int, const char *); 221 void release_overhead (void); 222 static unsigned calculate_allocation (vec_prefix *, unsigned, bool); 223 224 /* Note that vec_prefix should be a base class for vec, but we use 225 offsetof() on vector fields of tree structures (e.g., 226 tree_binfo::base_binfos), and offsetof only supports base types. 227 228 To compensate, we make vec_prefix a field inside vec and make 229 vec a friend class of vec_prefix so it can access its fields. */ 230 template <typename, typename, typename> friend struct vec; 231 232 /* The allocator types also need access to our internals. */ 233 friend struct va_gc; 234 friend struct va_gc_atomic; 235 friend struct va_heap; 236 friend struct va_stack; 237 238 unsigned alloc_; 239 unsigned num_; 240 }; 241 242 template<typename, typename, typename> struct vec; 243 244 /* Valid vector layouts 245 246 vl_embed - Embeddable vector that uses the trailing array idiom. 247 vl_ptr - Space efficient vector that uses a pointer to an 248 embeddable vector. */ 249 struct vl_embed { }; 250 struct vl_ptr { }; 251 252 253 /* Types of supported allocations 254 255 va_heap - Allocation uses malloc/free. 256 va_gc - Allocation uses ggc_alloc. 257 va_gc_atomic - Same as GC, but individual elements of the array 258 do not need to be marked during collection. 259 va_stack - Allocation uses alloca. */ 260 261 /* Allocator type for heap vectors. */ 262 struct va_heap 263 { 264 /* Heap vectors are frequently regular instances, so use the vl_ptr 265 layout for them. */ 266 typedef vl_ptr default_layout; 267 268 template<typename T> 269 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool 270 CXX_MEM_STAT_INFO); 271 272 template<typename T> 273 static void release (vec<T, va_heap, vl_embed> *&); 274 }; 275 276 277 /* Allocator for heap memory. Ensure there are at least RESERVE free 278 slots in V. If EXACT is true, grow exactly, else grow 279 exponentially. As a special case, if the vector had not been 280 allocated and and RESERVE is 0, no vector will be created. */ 281 282 template<typename T> 283 inline void 284 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact 285 MEM_STAT_DECL) 286 { 287 unsigned alloc 288 = vec_prefix::calculate_allocation (v ? &v->vecpfx_ : 0, reserve, exact); 289 if (!alloc) 290 { 291 release (v); 292 return; 293 } 294 295 if (GATHER_STATISTICS && v) 296 v->vecpfx_.release_overhead (); 297 298 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc); 299 unsigned nelem = v ? v->length () : 0; 300 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size)); 301 v->embedded_init (alloc, nelem); 302 303 if (GATHER_STATISTICS) 304 v->vecpfx_.register_overhead (size FINAL_PASS_MEM_STAT); 305 } 306 307 308 /* Free the heap space allocated for vector V. */ 309 310 template<typename T> 311 void 312 va_heap::release (vec<T, va_heap, vl_embed> *&v) 313 { 314 if (v == NULL) 315 return; 316 317 if (GATHER_STATISTICS) 318 v->vecpfx_.release_overhead (); 319 ::free (v); 320 v = NULL; 321 } 322 323 324 /* Allocator type for GC vectors. Notice that we need the structure 325 declaration even if GC is not enabled. */ 326 327 struct va_gc 328 { 329 /* Use vl_embed as the default layout for GC vectors. Due to GTY 330 limitations, GC vectors must always be pointers, so it is more 331 efficient to use a pointer to the vl_embed layout, rather than 332 using a pointer to a pointer as would be the case with vl_ptr. */ 333 typedef vl_embed default_layout; 334 335 template<typename T, typename A> 336 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool 337 CXX_MEM_STAT_INFO); 338 339 template<typename T, typename A> 340 static void release (vec<T, A, vl_embed> *&v) { v = NULL; } 341 }; 342 343 344 /* Allocator for GC memory. Ensure there are at least RESERVE free 345 slots in V. If EXACT is true, grow exactly, else grow 346 exponentially. As a special case, if the vector had not been 347 allocated and and RESERVE is 0, no vector will be created. */ 348 349 template<typename T, typename A> 350 void 351 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact 352 MEM_STAT_DECL) 353 { 354 unsigned alloc 355 = vec_prefix::calculate_allocation (v ? &v->vecpfx_ : 0, reserve, exact); 356 if (!alloc) 357 { 358 ::ggc_free (v); 359 v = NULL; 360 return; 361 } 362 363 /* Calculate the amount of space we want. */ 364 size_t size = vec<T, A, vl_embed>::embedded_size (alloc); 365 366 /* Ask the allocator how much space it will really give us. */ 367 size = ::ggc_round_alloc_size (size); 368 369 /* Adjust the number of slots accordingly. */ 370 size_t vec_offset = sizeof (vec_prefix); 371 size_t elt_size = sizeof (T); 372 alloc = (size - vec_offset) / elt_size; 373 374 /* And finally, recalculate the amount of space we ask for. */ 375 size = vec_offset + alloc * elt_size; 376 377 unsigned nelem = v ? v->length () : 0; 378 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc_stat (v, size 379 PASS_MEM_STAT)); 380 v->embedded_init (alloc, nelem); 381 } 382 383 384 /* Allocator type for GC vectors. This is for vectors of types 385 atomics w.r.t. collection, so allocation and deallocation is 386 completely inherited from va_gc. */ 387 struct va_gc_atomic : va_gc 388 { 389 }; 390 391 392 /* Allocator type for stack vectors. */ 393 struct va_stack 394 { 395 /* Use vl_ptr as the default layout for stack vectors. */ 396 typedef vl_ptr default_layout; 397 398 template<typename T> 399 static void alloc (vec<T, va_stack, vl_ptr>&, unsigned, 400 vec<T, va_stack, vl_embed> *); 401 402 template <typename T> 403 static void reserve (vec<T, va_stack, vl_embed> *&, unsigned, bool 404 CXX_MEM_STAT_INFO); 405 406 template <typename T> 407 static void release (vec<T, va_stack, vl_embed> *&); 408 }; 409 410 /* Helper functions to keep track of vectors allocated on the stack. */ 411 void register_stack_vec (void *); 412 int stack_vec_register_index (void *); 413 void unregister_stack_vec (unsigned); 414 415 /* Allocate a vector V which uses alloca for the initial allocation. 416 SPACE is space allocated using alloca. NELEMS is the number of 417 entries allocated. */ 418 419 template<typename T> 420 void 421 va_stack::alloc (vec<T, va_stack, vl_ptr> &v, unsigned nelems, 422 vec<T, va_stack, vl_embed> *space) 423 { 424 v.vec_ = space; 425 register_stack_vec (static_cast<void *> (v.vec_)); 426 v.vec_->embedded_init (nelems, 0); 427 } 428 429 430 /* Reserve NELEMS slots for a vector initially allocated on the stack. 431 When this happens, we switch back to heap allocation. We remove 432 the vector from stack_vecs, if it is there, since we no longer need 433 to avoid freeing it. If EXACT is true, grow exactly, otherwise 434 grow exponentially. */ 435 436 template<typename T> 437 void 438 va_stack::reserve (vec<T, va_stack, vl_embed> *&v, unsigned nelems, bool exact 439 MEM_STAT_DECL) 440 { 441 int ix = stack_vec_register_index (static_cast<void *> (v)); 442 if (ix >= 0) 443 unregister_stack_vec (ix); 444 else 445 { 446 /* V is already on the heap. */ 447 va_heap::reserve (reinterpret_cast<vec<T, va_heap, vl_embed> *&> (v), 448 nelems, exact PASS_MEM_STAT); 449 return; 450 } 451 452 /* Move VEC_ to the heap. */ 453 nelems += v->vecpfx_.num_; 454 vec<T, va_stack, vl_embed> *oldvec = v; 455 v = NULL; 456 va_heap::reserve (reinterpret_cast<vec<T, va_heap, vl_embed> *&>(v), nelems, 457 exact PASS_MEM_STAT); 458 if (v && oldvec) 459 { 460 v->vecpfx_.num_ = oldvec->length (); 461 memcpy (v->vecdata_, 462 oldvec->vecdata_, 463 oldvec->length () * sizeof (T)); 464 } 465 } 466 467 468 /* Free a vector allocated on the stack. Don't actually free it if we 469 find it in the hash table. */ 470 471 template<typename T> 472 void 473 va_stack::release (vec<T, va_stack, vl_embed> *&v) 474 { 475 if (v == NULL) 476 return; 477 478 int ix = stack_vec_register_index (static_cast<void *> (v)); 479 if (ix >= 0) 480 { 481 unregister_stack_vec (ix); 482 v = NULL; 483 } 484 else 485 { 486 /* The vector was not on the list of vectors allocated on the stack, so it 487 must be allocated on the heap. */ 488 va_heap::release (reinterpret_cast<vec<T, va_heap, vl_embed> *&> (v)); 489 } 490 } 491 492 493 /* Generic vector template. Default values for A and L indicate the 494 most commonly used strategies. 495 496 FIXME - Ideally, they would all be vl_ptr to encourage using regular 497 instances for vectors, but the existing GTY machinery is limited 498 in that it can only deal with GC objects that are pointers 499 themselves. 500 501 This means that vector operations that need to deal with 502 potentially NULL pointers, must be provided as free 503 functions (see the vec_safe_* functions above). */ 504 template<typename T, 505 typename A = va_heap, 506 typename L = typename A::default_layout> 507 struct GTY((user)) vec 508 { 509 }; 510 511 /* Type to provide NULL values for vec<T, A, L>. This is used to 512 provide nil initializers for vec instances. Since vec must be 513 a POD, we cannot have proper ctor/dtor for it. To initialize 514 a vec instance, you can assign it the value vNULL. */ 515 struct vnull 516 { 517 template <typename T, typename A, typename L> 518 operator vec<T, A, L> () { return vec<T, A, L>(); } 519 }; 520 extern vnull vNULL; 521 522 523 /* Embeddable vector. These vectors are suitable to be embedded 524 in other data structures so that they can be pre-allocated in a 525 contiguous memory block. 526 527 Embeddable vectors are implemented using the trailing array idiom, 528 thus they are not resizeable without changing the address of the 529 vector object itself. This means you cannot have variables or 530 fields of embeddable vector type -- always use a pointer to a 531 vector. The one exception is the final field of a structure, which 532 could be a vector type. 533 534 You will have to use the embedded_size & embedded_init calls to 535 create such objects, and they will not be resizeable (so the 'safe' 536 allocation variants are not available). 537 538 Properties: 539 540 - The whole vector and control data are allocated in a single 541 contiguous block. It uses the trailing-vector idiom, so 542 allocation must reserve enough space for all the elements 543 in the vector plus its control data. 544 - The vector cannot be re-allocated. 545 - The vector cannot grow nor shrink. 546 - No indirections needed for access/manipulation. 547 - It requires 2 words of storage (prior to vector allocation). */ 548 549 template<typename T, typename A> 550 struct GTY((user)) vec<T, A, vl_embed> 551 { 552 public: 553 unsigned allocated (void) const { return vecpfx_.alloc_; } 554 unsigned length (void) const { return vecpfx_.num_; } 555 bool is_empty (void) const { return vecpfx_.num_ == 0; } 556 T *address (void) { return vecdata_; } 557 const T *address (void) const { return vecdata_; } 558 const T &operator[] (unsigned) const; 559 T &operator[] (unsigned); 560 T &last (void); 561 bool space (unsigned) const; 562 bool iterate (unsigned, T *) const; 563 bool iterate (unsigned, T **) const; 564 vec *copy (ALONE_CXX_MEM_STAT_INFO) const; 565 void splice (vec &); 566 void splice (vec *src); 567 T *quick_push (const T &); 568 T &pop (void); 569 void truncate (unsigned); 570 void quick_insert (unsigned, const T &); 571 void ordered_remove (unsigned); 572 void unordered_remove (unsigned); 573 void block_remove (unsigned, unsigned); 574 void qsort (int (*) (const void *, const void *)); 575 unsigned lower_bound (T, bool (*)(const T &, const T &)) const; 576 static size_t embedded_size (unsigned); 577 void embedded_init (unsigned, unsigned = 0); 578 void quick_grow (unsigned len); 579 void quick_grow_cleared (unsigned len); 580 581 /* vec class can access our internal data and functions. */ 582 template <typename, typename, typename> friend struct vec; 583 584 /* The allocator types also need access to our internals. */ 585 friend struct va_gc; 586 friend struct va_gc_atomic; 587 friend struct va_heap; 588 friend struct va_stack; 589 590 /* FIXME - These fields should be private, but we need to cater to 591 compilers that have stricter notions of PODness for types. */ 592 vec_prefix vecpfx_; 593 T vecdata_[1]; 594 }; 595 596 597 /* Convenience wrapper functions to use when dealing with pointers to 598 embedded vectors. Some functionality for these vectors must be 599 provided via free functions for these reasons: 600 601 1- The pointer may be NULL (e.g., before initial allocation). 602 603 2- When the vector needs to grow, it must be reallocated, so 604 the pointer will change its value. 605 606 Because of limitations with the current GC machinery, all vectors 607 in GC memory *must* be pointers. */ 608 609 610 /* If V contains no room for NELEMS elements, return false. Otherwise, 611 return true. */ 612 template<typename T, typename A> 613 inline bool 614 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems) 615 { 616 return v ? v->space (nelems) : nelems == 0; 617 } 618 619 620 /* If V is NULL, return 0. Otherwise, return V->length(). */ 621 template<typename T, typename A> 622 inline unsigned 623 vec_safe_length (const vec<T, A, vl_embed> *v) 624 { 625 return v ? v->length () : 0; 626 } 627 628 629 /* If V is NULL, return NULL. Otherwise, return V->address(). */ 630 template<typename T, typename A> 631 inline T * 632 vec_safe_address (vec<T, A, vl_embed> *v) 633 { 634 return v ? v->address () : NULL; 635 } 636 637 638 /* If V is NULL, return true. Otherwise, return V->is_empty(). */ 639 template<typename T, typename A> 640 inline bool 641 vec_safe_is_empty (vec<T, A, vl_embed> *v) 642 { 643 return v ? v->is_empty () : true; 644 } 645 646 647 /* If V does not have space for NELEMS elements, call 648 V->reserve(NELEMS, EXACT). */ 649 template<typename T, typename A> 650 inline bool 651 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false 652 CXX_MEM_STAT_INFO) 653 { 654 bool extend = nelems ? !vec_safe_space (v, nelems) : false; 655 if (extend) 656 A::reserve (v, nelems, exact PASS_MEM_STAT); 657 return extend; 658 } 659 660 template<typename T, typename A> 661 inline bool 662 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems 663 CXX_MEM_STAT_INFO) 664 { 665 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT); 666 } 667 668 669 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS 670 is 0, V is initialized to NULL. */ 671 672 template<typename T, typename A> 673 inline void 674 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO) 675 { 676 v = NULL; 677 vec_safe_reserve (v, nelems, false PASS_MEM_STAT); 678 } 679 680 681 /* Free the GC memory allocated by vector V and set it to NULL. */ 682 683 template<typename T, typename A> 684 inline void 685 vec_free (vec<T, A, vl_embed> *&v) 686 { 687 A::release (v); 688 } 689 690 691 /* Grow V to length LEN. Allocate it, if necessary. */ 692 template<typename T, typename A> 693 inline void 694 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO) 695 { 696 unsigned oldlen = vec_safe_length (v); 697 gcc_checking_assert (len >= oldlen); 698 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT); 699 v->quick_grow (len); 700 } 701 702 703 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */ 704 template<typename T, typename A> 705 inline void 706 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO) 707 { 708 unsigned oldlen = vec_safe_length (v); 709 vec_safe_grow (v, len PASS_MEM_STAT); 710 memset (&(v->address()[oldlen]), 0, sizeof (T) * (len - oldlen)); 711 } 712 713 714 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */ 715 template<typename T, typename A> 716 inline bool 717 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr) 718 { 719 if (v) 720 return v->iterate (ix, ptr); 721 else 722 { 723 *ptr = 0; 724 return false; 725 } 726 } 727 728 template<typename T, typename A> 729 inline bool 730 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr) 731 { 732 if (v) 733 return v->iterate (ix, ptr); 734 else 735 { 736 *ptr = 0; 737 return false; 738 } 739 } 740 741 742 /* If V has no room for one more element, reallocate it. Then call 743 V->quick_push(OBJ). */ 744 template<typename T, typename A> 745 inline T * 746 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO) 747 { 748 vec_safe_reserve (v, 1, false PASS_MEM_STAT); 749 return v->quick_push (obj); 750 } 751 752 753 /* if V has no room for one more element, reallocate it. Then call 754 V->quick_insert(IX, OBJ). */ 755 template<typename T, typename A> 756 inline void 757 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj 758 CXX_MEM_STAT_INFO) 759 { 760 vec_safe_reserve (v, 1, false PASS_MEM_STAT); 761 v->quick_insert (ix, obj); 762 } 763 764 765 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */ 766 template<typename T, typename A> 767 inline void 768 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size) 769 { 770 if (v) 771 v->truncate (size); 772 } 773 774 775 /* If SRC is not NULL, return a pointer to a copy of it. */ 776 template<typename T, typename A> 777 inline vec<T, A, vl_embed> * 778 vec_safe_copy (vec<T, A, vl_embed> *src) 779 { 780 return src ? src->copy () : NULL; 781 } 782 783 /* Copy the elements from SRC to the end of DST as if by memcpy. 784 Reallocate DST, if necessary. */ 785 template<typename T, typename A> 786 inline void 787 vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src 788 CXX_MEM_STAT_INFO) 789 { 790 unsigned src_len = vec_safe_length (src); 791 if (src_len) 792 { 793 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len 794 PASS_MEM_STAT); 795 dst->splice (*src); 796 } 797 } 798 799 800 /* Index into vector. Return the IX'th element. IX must be in the 801 domain of the vector. */ 802 803 template<typename T, typename A> 804 inline const T & 805 vec<T, A, vl_embed>::operator[] (unsigned ix) const 806 { 807 gcc_checking_assert (ix < vecpfx_.num_); 808 return vecdata_[ix]; 809 } 810 811 template<typename T, typename A> 812 inline T & 813 vec<T, A, vl_embed>::operator[] (unsigned ix) 814 { 815 gcc_checking_assert (ix < vecpfx_.num_); 816 return vecdata_[ix]; 817 } 818 819 820 /* Get the final element of the vector, which must not be empty. */ 821 822 template<typename T, typename A> 823 inline T & 824 vec<T, A, vl_embed>::last (void) 825 { 826 gcc_checking_assert (vecpfx_.num_ > 0); 827 return (*this)[vecpfx_.num_ - 1]; 828 } 829 830 831 /* If this vector has space for NELEMS additional entries, return 832 true. You usually only need to use this if you are doing your 833 own vector reallocation, for instance on an embedded vector. This 834 returns true in exactly the same circumstances that vec::reserve 835 will. */ 836 837 template<typename T, typename A> 838 inline bool 839 vec<T, A, vl_embed>::space (unsigned nelems) const 840 { 841 return vecpfx_.alloc_ - vecpfx_.num_ >= nelems; 842 } 843 844 845 /* Return iteration condition and update PTR to point to the IX'th 846 element of this vector. Use this to iterate over the elements of a 847 vector as follows, 848 849 for (ix = 0; vec<T, A>::iterate(v, ix, &ptr); ix++) 850 continue; */ 851 852 template<typename T, typename A> 853 inline bool 854 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const 855 { 856 if (ix < vecpfx_.num_) 857 { 858 *ptr = vecdata_[ix]; 859 return true; 860 } 861 else 862 { 863 *ptr = 0; 864 return false; 865 } 866 } 867 868 869 /* Return iteration condition and update *PTR to point to the 870 IX'th element of this vector. Use this to iterate over the 871 elements of a vector as follows, 872 873 for (ix = 0; v->iterate(ix, &ptr); ix++) 874 continue; 875 876 This variant is for vectors of objects. */ 877 878 template<typename T, typename A> 879 inline bool 880 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const 881 { 882 if (ix < vecpfx_.num_) 883 { 884 *ptr = CONST_CAST (T *, &vecdata_[ix]); 885 return true; 886 } 887 else 888 { 889 *ptr = 0; 890 return false; 891 } 892 } 893 894 895 /* Return a pointer to a copy of this vector. */ 896 897 template<typename T, typename A> 898 inline vec<T, A, vl_embed> * 899 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const 900 { 901 vec<T, A, vl_embed> *new_vec = NULL; 902 unsigned len = length (); 903 if (len) 904 { 905 vec_alloc (new_vec, len PASS_MEM_STAT); 906 new_vec->embedded_init (len, len); 907 memcpy (new_vec->address(), vecdata_, sizeof (T) * len); 908 } 909 return new_vec; 910 } 911 912 913 /* Copy the elements from SRC to the end of this vector as if by memcpy. 914 The vector must have sufficient headroom available. */ 915 916 template<typename T, typename A> 917 inline void 918 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src) 919 { 920 unsigned len = src.length(); 921 if (len) 922 { 923 gcc_checking_assert (space (len)); 924 memcpy (address() + length(), src.address(), len * sizeof (T)); 925 vecpfx_.num_ += len; 926 } 927 } 928 929 template<typename T, typename A> 930 inline void 931 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src) 932 { 933 if (src) 934 splice (*src); 935 } 936 937 938 /* Push OBJ (a new element) onto the end of the vector. There must be 939 sufficient space in the vector. Return a pointer to the slot 940 where OBJ was inserted. */ 941 942 template<typename T, typename A> 943 inline T * 944 vec<T, A, vl_embed>::quick_push (const T &obj) 945 { 946 gcc_checking_assert (space (1)); 947 T *slot = &vecdata_[vecpfx_.num_++]; 948 *slot = obj; 949 return slot; 950 } 951 952 953 /* Pop and return the last element off the end of the vector. */ 954 955 template<typename T, typename A> 956 inline T & 957 vec<T, A, vl_embed>::pop (void) 958 { 959 gcc_checking_assert (length () > 0); 960 return vecdata_[--vecpfx_.num_]; 961 } 962 963 964 /* Set the length of the vector to SIZE. The new length must be less 965 than or equal to the current length. This is an O(1) operation. */ 966 967 template<typename T, typename A> 968 inline void 969 vec<T, A, vl_embed>::truncate (unsigned size) 970 { 971 gcc_checking_assert (length () >= size); 972 vecpfx_.num_ = size; 973 } 974 975 976 /* Insert an element, OBJ, at the IXth position of this vector. There 977 must be sufficient space. */ 978 979 template<typename T, typename A> 980 inline void 981 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj) 982 { 983 gcc_checking_assert (length () < allocated ()); 984 gcc_checking_assert (ix <= length ()); 985 T *slot = &vecdata_[ix]; 986 memmove (slot + 1, slot, (vecpfx_.num_++ - ix) * sizeof (T)); 987 *slot = obj; 988 } 989 990 991 /* Remove an element from the IXth position of this vector. Ordering of 992 remaining elements is preserved. This is an O(N) operation due to 993 memmove. */ 994 995 template<typename T, typename A> 996 inline void 997 vec<T, A, vl_embed>::ordered_remove (unsigned ix) 998 { 999 gcc_checking_assert (ix < length()); 1000 T *slot = &vecdata_[ix]; 1001 memmove (slot, slot + 1, (--vecpfx_.num_ - ix) * sizeof (T)); 1002 } 1003 1004 1005 /* Remove an element from the IXth position of this vector. Ordering of 1006 remaining elements is destroyed. This is an O(1) operation. */ 1007 1008 template<typename T, typename A> 1009 inline void 1010 vec<T, A, vl_embed>::unordered_remove (unsigned ix) 1011 { 1012 gcc_checking_assert (ix < length()); 1013 vecdata_[ix] = vecdata_[--vecpfx_.num_]; 1014 } 1015 1016 1017 /* Remove LEN elements starting at the IXth. Ordering is retained. 1018 This is an O(N) operation due to memmove. */ 1019 1020 template<typename T, typename A> 1021 inline void 1022 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len) 1023 { 1024 gcc_checking_assert (ix + len <= length()); 1025 T *slot = &vecdata_[ix]; 1026 vecpfx_.num_ -= len; 1027 memmove (slot, slot + len, (vecpfx_.num_ - ix) * sizeof (T)); 1028 } 1029 1030 1031 /* Sort the contents of this vector with qsort. CMP is the comparison 1032 function to pass to qsort. */ 1033 1034 template<typename T, typename A> 1035 inline void 1036 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *)) 1037 { 1038 ::qsort (address(), length(), sizeof (T), cmp); 1039 } 1040 1041 1042 /* Find and return the first position in which OBJ could be inserted 1043 without changing the ordering of this vector. LESSTHAN is a 1044 function that returns true if the first argument is strictly less 1045 than the second. */ 1046 1047 template<typename T, typename A> 1048 unsigned 1049 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &)) 1050 const 1051 { 1052 unsigned int len = length (); 1053 unsigned int half, middle; 1054 unsigned int first = 0; 1055 while (len > 0) 1056 { 1057 half = len / 2; 1058 middle = first; 1059 middle += half; 1060 T middle_elem = (*this)[middle]; 1061 if (lessthan (middle_elem, obj)) 1062 { 1063 first = middle; 1064 ++first; 1065 len = len - half - 1; 1066 } 1067 else 1068 len = half; 1069 } 1070 return first; 1071 } 1072 1073 1074 /* Return the number of bytes needed to embed an instance of an 1075 embeddable vec inside another data structure. 1076 1077 Use these methods to determine the required size and initialization 1078 of a vector V of type T embedded within another structure (as the 1079 final member): 1080 1081 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc); 1082 void v->embedded_init(unsigned alloc, unsigned num); 1083 1084 These allow the caller to perform the memory allocation. */ 1085 1086 template<typename T, typename A> 1087 inline size_t 1088 vec<T, A, vl_embed>::embedded_size (unsigned alloc) 1089 { 1090 typedef vec<T, A, vl_embed> vec_embedded; 1091 return offsetof (vec_embedded, vecdata_) + alloc * sizeof (T); 1092 } 1093 1094 1095 /* Initialize the vector to contain room for ALLOC elements and 1096 NUM active elements. */ 1097 1098 template<typename T, typename A> 1099 inline void 1100 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num) 1101 { 1102 vecpfx_.alloc_ = alloc; 1103 vecpfx_.num_ = num; 1104 } 1105 1106 1107 /* Grow the vector to a specific length. LEN must be as long or longer than 1108 the current length. The new elements are uninitialized. */ 1109 1110 template<typename T, typename A> 1111 inline void 1112 vec<T, A, vl_embed>::quick_grow (unsigned len) 1113 { 1114 gcc_checking_assert (length () <= len && len <= vecpfx_.alloc_); 1115 vecpfx_.num_ = len; 1116 } 1117 1118 1119 /* Grow the vector to a specific length. LEN must be as long or longer than 1120 the current length. The new elements are initialized to zero. */ 1121 1122 template<typename T, typename A> 1123 inline void 1124 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len) 1125 { 1126 unsigned oldlen = length (); 1127 quick_grow (len); 1128 memset (&(address()[oldlen]), 0, sizeof (T) * (len - oldlen)); 1129 } 1130 1131 1132 /* Garbage collection support for vec<T, A, vl_embed>. */ 1133 1134 template<typename T> 1135 void 1136 gt_ggc_mx (vec<T, va_gc> *v) 1137 { 1138 extern void gt_ggc_mx (T &); 1139 for (unsigned i = 0; i < v->length (); i++) 1140 gt_ggc_mx ((*v)[i]); 1141 } 1142 1143 template<typename T> 1144 void 1145 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED) 1146 { 1147 /* Nothing to do. Vectors of atomic types wrt GC do not need to 1148 be traversed. */ 1149 } 1150 1151 1152 /* PCH support for vec<T, A, vl_embed>. */ 1153 1154 template<typename T, typename A> 1155 void 1156 gt_pch_nx (vec<T, A, vl_embed> *v) 1157 { 1158 extern void gt_pch_nx (T &); 1159 for (unsigned i = 0; i < v->length (); i++) 1160 gt_pch_nx ((*v)[i]); 1161 } 1162 1163 template<typename T, typename A> 1164 void 1165 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie) 1166 { 1167 for (unsigned i = 0; i < v->length (); i++) 1168 op (&((*v)[i]), cookie); 1169 } 1170 1171 template<typename T, typename A> 1172 void 1173 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie) 1174 { 1175 extern void gt_pch_nx (T *, gt_pointer_operator, void *); 1176 for (unsigned i = 0; i < v->length (); i++) 1177 gt_pch_nx (&((*v)[i]), op, cookie); 1178 } 1179 1180 1181 /* Space efficient vector. These vectors can grow dynamically and are 1182 allocated together with their control data. They are suited to be 1183 included in data structures. Prior to initial allocation, they 1184 only take a single word of storage. 1185 1186 These vectors are implemented as a pointer to an embeddable vector. 1187 The semantics allow for this pointer to be NULL to represent empty 1188 vectors. This way, empty vectors occupy minimal space in the 1189 structure containing them. 1190 1191 Properties: 1192 1193 - The whole vector and control data are allocated in a single 1194 contiguous block. 1195 - The whole vector may be re-allocated. 1196 - Vector data may grow and shrink. 1197 - Access and manipulation requires a pointer test and 1198 indirection. 1199 - It requires 1 word of storage (prior to vector allocation). 1200 1201 1202 Limitations: 1203 1204 These vectors must be PODs because they are stored in unions. 1205 (http://en.wikipedia.org/wiki/Plain_old_data_structures). 1206 As long as we use C++03, we cannot have constructors nor 1207 destructors in classes that are stored in unions. */ 1208 1209 template<typename T, typename A> 1210 struct vec<T, A, vl_ptr> 1211 { 1212 public: 1213 /* Memory allocation and deallocation for the embedded vector. 1214 Needed because we cannot have proper ctors/dtors defined. */ 1215 void create (unsigned nelems CXX_MEM_STAT_INFO); 1216 void release (void); 1217 1218 /* Vector operations. */ 1219 bool exists (void) const 1220 { return vec_ != NULL; } 1221 1222 bool is_empty (void) const 1223 { return vec_ ? vec_->is_empty() : true; } 1224 1225 unsigned length (void) const 1226 { return vec_ ? vec_->length() : 0; } 1227 1228 T *address (void) 1229 { return vec_ ? vec_->vecdata_ : NULL; } 1230 1231 const T *address (void) const 1232 { return vec_ ? vec_->vecdata_ : NULL; } 1233 1234 const T &operator[] (unsigned ix) const 1235 { return (*vec_)[ix]; } 1236 1237 bool operator!=(const vec &other) const 1238 { return !(*this == other); } 1239 1240 bool operator==(const vec &other) const 1241 { return address() == other.address(); } 1242 1243 T &operator[] (unsigned ix) 1244 { return (*vec_)[ix]; } 1245 1246 T &last (void) 1247 { return vec_->last(); } 1248 1249 bool space (int nelems) const 1250 { return vec_ ? vec_->space (nelems) : nelems == 0; } 1251 1252 bool iterate (unsigned ix, T *p) const; 1253 bool iterate (unsigned ix, T **p) const; 1254 vec copy (ALONE_CXX_MEM_STAT_INFO) const; 1255 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO); 1256 bool reserve_exact (unsigned CXX_MEM_STAT_INFO); 1257 void splice (vec &); 1258 void safe_splice (vec & CXX_MEM_STAT_INFO); 1259 T *quick_push (const T &); 1260 T *safe_push (const T &CXX_MEM_STAT_INFO); 1261 T &pop (void); 1262 void truncate (unsigned); 1263 void safe_grow (unsigned CXX_MEM_STAT_INFO); 1264 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO); 1265 void quick_grow (unsigned); 1266 void quick_grow_cleared (unsigned); 1267 void quick_insert (unsigned, const T &); 1268 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO); 1269 void ordered_remove (unsigned); 1270 void unordered_remove (unsigned); 1271 void block_remove (unsigned, unsigned); 1272 void qsort (int (*) (const void *, const void *)); 1273 unsigned lower_bound (T, bool (*)(const T &, const T &)) const; 1274 1275 template<typename T1> 1276 friend void va_stack::alloc(vec<T1, va_stack, vl_ptr>&, unsigned, 1277 vec<T1, va_stack, vl_embed> *); 1278 1279 /* FIXME - This field should be private, but we need to cater to 1280 compilers that have stricter notions of PODness for types. */ 1281 vec<T, A, vl_embed> *vec_; 1282 }; 1283 1284 1285 /* Empty specialization for GC allocation. This will prevent GC 1286 vectors from using the vl_ptr layout. FIXME: This is needed to 1287 circumvent limitations in the GTY machinery. */ 1288 1289 template<typename T> 1290 struct vec<T, va_gc, vl_ptr> 1291 { 1292 }; 1293 1294 1295 /* Allocate heap memory for pointer V and create the internal vector 1296 with space for NELEMS elements. If NELEMS is 0, the internal 1297 vector is initialized to empty. */ 1298 1299 template<typename T> 1300 inline void 1301 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO) 1302 { 1303 v = new vec<T>; 1304 v->create (nelems PASS_MEM_STAT); 1305 } 1306 1307 1308 /* Conditionally allocate heap memory for VEC and its internal vector. */ 1309 1310 template<typename T> 1311 inline void 1312 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO) 1313 { 1314 if (!vec) 1315 vec_alloc (vec, nelems PASS_MEM_STAT); 1316 } 1317 1318 1319 /* Free the heap memory allocated by vector V and set it to NULL. */ 1320 1321 template<typename T> 1322 inline void 1323 vec_free (vec<T> *&v) 1324 { 1325 if (v == NULL) 1326 return; 1327 1328 v->release (); 1329 delete v; 1330 v = NULL; 1331 } 1332 1333 1334 /* Allocate a new stack vector with space for exactly NELEMS objects. 1335 If NELEMS is zero, NO vector is created. 1336 1337 For the stack allocator, no memory is really allocated. The vector 1338 is initialized to be at address SPACE and contain NELEMS slots. 1339 Memory allocation actually occurs in the expansion of VEC_alloc. 1340 1341 Usage notes: 1342 1343 * This does not allocate an instance of vec<T, A>. It allocates the 1344 actual vector of elements (i.e., vec<T, A, vl_embed>) inside a 1345 vec<T, A> instance. 1346 1347 * This allocator must always be a macro: 1348 1349 We support a vector which starts out with space on the stack and 1350 switches to heap space when forced to reallocate. This works a 1351 little differently. In the case of stack vectors, vec_alloc will 1352 expand to a call to vec_alloc_1 that calls XALLOCAVAR to request 1353 the initial allocation. This uses alloca to get the initial 1354 space. Since alloca can not be usefully called in an inline 1355 function, vec_alloc must always be a macro. 1356 1357 Important limitations of stack vectors: 1358 1359 - Only the initial allocation will be made using alloca, so pass 1360 a reasonable estimate that doesn't use too much stack space; 1361 don't pass zero. 1362 1363 - Don't return a stack-allocated vector from the function which 1364 allocated it. */ 1365 1366 #define vec_stack_alloc(T,V,N) \ 1367 do { \ 1368 typedef vec<T, va_stack, vl_embed> stackv; \ 1369 va_stack::alloc (V, N, XALLOCAVAR (stackv, stackv::embedded_size (N)));\ 1370 } while (0) 1371 1372 1373 /* Return iteration condition and update PTR to point to the IX'th 1374 element of this vector. Use this to iterate over the elements of a 1375 vector as follows, 1376 1377 for (ix = 0; v.iterate(ix, &ptr); ix++) 1378 continue; */ 1379 1380 template<typename T, typename A> 1381 inline bool 1382 vec<T, A, vl_ptr>::iterate (unsigned ix, T *ptr) const 1383 { 1384 if (vec_) 1385 return vec_->iterate (ix, ptr); 1386 else 1387 { 1388 *ptr = 0; 1389 return false; 1390 } 1391 } 1392 1393 1394 /* Return iteration condition and update *PTR to point to the 1395 IX'th element of this vector. Use this to iterate over the 1396 elements of a vector as follows, 1397 1398 for (ix = 0; v->iterate(ix, &ptr); ix++) 1399 continue; 1400 1401 This variant is for vectors of objects. */ 1402 1403 template<typename T, typename A> 1404 inline bool 1405 vec<T, A, vl_ptr>::iterate (unsigned ix, T **ptr) const 1406 { 1407 if (vec_) 1408 return vec_->iterate (ix, ptr); 1409 else 1410 { 1411 *ptr = 0; 1412 return false; 1413 } 1414 } 1415 1416 1417 /* Convenience macro for forward iteration. */ 1418 #define FOR_EACH_VEC_ELT(V, I, P) \ 1419 for (I = 0; (V).iterate ((I), &(P)); ++(I)) 1420 1421 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \ 1422 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I)) 1423 1424 /* Likewise, but start from FROM rather than 0. */ 1425 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \ 1426 for (I = (FROM); (V).iterate ((I), &(P)); ++(I)) 1427 1428 /* Convenience macro for reverse iteration. */ 1429 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \ 1430 for (I = (V).length () - 1; \ 1431 (V).iterate ((I), &(P)); \ 1432 (I)--) 1433 1434 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \ 1435 for (I = vec_safe_length (V) - 1; \ 1436 vec_safe_iterate ((V), (I), &(P)); \ 1437 (I)--) 1438 1439 1440 /* Return a copy of this vector. */ 1441 1442 template<typename T, typename A> 1443 inline vec<T, A, vl_ptr> 1444 vec<T, A, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const 1445 { 1446 vec<T, A, vl_ptr> new_vec = vNULL; 1447 if (length ()) 1448 new_vec.vec_ = vec_->copy (); 1449 return new_vec; 1450 } 1451 1452 1453 /* Ensure that the vector has at least RESERVE slots available (if 1454 EXACT is false), or exactly RESERVE slots available (if EXACT is 1455 true). 1456 1457 This may create additional headroom if EXACT is false. 1458 1459 Note that this can cause the embedded vector to be reallocated. 1460 Returns true iff reallocation actually occurred. */ 1461 1462 template<typename T, typename A> 1463 inline bool 1464 vec<T, A, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL) 1465 { 1466 bool extend = nelems ? !space (nelems) : false; 1467 if (extend) 1468 A::reserve (vec_, nelems, exact PASS_MEM_STAT); 1469 return extend; 1470 } 1471 1472 1473 /* Ensure that this vector has exactly NELEMS slots available. This 1474 will not create additional headroom. Note this can cause the 1475 embedded vector to be reallocated. Returns true iff reallocation 1476 actually occurred. */ 1477 1478 template<typename T, typename A> 1479 inline bool 1480 vec<T, A, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL) 1481 { 1482 return reserve (nelems, true PASS_MEM_STAT); 1483 } 1484 1485 1486 /* Create the internal vector and reserve NELEMS for it. This is 1487 exactly like vec::reserve, but the internal vector is 1488 unconditionally allocated from scratch. The old one, if it 1489 existed, is lost. */ 1490 1491 template<typename T, typename A> 1492 inline void 1493 vec<T, A, vl_ptr>::create (unsigned nelems MEM_STAT_DECL) 1494 { 1495 vec_ = NULL; 1496 if (nelems > 0) 1497 reserve_exact (nelems PASS_MEM_STAT); 1498 } 1499 1500 1501 /* Free the memory occupied by the embedded vector. */ 1502 1503 template<typename T, typename A> 1504 inline void 1505 vec<T, A, vl_ptr>::release (void) 1506 { 1507 if (vec_) 1508 A::release (vec_); 1509 } 1510 1511 1512 /* Copy the elements from SRC to the end of this vector as if by memcpy. 1513 SRC and this vector must be allocated with the same memory 1514 allocation mechanism. This vector is assumed to have sufficient 1515 headroom available. */ 1516 1517 template<typename T, typename A> 1518 inline void 1519 vec<T, A, vl_ptr>::splice (vec<T, A, vl_ptr> &src) 1520 { 1521 if (src.vec_) 1522 vec_->splice (*(src.vec_)); 1523 } 1524 1525 1526 /* Copy the elements in SRC to the end of this vector as if by memcpy. 1527 SRC and this vector must be allocated with the same mechanism. 1528 If there is not enough headroom in this vector, it will be reallocated 1529 as needed. */ 1530 1531 template<typename T, typename A> 1532 inline void 1533 vec<T, A, vl_ptr>::safe_splice (vec<T, A, vl_ptr> &src MEM_STAT_DECL) 1534 { 1535 if (src.length()) 1536 { 1537 reserve_exact (src.length()); 1538 splice (src); 1539 } 1540 } 1541 1542 1543 /* Push OBJ (a new element) onto the end of the vector. There must be 1544 sufficient space in the vector. Return a pointer to the slot 1545 where OBJ was inserted. */ 1546 1547 template<typename T, typename A> 1548 inline T * 1549 vec<T, A, vl_ptr>::quick_push (const T &obj) 1550 { 1551 return vec_->quick_push (obj); 1552 } 1553 1554 1555 /* Push a new element OBJ onto the end of this vector. Reallocates 1556 the embedded vector, if needed. Return a pointer to the slot where 1557 OBJ was inserted. */ 1558 1559 template<typename T, typename A> 1560 inline T * 1561 vec<T, A, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL) 1562 { 1563 reserve (1, false PASS_MEM_STAT); 1564 return quick_push (obj); 1565 } 1566 1567 1568 /* Pop and return the last element off the end of the vector. */ 1569 1570 template<typename T, typename A> 1571 inline T & 1572 vec<T, A, vl_ptr>::pop (void) 1573 { 1574 return vec_->pop (); 1575 } 1576 1577 1578 /* Set the length of the vector to LEN. The new length must be less 1579 than or equal to the current length. This is an O(1) operation. */ 1580 1581 template<typename T, typename A> 1582 inline void 1583 vec<T, A, vl_ptr>::truncate (unsigned size) 1584 { 1585 if (vec_) 1586 vec_->truncate (size); 1587 else 1588 gcc_checking_assert (size == 0); 1589 } 1590 1591 1592 /* Grow the vector to a specific length. LEN must be as long or 1593 longer than the current length. The new elements are 1594 uninitialized. Reallocate the internal vector, if needed. */ 1595 1596 template<typename T, typename A> 1597 inline void 1598 vec<T, A, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL) 1599 { 1600 unsigned oldlen = length (); 1601 gcc_checking_assert (oldlen <= len); 1602 reserve_exact (len - oldlen PASS_MEM_STAT); 1603 vec_->quick_grow (len); 1604 } 1605 1606 1607 /* Grow the embedded vector to a specific length. LEN must be as 1608 long or longer than the current length. The new elements are 1609 initialized to zero. Reallocate the internal vector, if needed. */ 1610 1611 template<typename T, typename A> 1612 inline void 1613 vec<T, A, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL) 1614 { 1615 unsigned oldlen = length (); 1616 safe_grow (len PASS_MEM_STAT); 1617 memset (&(address()[oldlen]), 0, sizeof (T) * (len - oldlen)); 1618 } 1619 1620 1621 /* Same as vec::safe_grow but without reallocation of the internal vector. 1622 If the vector cannot be extended, a runtime assertion will be triggered. */ 1623 1624 template<typename T, typename A> 1625 inline void 1626 vec<T, A, vl_ptr>::quick_grow (unsigned len) 1627 { 1628 gcc_checking_assert (vec_); 1629 vec_->quick_grow (len); 1630 } 1631 1632 1633 /* Same as vec::quick_grow_cleared but without reallocation of the 1634 internal vector. If the vector cannot be extended, a runtime 1635 assertion will be triggered. */ 1636 1637 template<typename T, typename A> 1638 inline void 1639 vec<T, A, vl_ptr>::quick_grow_cleared (unsigned len) 1640 { 1641 gcc_checking_assert (vec_); 1642 vec_->quick_grow_cleared (len); 1643 } 1644 1645 1646 /* Insert an element, OBJ, at the IXth position of this vector. There 1647 must be sufficient space. */ 1648 1649 template<typename T, typename A> 1650 inline void 1651 vec<T, A, vl_ptr>::quick_insert (unsigned ix, const T &obj) 1652 { 1653 vec_->quick_insert (ix, obj); 1654 } 1655 1656 1657 /* Insert an element, OBJ, at the IXth position of the vector. 1658 Reallocate the embedded vector, if necessary. */ 1659 1660 template<typename T, typename A> 1661 inline void 1662 vec<T, A, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL) 1663 { 1664 reserve (1, false PASS_MEM_STAT); 1665 quick_insert (ix, obj); 1666 } 1667 1668 1669 /* Remove an element from the IXth position of this vector. Ordering of 1670 remaining elements is preserved. This is an O(N) operation due to 1671 a memmove. */ 1672 1673 template<typename T, typename A> 1674 inline void 1675 vec<T, A, vl_ptr>::ordered_remove (unsigned ix) 1676 { 1677 vec_->ordered_remove (ix); 1678 } 1679 1680 1681 /* Remove an element from the IXth position of this vector. Ordering 1682 of remaining elements is destroyed. This is an O(1) operation. */ 1683 1684 template<typename T, typename A> 1685 inline void 1686 vec<T, A, vl_ptr>::unordered_remove (unsigned ix) 1687 { 1688 vec_->unordered_remove (ix); 1689 } 1690 1691 1692 /* Remove LEN elements starting at the IXth. Ordering is retained. 1693 This is an O(N) operation due to memmove. */ 1694 1695 template<typename T, typename A> 1696 inline void 1697 vec<T, A, vl_ptr>::block_remove (unsigned ix, unsigned len) 1698 { 1699 vec_->block_remove (ix, len); 1700 } 1701 1702 1703 /* Sort the contents of this vector with qsort. CMP is the comparison 1704 function to pass to qsort. */ 1705 1706 template<typename T, typename A> 1707 inline void 1708 vec<T, A, vl_ptr>::qsort (int (*cmp) (const void *, const void *)) 1709 { 1710 if (vec_) 1711 vec_->qsort (cmp); 1712 } 1713 1714 1715 /* Find and return the first position in which OBJ could be inserted 1716 without changing the ordering of this vector. LESSTHAN is a 1717 function that returns true if the first argument is strictly less 1718 than the second. */ 1719 1720 template<typename T, typename A> 1721 inline unsigned 1722 vec<T, A, vl_ptr>::lower_bound (T obj, bool (*lessthan)(const T &, const T &)) 1723 const 1724 { 1725 return vec_ ? vec_->lower_bound (obj, lessthan) : 0; 1726 } 1727 1728 #if (GCC_VERSION >= 3000) 1729 # pragma GCC poison vec_ vecpfx_ vecdata_ 1730 #endif 1731 1732 #endif // GCC_VEC_H 1733