Home | History | Annotate | Download | only in collector
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mark_sweep.h"
     18 
     19 #include <atomic>
     20 #include <functional>
     21 #include <numeric>
     22 #include <climits>
     23 #include <vector>
     24 
     25 #include "base/bounded_fifo.h"
     26 #include "base/logging.h"
     27 #include "base/macros.h"
     28 #include "base/mutex-inl.h"
     29 #include "base/systrace.h"
     30 #include "base/time_utils.h"
     31 #include "base/timing_logger.h"
     32 #include "gc/accounting/card_table-inl.h"
     33 #include "gc/accounting/heap_bitmap-inl.h"
     34 #include "gc/accounting/mod_union_table.h"
     35 #include "gc/accounting/space_bitmap-inl.h"
     36 #include "gc/heap.h"
     37 #include "gc/reference_processor.h"
     38 #include "gc/space/large_object_space.h"
     39 #include "gc/space/space-inl.h"
     40 #include "mark_sweep-inl.h"
     41 #include "mirror/object-inl.h"
     42 #include "runtime.h"
     43 #include "scoped_thread_state_change.h"
     44 #include "thread-inl.h"
     45 #include "thread_list.h"
     46 
     47 namespace art {
     48 namespace gc {
     49 namespace collector {
     50 
     51 // Performance options.
     52 static constexpr bool kUseRecursiveMark = false;
     53 static constexpr bool kUseMarkStackPrefetch = true;
     54 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
     55 static constexpr bool kPreCleanCards = true;
     56 
     57 // Parallelism options.
     58 static constexpr bool kParallelCardScan = true;
     59 static constexpr bool kParallelRecursiveMark = true;
     60 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
     61 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
     62 // having this can add overhead in ProcessReferences since we may end up doing many calls of
     63 // ProcessMarkStack with very small mark stacks.
     64 static constexpr size_t kMinimumParallelMarkStackSize = 128;
     65 static constexpr bool kParallelProcessMarkStack = true;
     66 
     67 // Profiling and information flags.
     68 static constexpr bool kProfileLargeObjects = false;
     69 static constexpr bool kMeasureOverhead = false;
     70 static constexpr bool kCountTasks = false;
     71 static constexpr bool kCountMarkedObjects = false;
     72 
     73 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
     74 static constexpr bool kCheckLocks = kDebugLocking;
     75 static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
     76 
     77 // If true, revoke the rosalloc thread-local buffers at the
     78 // checkpoint, as opposed to during the pause.
     79 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
     80 
     81 void MarkSweep::BindBitmaps() {
     82   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
     83   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
     84   // Mark all of the spaces we never collect as immune.
     85   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
     86     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
     87       immune_spaces_.AddSpace(space);
     88     }
     89   }
     90 }
     91 
     92 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
     93     : GarbageCollector(heap,
     94                        name_prefix +
     95                        (is_concurrent ? "concurrent mark sweep": "mark sweep")),
     96       current_space_bitmap_(nullptr),
     97       mark_bitmap_(nullptr),
     98       mark_stack_(nullptr),
     99       gc_barrier_(new Barrier(0)),
    100       mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
    101       is_concurrent_(is_concurrent),
    102       live_stack_freeze_size_(0) {
    103   std::string error_msg;
    104   MemMap* mem_map = MemMap::MapAnonymous(
    105       "mark sweep sweep array free buffer", nullptr,
    106       RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
    107       PROT_READ | PROT_WRITE, false, false, &error_msg);
    108   CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
    109   sweep_array_free_buffer_mem_map_.reset(mem_map);
    110 }
    111 
    112 void MarkSweep::InitializePhase() {
    113   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    114   mark_stack_ = heap_->GetMarkStack();
    115   DCHECK(mark_stack_ != nullptr);
    116   immune_spaces_.Reset();
    117   no_reference_class_count_.StoreRelaxed(0);
    118   normal_count_.StoreRelaxed(0);
    119   class_count_.StoreRelaxed(0);
    120   object_array_count_.StoreRelaxed(0);
    121   other_count_.StoreRelaxed(0);
    122   reference_count_.StoreRelaxed(0);
    123   large_object_test_.StoreRelaxed(0);
    124   large_object_mark_.StoreRelaxed(0);
    125   overhead_time_ .StoreRelaxed(0);
    126   work_chunks_created_.StoreRelaxed(0);
    127   work_chunks_deleted_.StoreRelaxed(0);
    128   mark_null_count_.StoreRelaxed(0);
    129   mark_immune_count_.StoreRelaxed(0);
    130   mark_fastpath_count_.StoreRelaxed(0);
    131   mark_slowpath_count_.StoreRelaxed(0);
    132   {
    133     // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
    134     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    135     mark_bitmap_ = heap_->GetMarkBitmap();
    136   }
    137   if (!GetCurrentIteration()->GetClearSoftReferences()) {
    138     // Always clear soft references if a non-sticky collection.
    139     GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
    140   }
    141 }
    142 
    143 void MarkSweep::RunPhases() {
    144   Thread* self = Thread::Current();
    145   InitializePhase();
    146   Locks::mutator_lock_->AssertNotHeld(self);
    147   if (IsConcurrent()) {
    148     GetHeap()->PreGcVerification(this);
    149     {
    150       ReaderMutexLock mu(self, *Locks::mutator_lock_);
    151       MarkingPhase();
    152     }
    153     ScopedPause pause(this);
    154     GetHeap()->PrePauseRosAllocVerification(this);
    155     PausePhase();
    156     RevokeAllThreadLocalBuffers();
    157   } else {
    158     ScopedPause pause(this);
    159     GetHeap()->PreGcVerificationPaused(this);
    160     MarkingPhase();
    161     GetHeap()->PrePauseRosAllocVerification(this);
    162     PausePhase();
    163     RevokeAllThreadLocalBuffers();
    164   }
    165   {
    166     // Sweeping always done concurrently, even for non concurrent mark sweep.
    167     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    168     ReclaimPhase();
    169   }
    170   GetHeap()->PostGcVerification(this);
    171   FinishPhase();
    172 }
    173 
    174 void MarkSweep::ProcessReferences(Thread* self) {
    175   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    176   GetHeap()->GetReferenceProcessor()->ProcessReferences(
    177       true,
    178       GetTimings(),
    179       GetCurrentIteration()->GetClearSoftReferences(),
    180       this);
    181 }
    182 
    183 void MarkSweep::PausePhase() {
    184   TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
    185   Thread* self = Thread::Current();
    186   Locks::mutator_lock_->AssertExclusiveHeld(self);
    187   if (IsConcurrent()) {
    188     // Handle the dirty objects if we are a concurrent GC.
    189     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    190     // Re-mark root set.
    191     ReMarkRoots();
    192     // Scan dirty objects, this is only required if we are not doing concurrent GC.
    193     RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
    194   }
    195   {
    196     TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
    197     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    198     heap_->SwapStacks();
    199     live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
    200     // Need to revoke all the thread local allocation stacks since we just swapped the allocation
    201     // stacks and don't want anybody to allocate into the live stack.
    202     RevokeAllThreadLocalAllocationStacks(self);
    203   }
    204   heap_->PreSweepingGcVerification(this);
    205   // Disallow new system weaks to prevent a race which occurs when someone adds a new system
    206   // weak before we sweep them. Since this new system weak may not be marked, the GC may
    207   // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
    208   // reference to a string that is about to be swept.
    209   Runtime::Current()->DisallowNewSystemWeaks();
    210   // Enable the reference processing slow path, needs to be done with mutators paused since there
    211   // is no lock in the GetReferent fast path.
    212   GetHeap()->GetReferenceProcessor()->EnableSlowPath();
    213 }
    214 
    215 void MarkSweep::PreCleanCards() {
    216   // Don't do this for non concurrent GCs since they don't have any dirty cards.
    217   if (kPreCleanCards && IsConcurrent()) {
    218     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    219     Thread* self = Thread::Current();
    220     CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
    221     // Process dirty cards and add dirty cards to mod union tables, also ages cards.
    222     heap_->ProcessCards(GetTimings(), false, true, false);
    223     // The checkpoint root marking is required to avoid a race condition which occurs if the
    224     // following happens during a reference write:
    225     // 1. mutator dirties the card (write barrier)
    226     // 2. GC ages the card (the above ProcessCards call)
    227     // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
    228     // 4. mutator writes the value (corresponding to the write barrier in 1.)
    229     // This causes the GC to age the card but not necessarily mark the reference which the mutator
    230     // wrote into the object stored in the card.
    231     // Having the checkpoint fixes this issue since it ensures that the card mark and the
    232     // reference write are visible to the GC before the card is scanned (this is due to locks being
    233     // acquired / released in the checkpoint code).
    234     // The other roots are also marked to help reduce the pause.
    235     MarkRootsCheckpoint(self, false);
    236     MarkNonThreadRoots();
    237     MarkConcurrentRoots(
    238         static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
    239     // Process the newly aged cards.
    240     RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
    241     // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
    242     // in the next GC.
    243   }
    244 }
    245 
    246 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
    247   if (kUseThreadLocalAllocationStack) {
    248     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    249     Locks::mutator_lock_->AssertExclusiveHeld(self);
    250     heap_->RevokeAllThreadLocalAllocationStacks(self);
    251   }
    252 }
    253 
    254 void MarkSweep::MarkingPhase() {
    255   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    256   Thread* self = Thread::Current();
    257   BindBitmaps();
    258   FindDefaultSpaceBitmap();
    259   // Process dirty cards and add dirty cards to mod union tables.
    260   // If the GC type is non sticky, then we just clear the cards instead of ageing them.
    261   heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky);
    262   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    263   MarkRoots(self);
    264   MarkReachableObjects();
    265   // Pre-clean dirtied cards to reduce pauses.
    266   PreCleanCards();
    267 }
    268 
    269 class MarkSweep::ScanObjectVisitor {
    270  public:
    271   explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
    272       : mark_sweep_(mark_sweep) {}
    273 
    274   void operator()(mirror::Object* obj) const
    275       ALWAYS_INLINE
    276       REQUIRES(Locks::heap_bitmap_lock_)
    277       SHARED_REQUIRES(Locks::mutator_lock_) {
    278     if (kCheckLocks) {
    279       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
    280       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    281     }
    282     mark_sweep_->ScanObject(obj);
    283   }
    284 
    285  private:
    286   MarkSweep* const mark_sweep_;
    287 };
    288 
    289 void MarkSweep::UpdateAndMarkModUnion() {
    290   for (const auto& space : immune_spaces_.GetSpaces()) {
    291     const char* name = space->IsZygoteSpace()
    292         ? "UpdateAndMarkZygoteModUnionTable"
    293         : "UpdateAndMarkImageModUnionTable";
    294     DCHECK(space->IsZygoteSpace() || space->IsImageSpace()) << *space;
    295     TimingLogger::ScopedTiming t(name, GetTimings());
    296     accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
    297     if (mod_union_table != nullptr) {
    298       mod_union_table->UpdateAndMarkReferences(this);
    299     } else {
    300       // No mod-union table, scan all the live bits. This can only occur for app images.
    301       space->GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
    302                                                reinterpret_cast<uintptr_t>(space->End()),
    303                                                ScanObjectVisitor(this));
    304     }
    305   }
    306 }
    307 
    308 void MarkSweep::MarkReachableObjects() {
    309   UpdateAndMarkModUnion();
    310   // Recursively mark all the non-image bits set in the mark bitmap.
    311   RecursiveMark();
    312 }
    313 
    314 void MarkSweep::ReclaimPhase() {
    315   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    316   Thread* const self = Thread::Current();
    317   // Process the references concurrently.
    318   ProcessReferences(self);
    319   SweepSystemWeaks(self);
    320   Runtime* const runtime = Runtime::Current();
    321   runtime->AllowNewSystemWeaks();
    322   // Clean up class loaders after system weaks are swept since that is how we know if class
    323   // unloading occurred.
    324   runtime->GetClassLinker()->CleanupClassLoaders();
    325   {
    326     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    327     GetHeap()->RecordFreeRevoke();
    328     // Reclaim unmarked objects.
    329     Sweep(false);
    330     // Swap the live and mark bitmaps for each space which we modified space. This is an
    331     // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
    332     // bitmaps.
    333     SwapBitmaps();
    334     // Unbind the live and mark bitmaps.
    335     GetHeap()->UnBindBitmaps();
    336   }
    337 }
    338 
    339 void MarkSweep::FindDefaultSpaceBitmap() {
    340   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    341   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    342     accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
    343     // We want to have the main space instead of non moving if possible.
    344     if (bitmap != nullptr &&
    345         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
    346       current_space_bitmap_ = bitmap;
    347       // If we are not the non moving space exit the loop early since this will be good enough.
    348       if (space != heap_->GetNonMovingSpace()) {
    349         break;
    350       }
    351     }
    352   }
    353   CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
    354       << heap_->DumpSpaces();
    355 }
    356 
    357 void MarkSweep::ExpandMarkStack() {
    358   ResizeMarkStack(mark_stack_->Capacity() * 2);
    359 }
    360 
    361 void MarkSweep::ResizeMarkStack(size_t new_size) {
    362   // Rare case, no need to have Thread::Current be a parameter.
    363   if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
    364     // Someone else acquired the lock and expanded the mark stack before us.
    365     return;
    366   }
    367   std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(), mark_stack_->End());
    368   CHECK_LE(mark_stack_->Size(), new_size);
    369   mark_stack_->Resize(new_size);
    370   for (auto& obj : temp) {
    371     mark_stack_->PushBack(obj.AsMirrorPtr());
    372   }
    373 }
    374 
    375 mirror::Object* MarkSweep::MarkObject(mirror::Object* obj) {
    376   MarkObject(obj, nullptr, MemberOffset(0));
    377   return obj;
    378 }
    379 
    380 inline void MarkSweep::MarkObjectNonNullParallel(mirror::Object* obj) {
    381   DCHECK(obj != nullptr);
    382   if (MarkObjectParallel(obj)) {
    383     MutexLock mu(Thread::Current(), mark_stack_lock_);
    384     if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
    385       ExpandMarkStack();
    386     }
    387     // The object must be pushed on to the mark stack.
    388     mark_stack_->PushBack(obj);
    389   }
    390 }
    391 
    392 bool MarkSweep::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* ref) {
    393   return IsMarked(ref->AsMirrorPtr());
    394 }
    395 
    396 class MarkSweep::MarkObjectSlowPath {
    397  public:
    398   explicit MarkObjectSlowPath(MarkSweep* mark_sweep,
    399                               mirror::Object* holder = nullptr,
    400                               MemberOffset offset = MemberOffset(0))
    401       : mark_sweep_(mark_sweep),
    402         holder_(holder),
    403         offset_(offset) {}
    404 
    405   void operator()(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
    406     if (kProfileLargeObjects) {
    407       // TODO: Differentiate between marking and testing somehow.
    408       ++mark_sweep_->large_object_test_;
    409       ++mark_sweep_->large_object_mark_;
    410     }
    411     space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
    412     if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
    413                  (kIsDebugBuild && large_object_space != nullptr &&
    414                      !large_object_space->Contains(obj)))) {
    415       LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces";
    416       if (holder_ != nullptr) {
    417         size_t holder_size = holder_->SizeOf();
    418         ArtField* field = holder_->FindFieldByOffset(offset_);
    419         LOG(INTERNAL_FATAL) << "Field info: "
    420                             << " holder=" << holder_
    421                             << " holder is "
    422                             << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_)
    423                                 ? "alive" : "dead")
    424                             << " holder_size=" << holder_size
    425                             << " holder_type=" << PrettyTypeOf(holder_)
    426                             << " offset=" << offset_.Uint32Value()
    427                             << " field=" << (field != nullptr ? field->GetName() : "nullptr")
    428                             << " field_type="
    429                             << (field != nullptr ? field->GetTypeDescriptor() : "")
    430                             << " first_ref_field_offset="
    431                             << (holder_->IsClass()
    432                                 ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset(
    433                                     sizeof(void*))
    434                                 : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset())
    435                             << " num_of_ref_fields="
    436                             << (holder_->IsClass()
    437                                 ? holder_->AsClass()->NumReferenceStaticFields()
    438                                 : holder_->GetClass()->NumReferenceInstanceFields())
    439                             << "\n";
    440         // Print the memory content of the holder.
    441         for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) {
    442           uint32_t* p = reinterpret_cast<uint32_t*>(holder_);
    443           LOG(INTERNAL_FATAL) << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = "
    444                               << std::hex << p[i];
    445         }
    446       }
    447       PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
    448       MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
    449       {
    450         LOG(INTERNAL_FATAL) << "Attempting see if it's a bad root";
    451         Thread* self = Thread::Current();
    452         if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
    453           mark_sweep_->VerifyRoots();
    454         } else {
    455           const bool heap_bitmap_exclusive_locked =
    456               Locks::heap_bitmap_lock_->IsExclusiveHeld(self);
    457           if (heap_bitmap_exclusive_locked) {
    458             Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
    459           }
    460           {
    461             ScopedThreadSuspension(self, kSuspended);
    462             ScopedSuspendAll ssa(__FUNCTION__);
    463             mark_sweep_->VerifyRoots();
    464           }
    465           if (heap_bitmap_exclusive_locked) {
    466             Locks::heap_bitmap_lock_->ExclusiveLock(self);
    467           }
    468         }
    469       }
    470       LOG(FATAL) << "Can't mark invalid object";
    471     }
    472   }
    473 
    474  private:
    475   MarkSweep* const mark_sweep_;
    476   mirror::Object* const holder_;
    477   MemberOffset offset_;
    478 };
    479 
    480 inline void MarkSweep::MarkObjectNonNull(mirror::Object* obj,
    481                                          mirror::Object* holder,
    482                                          MemberOffset offset) {
    483   DCHECK(obj != nullptr);
    484   if (kUseBakerOrBrooksReadBarrier) {
    485     // Verify all the objects have the correct pointer installed.
    486     obj->AssertReadBarrierPointer();
    487   }
    488   if (immune_spaces_.IsInImmuneRegion(obj)) {
    489     if (kCountMarkedObjects) {
    490       ++mark_immune_count_;
    491     }
    492     DCHECK(mark_bitmap_->Test(obj));
    493   } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
    494     if (kCountMarkedObjects) {
    495       ++mark_fastpath_count_;
    496     }
    497     if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
    498       PushOnMarkStack(obj);  // This object was not previously marked.
    499     }
    500   } else {
    501     if (kCountMarkedObjects) {
    502       ++mark_slowpath_count_;
    503     }
    504     MarkObjectSlowPath visitor(this, holder, offset);
    505     // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
    506     // will check again.
    507     if (!mark_bitmap_->Set(obj, visitor)) {
    508       PushOnMarkStack(obj);  // Was not already marked, push.
    509     }
    510   }
    511 }
    512 
    513 inline void MarkSweep::PushOnMarkStack(mirror::Object* obj) {
    514   if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
    515     // Lock is not needed but is here anyways to please annotalysis.
    516     MutexLock mu(Thread::Current(), mark_stack_lock_);
    517     ExpandMarkStack();
    518   }
    519   // The object must be pushed on to the mark stack.
    520   mark_stack_->PushBack(obj);
    521 }
    522 
    523 inline bool MarkSweep::MarkObjectParallel(mirror::Object* obj) {
    524   DCHECK(obj != nullptr);
    525   if (kUseBakerOrBrooksReadBarrier) {
    526     // Verify all the objects have the correct pointer installed.
    527     obj->AssertReadBarrierPointer();
    528   }
    529   if (immune_spaces_.IsInImmuneRegion(obj)) {
    530     DCHECK(IsMarked(obj) != nullptr);
    531     return false;
    532   }
    533   // Try to take advantage of locality of references within a space, failing this find the space
    534   // the hard way.
    535   accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
    536   if (LIKELY(object_bitmap->HasAddress(obj))) {
    537     return !object_bitmap->AtomicTestAndSet(obj);
    538   }
    539   MarkObjectSlowPath visitor(this);
    540   return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
    541 }
    542 
    543 void MarkSweep::MarkHeapReference(mirror::HeapReference<mirror::Object>* ref) {
    544   MarkObject(ref->AsMirrorPtr(), nullptr, MemberOffset(0));
    545 }
    546 
    547 // Used to mark objects when processing the mark stack. If an object is null, it is not marked.
    548 inline void MarkSweep::MarkObject(mirror::Object* obj,
    549                                   mirror::Object* holder,
    550                                   MemberOffset offset) {
    551   if (obj != nullptr) {
    552     MarkObjectNonNull(obj, holder, offset);
    553   } else if (kCountMarkedObjects) {
    554     ++mark_null_count_;
    555   }
    556 }
    557 
    558 class MarkSweep::VerifyRootMarkedVisitor : public SingleRootVisitor {
    559  public:
    560   explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { }
    561 
    562   void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
    563       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    564     CHECK(collector_->IsMarked(root) != nullptr) << info.ToString();
    565   }
    566 
    567  private:
    568   MarkSweep* const collector_;
    569 };
    570 
    571 void MarkSweep::VisitRoots(mirror::Object*** roots,
    572                            size_t count,
    573                            const RootInfo& info ATTRIBUTE_UNUSED) {
    574   for (size_t i = 0; i < count; ++i) {
    575     MarkObjectNonNull(*roots[i]);
    576   }
    577 }
    578 
    579 void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
    580                            size_t count,
    581                            const RootInfo& info ATTRIBUTE_UNUSED) {
    582   for (size_t i = 0; i < count; ++i) {
    583     MarkObjectNonNull(roots[i]->AsMirrorPtr());
    584   }
    585 }
    586 
    587 class MarkSweep::VerifyRootVisitor : public SingleRootVisitor {
    588  public:
    589   void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
    590       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    591     // See if the root is on any space bitmap.
    592     auto* heap = Runtime::Current()->GetHeap();
    593     if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
    594       space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace();
    595       if (large_object_space != nullptr && !large_object_space->Contains(root)) {
    596         LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info;
    597       }
    598     }
    599   }
    600 };
    601 
    602 void MarkSweep::VerifyRoots() {
    603   VerifyRootVisitor visitor;
    604   Runtime::Current()->GetThreadList()->VisitRoots(&visitor);
    605 }
    606 
    607 void MarkSweep::MarkRoots(Thread* self) {
    608   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    609   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
    610     // If we exclusively hold the mutator lock, all threads must be suspended.
    611     Runtime::Current()->VisitRoots(this);
    612     RevokeAllThreadLocalAllocationStacks(self);
    613   } else {
    614     MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
    615     // At this point the live stack should no longer have any mutators which push into it.
    616     MarkNonThreadRoots();
    617     MarkConcurrentRoots(
    618         static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
    619   }
    620 }
    621 
    622 void MarkSweep::MarkNonThreadRoots() {
    623   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    624   Runtime::Current()->VisitNonThreadRoots(this);
    625 }
    626 
    627 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
    628   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    629   // Visit all runtime roots and clear dirty flags.
    630   Runtime::Current()->VisitConcurrentRoots(
    631       this, static_cast<VisitRootFlags>(flags | kVisitRootFlagNonMoving));
    632 }
    633 
    634 class MarkSweep::DelayReferenceReferentVisitor {
    635  public:
    636   explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {}
    637 
    638   void operator()(mirror::Class* klass, mirror::Reference* ref) const
    639       REQUIRES(Locks::heap_bitmap_lock_)
    640       SHARED_REQUIRES(Locks::mutator_lock_) {
    641     collector_->DelayReferenceReferent(klass, ref);
    642   }
    643 
    644  private:
    645   MarkSweep* const collector_;
    646 };
    647 
    648 template <bool kUseFinger = false>
    649 class MarkSweep::MarkStackTask : public Task {
    650  public:
    651   MarkStackTask(ThreadPool* thread_pool,
    652                 MarkSweep* mark_sweep,
    653                 size_t mark_stack_size,
    654                 StackReference<mirror::Object>* mark_stack)
    655       : mark_sweep_(mark_sweep),
    656         thread_pool_(thread_pool),
    657         mark_stack_pos_(mark_stack_size) {
    658     // We may have to copy part of an existing mark stack when another mark stack overflows.
    659     if (mark_stack_size != 0) {
    660       DCHECK(mark_stack != nullptr);
    661       // TODO: Check performance?
    662       std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
    663     }
    664     if (kCountTasks) {
    665       ++mark_sweep_->work_chunks_created_;
    666     }
    667   }
    668 
    669   static const size_t kMaxSize = 1 * KB;
    670 
    671  protected:
    672   class MarkObjectParallelVisitor {
    673    public:
    674     ALWAYS_INLINE MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
    675                                             MarkSweep* mark_sweep)
    676         : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
    677 
    678     ALWAYS_INLINE void operator()(mirror::Object* obj,
    679                     MemberOffset offset,
    680                     bool is_static ATTRIBUTE_UNUSED) const
    681         SHARED_REQUIRES(Locks::mutator_lock_) {
    682       Mark(obj->GetFieldObject<mirror::Object>(offset));
    683     }
    684 
    685     void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    686         SHARED_REQUIRES(Locks::mutator_lock_) {
    687       if (!root->IsNull()) {
    688         VisitRoot(root);
    689       }
    690     }
    691 
    692     void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    693         SHARED_REQUIRES(Locks::mutator_lock_) {
    694       if (kCheckLocks) {
    695         Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
    696         Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    697       }
    698       Mark(root->AsMirrorPtr());
    699     }
    700 
    701    private:
    702     ALWAYS_INLINE void Mark(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) {
    703       if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
    704         if (kUseFinger) {
    705           std::atomic_thread_fence(std::memory_order_seq_cst);
    706           if (reinterpret_cast<uintptr_t>(ref) >=
    707               static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
    708             return;
    709           }
    710         }
    711         chunk_task_->MarkStackPush(ref);
    712       }
    713     }
    714 
    715     MarkStackTask<kUseFinger>* const chunk_task_;
    716     MarkSweep* const mark_sweep_;
    717   };
    718 
    719   class ScanObjectParallelVisitor {
    720    public:
    721     ALWAYS_INLINE explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task)
    722         : chunk_task_(chunk_task) {}
    723 
    724     // No thread safety analysis since multiple threads will use this visitor.
    725     void operator()(mirror::Object* obj) const
    726         REQUIRES(Locks::heap_bitmap_lock_)
    727         SHARED_REQUIRES(Locks::mutator_lock_) {
    728       MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
    729       MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
    730       DelayReferenceReferentVisitor ref_visitor(mark_sweep);
    731       mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
    732     }
    733 
    734    private:
    735     MarkStackTask<kUseFinger>* const chunk_task_;
    736   };
    737 
    738   virtual ~MarkStackTask() {
    739     // Make sure that we have cleared our mark stack.
    740     DCHECK_EQ(mark_stack_pos_, 0U);
    741     if (kCountTasks) {
    742       ++mark_sweep_->work_chunks_deleted_;
    743     }
    744   }
    745 
    746   MarkSweep* const mark_sweep_;
    747   ThreadPool* const thread_pool_;
    748   // Thread local mark stack for this task.
    749   StackReference<mirror::Object> mark_stack_[kMaxSize];
    750   // Mark stack position.
    751   size_t mark_stack_pos_;
    752 
    753   ALWAYS_INLINE void MarkStackPush(mirror::Object* obj)
    754       SHARED_REQUIRES(Locks::mutator_lock_) {
    755     if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
    756       // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
    757       mark_stack_pos_ /= 2;
    758       auto* task = new MarkStackTask(thread_pool_,
    759                                      mark_sweep_,
    760                                      kMaxSize - mark_stack_pos_,
    761                                      mark_stack_ + mark_stack_pos_);
    762       thread_pool_->AddTask(Thread::Current(), task);
    763     }
    764     DCHECK(obj != nullptr);
    765     DCHECK_LT(mark_stack_pos_, kMaxSize);
    766     mark_stack_[mark_stack_pos_++].Assign(obj);
    767   }
    768 
    769   virtual void Finalize() {
    770     delete this;
    771   }
    772 
    773   // Scans all of the objects
    774   virtual void Run(Thread* self ATTRIBUTE_UNUSED)
    775       REQUIRES(Locks::heap_bitmap_lock_)
    776       SHARED_REQUIRES(Locks::mutator_lock_) {
    777     ScanObjectParallelVisitor visitor(this);
    778     // TODO: Tune this.
    779     static const size_t kFifoSize = 4;
    780     BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
    781     for (;;) {
    782       mirror::Object* obj = nullptr;
    783       if (kUseMarkStackPrefetch) {
    784         while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
    785           mirror::Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
    786           DCHECK(mark_stack_obj != nullptr);
    787           __builtin_prefetch(mark_stack_obj);
    788           prefetch_fifo.push_back(mark_stack_obj);
    789         }
    790         if (UNLIKELY(prefetch_fifo.empty())) {
    791           break;
    792         }
    793         obj = prefetch_fifo.front();
    794         prefetch_fifo.pop_front();
    795       } else {
    796         if (UNLIKELY(mark_stack_pos_ == 0)) {
    797           break;
    798         }
    799         obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
    800       }
    801       DCHECK(obj != nullptr);
    802       visitor(obj);
    803     }
    804   }
    805 };
    806 
    807 class MarkSweep::CardScanTask : public MarkStackTask<false> {
    808  public:
    809   CardScanTask(ThreadPool* thread_pool,
    810                MarkSweep* mark_sweep,
    811                accounting::ContinuousSpaceBitmap* bitmap,
    812                uint8_t* begin,
    813                uint8_t* end,
    814                uint8_t minimum_age,
    815                size_t mark_stack_size,
    816                StackReference<mirror::Object>* mark_stack_obj,
    817                bool clear_card)
    818       : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
    819         bitmap_(bitmap),
    820         begin_(begin),
    821         end_(end),
    822         minimum_age_(minimum_age),
    823         clear_card_(clear_card) {}
    824 
    825  protected:
    826   accounting::ContinuousSpaceBitmap* const bitmap_;
    827   uint8_t* const begin_;
    828   uint8_t* const end_;
    829   const uint8_t minimum_age_;
    830   const bool clear_card_;
    831 
    832   virtual void Finalize() {
    833     delete this;
    834   }
    835 
    836   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
    837     ScanObjectParallelVisitor visitor(this);
    838     accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
    839     size_t cards_scanned = clear_card_
    840         ? card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_)
    841         : card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_);
    842     VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
    843         << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
    844     // Finish by emptying our local mark stack.
    845     MarkStackTask::Run(self);
    846   }
    847 };
    848 
    849 size_t MarkSweep::GetThreadCount(bool paused) const {
    850   // Use less threads if we are in a background state (non jank perceptible) since we want to leave
    851   // more CPU time for the foreground apps.
    852   if (heap_->GetThreadPool() == nullptr || !Runtime::Current()->InJankPerceptibleProcessState()) {
    853     return 1;
    854   }
    855   return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1;
    856 }
    857 
    858 void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) {
    859   accounting::CardTable* card_table = GetHeap()->GetCardTable();
    860   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
    861   size_t thread_count = GetThreadCount(paused);
    862   // The parallel version with only one thread is faster for card scanning, TODO: fix.
    863   if (kParallelCardScan && thread_count > 1) {
    864     Thread* self = Thread::Current();
    865     // Can't have a different split for each space since multiple spaces can have their cards being
    866     // scanned at the same time.
    867     TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
    868         GetTimings());
    869     // Try to take some of the mark stack since we can pass this off to the worker tasks.
    870     StackReference<mirror::Object>* mark_stack_begin = mark_stack_->Begin();
    871     StackReference<mirror::Object>* mark_stack_end = mark_stack_->End();
    872     const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
    873     // Estimated number of work tasks we will create.
    874     const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
    875     DCHECK_NE(mark_stack_tasks, 0U);
    876     const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
    877                                              mark_stack_size / mark_stack_tasks + 1);
    878     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    879       if (space->GetMarkBitmap() == nullptr) {
    880         continue;
    881       }
    882       uint8_t* card_begin = space->Begin();
    883       uint8_t* card_end = space->End();
    884       // Align up the end address. For example, the image space's end
    885       // may not be card-size-aligned.
    886       card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
    887       DCHECK_ALIGNED(card_begin, accounting::CardTable::kCardSize);
    888       DCHECK_ALIGNED(card_end, accounting::CardTable::kCardSize);
    889       // Calculate how many bytes of heap we will scan,
    890       const size_t address_range = card_end - card_begin;
    891       // Calculate how much address range each task gets.
    892       const size_t card_delta = RoundUp(address_range / thread_count + 1,
    893                                         accounting::CardTable::kCardSize);
    894       // If paused and the space is neither zygote nor image space, we could clear the dirty
    895       // cards to avoid accumulating them to increase card scanning load in the following GC
    896       // cycles. We need to keep dirty cards of image space and zygote space in order to track
    897       // references to the other spaces.
    898       bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
    899       // Create the worker tasks for this space.
    900       while (card_begin != card_end) {
    901         // Add a range of cards.
    902         size_t addr_remaining = card_end - card_begin;
    903         size_t card_increment = std::min(card_delta, addr_remaining);
    904         // Take from the back of the mark stack.
    905         size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
    906         size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
    907         mark_stack_end -= mark_stack_increment;
    908         mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
    909         DCHECK_EQ(mark_stack_end, mark_stack_->End());
    910         // Add the new task to the thread pool.
    911         auto* task = new CardScanTask(thread_pool,
    912                                       this,
    913                                       space->GetMarkBitmap(),
    914                                       card_begin,
    915                                       card_begin + card_increment,
    916                                       minimum_age,
    917                                       mark_stack_increment,
    918                                       mark_stack_end,
    919                                       clear_card);
    920         thread_pool->AddTask(self, task);
    921         card_begin += card_increment;
    922       }
    923     }
    924 
    925     // Note: the card scan below may dirty new cards (and scan them)
    926     // as a side effect when a Reference object is encountered and
    927     // queued during the marking. See b/11465268.
    928     thread_pool->SetMaxActiveWorkers(thread_count - 1);
    929     thread_pool->StartWorkers(self);
    930     thread_pool->Wait(self, true, true);
    931     thread_pool->StopWorkers(self);
    932   } else {
    933     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    934       if (space->GetMarkBitmap() != nullptr) {
    935         // Image spaces are handled properly since live == marked for them.
    936         const char* name = nullptr;
    937         switch (space->GetGcRetentionPolicy()) {
    938         case space::kGcRetentionPolicyNeverCollect:
    939           name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
    940           break;
    941         case space::kGcRetentionPolicyFullCollect:
    942           name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
    943           break;
    944         case space::kGcRetentionPolicyAlwaysCollect:
    945           name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
    946           break;
    947         default:
    948           LOG(FATAL) << "Unreachable";
    949           UNREACHABLE();
    950         }
    951         TimingLogger::ScopedTiming t(name, GetTimings());
    952         ScanObjectVisitor visitor(this);
    953         bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
    954         if (clear_card) {
    955           card_table->Scan<true>(space->GetMarkBitmap(),
    956                                  space->Begin(),
    957                                  space->End(),
    958                                  visitor,
    959                                  minimum_age);
    960         } else {
    961           card_table->Scan<false>(space->GetMarkBitmap(),
    962                                   space->Begin(),
    963                                   space->End(),
    964                                   visitor,
    965                                   minimum_age);
    966         }
    967       }
    968     }
    969   }
    970 }
    971 
    972 class MarkSweep::RecursiveMarkTask : public MarkStackTask<false> {
    973  public:
    974   RecursiveMarkTask(ThreadPool* thread_pool,
    975                     MarkSweep* mark_sweep,
    976                     accounting::ContinuousSpaceBitmap* bitmap,
    977                     uintptr_t begin,
    978                     uintptr_t end)
    979       : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr),
    980         bitmap_(bitmap),
    981         begin_(begin),
    982         end_(end) {}
    983 
    984  protected:
    985   accounting::ContinuousSpaceBitmap* const bitmap_;
    986   const uintptr_t begin_;
    987   const uintptr_t end_;
    988 
    989   virtual void Finalize() {
    990     delete this;
    991   }
    992 
    993   // Scans all of the objects
    994   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
    995     ScanObjectParallelVisitor visitor(this);
    996     bitmap_->VisitMarkedRange(begin_, end_, visitor);
    997     // Finish by emptying our local mark stack.
    998     MarkStackTask::Run(self);
    999   }
   1000 };
   1001 
   1002 // Populates the mark stack based on the set of marked objects and
   1003 // recursively marks until the mark stack is emptied.
   1004 void MarkSweep::RecursiveMark() {
   1005   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1006   // RecursiveMark will build the lists of known instances of the Reference classes. See
   1007   // DelayReferenceReferent for details.
   1008   if (kUseRecursiveMark) {
   1009     const bool partial = GetGcType() == kGcTypePartial;
   1010     ScanObjectVisitor scan_visitor(this);
   1011     auto* self = Thread::Current();
   1012     ThreadPool* thread_pool = heap_->GetThreadPool();
   1013     size_t thread_count = GetThreadCount(false);
   1014     const bool parallel = kParallelRecursiveMark && thread_count > 1;
   1015     mark_stack_->Reset();
   1016     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   1017       if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
   1018           (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
   1019         current_space_bitmap_ = space->GetMarkBitmap();
   1020         if (current_space_bitmap_ == nullptr) {
   1021           continue;
   1022         }
   1023         if (parallel) {
   1024           // We will use the mark stack the future.
   1025           // CHECK(mark_stack_->IsEmpty());
   1026           // This function does not handle heap end increasing, so we must use the space end.
   1027           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
   1028           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
   1029           atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
   1030 
   1031           // Create a few worker tasks.
   1032           const size_t n = thread_count * 2;
   1033           while (begin != end) {
   1034             uintptr_t start = begin;
   1035             uintptr_t delta = (end - begin) / n;
   1036             delta = RoundUp(delta, KB);
   1037             if (delta < 16 * KB) delta = end - begin;
   1038             begin += delta;
   1039             auto* task = new RecursiveMarkTask(thread_pool,
   1040                                                this,
   1041                                                current_space_bitmap_,
   1042                                                start,
   1043                                                begin);
   1044             thread_pool->AddTask(self, task);
   1045           }
   1046           thread_pool->SetMaxActiveWorkers(thread_count - 1);
   1047           thread_pool->StartWorkers(self);
   1048           thread_pool->Wait(self, true, true);
   1049           thread_pool->StopWorkers(self);
   1050         } else {
   1051           // This function does not handle heap end increasing, so we must use the space end.
   1052           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
   1053           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
   1054           current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
   1055         }
   1056       }
   1057     }
   1058   }
   1059   ProcessMarkStack(false);
   1060 }
   1061 
   1062 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
   1063   ScanGrayObjects(paused, minimum_age);
   1064   ProcessMarkStack(paused);
   1065 }
   1066 
   1067 void MarkSweep::ReMarkRoots() {
   1068   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1069   Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
   1070   Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>(
   1071       kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog));
   1072   if (kVerifyRootsMarked) {
   1073     TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
   1074     VerifyRootMarkedVisitor visitor(this);
   1075     Runtime::Current()->VisitRoots(&visitor);
   1076   }
   1077 }
   1078 
   1079 void MarkSweep::SweepSystemWeaks(Thread* self) {
   1080   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1081   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1082   Runtime::Current()->SweepSystemWeaks(this);
   1083 }
   1084 
   1085 class MarkSweep::VerifySystemWeakVisitor : public IsMarkedVisitor {
   1086  public:
   1087   explicit VerifySystemWeakVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
   1088 
   1089   virtual mirror::Object* IsMarked(mirror::Object* obj)
   1090       OVERRIDE
   1091       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1092     mark_sweep_->VerifyIsLive(obj);
   1093     return obj;
   1094   }
   1095 
   1096   MarkSweep* const mark_sweep_;
   1097 };
   1098 
   1099 void MarkSweep::VerifyIsLive(const mirror::Object* obj) {
   1100   if (!heap_->GetLiveBitmap()->Test(obj)) {
   1101     // TODO: Consider live stack? Has this code bitrotted?
   1102     CHECK(!heap_->allocation_stack_->Contains(obj))
   1103         << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
   1104   }
   1105 }
   1106 
   1107 void MarkSweep::VerifySystemWeaks() {
   1108   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1109   // Verify system weaks, uses a special object visitor which returns the input object.
   1110   VerifySystemWeakVisitor visitor(this);
   1111   Runtime::Current()->SweepSystemWeaks(&visitor);
   1112 }
   1113 
   1114 class MarkSweep::CheckpointMarkThreadRoots : public Closure, public RootVisitor {
   1115  public:
   1116   CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
   1117                             bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
   1118       : mark_sweep_(mark_sweep),
   1119         revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
   1120             revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
   1121   }
   1122 
   1123   void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
   1124       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
   1125       REQUIRES(Locks::heap_bitmap_lock_) {
   1126     for (size_t i = 0; i < count; ++i) {
   1127       mark_sweep_->MarkObjectNonNullParallel(*roots[i]);
   1128     }
   1129   }
   1130 
   1131   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
   1132                   size_t count,
   1133                   const RootInfo& info ATTRIBUTE_UNUSED)
   1134       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
   1135       REQUIRES(Locks::heap_bitmap_lock_) {
   1136     for (size_t i = 0; i < count; ++i) {
   1137       mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr());
   1138     }
   1139   }
   1140 
   1141   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
   1142     ScopedTrace trace("Marking thread roots");
   1143     // Note: self is not necessarily equal to thread since thread may be suspended.
   1144     Thread* const self = Thread::Current();
   1145     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
   1146         << thread->GetState() << " thread " << thread << " self " << self;
   1147     thread->VisitRoots(this);
   1148     if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
   1149       ScopedTrace trace2("RevokeRosAllocThreadLocalBuffers");
   1150       mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
   1151     }
   1152     // If thread is a running mutator, then act on behalf of the garbage collector.
   1153     // See the code in ThreadList::RunCheckpoint.
   1154     mark_sweep_->GetBarrier().Pass(self);
   1155   }
   1156 
   1157  private:
   1158   MarkSweep* const mark_sweep_;
   1159   const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
   1160 };
   1161 
   1162 void MarkSweep::MarkRootsCheckpoint(Thread* self,
   1163                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
   1164   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1165   CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
   1166   ThreadList* thread_list = Runtime::Current()->GetThreadList();
   1167   // Request the check point is run on all threads returning a count of the threads that must
   1168   // run through the barrier including self.
   1169   size_t barrier_count = thread_list->RunCheckpoint(&check_point);
   1170   // Release locks then wait for all mutator threads to pass the barrier.
   1171   // If there are no threads to wait which implys that all the checkpoint functions are finished,
   1172   // then no need to release locks.
   1173   if (barrier_count == 0) {
   1174     return;
   1175   }
   1176   Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
   1177   Locks::mutator_lock_->SharedUnlock(self);
   1178   {
   1179     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1180     gc_barrier_->Increment(self, barrier_count);
   1181   }
   1182   Locks::mutator_lock_->SharedLock(self);
   1183   Locks::heap_bitmap_lock_->ExclusiveLock(self);
   1184 }
   1185 
   1186 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
   1187   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1188   Thread* self = Thread::Current();
   1189   mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
   1190       sweep_array_free_buffer_mem_map_->BaseBegin());
   1191   size_t chunk_free_pos = 0;
   1192   ObjectBytePair freed;
   1193   ObjectBytePair freed_los;
   1194   // How many objects are left in the array, modified after each space is swept.
   1195   StackReference<mirror::Object>* objects = allocations->Begin();
   1196   size_t count = allocations->Size();
   1197   // Change the order to ensure that the non-moving space last swept as an optimization.
   1198   std::vector<space::ContinuousSpace*> sweep_spaces;
   1199   space::ContinuousSpace* non_moving_space = nullptr;
   1200   for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
   1201     if (space->IsAllocSpace() &&
   1202         !immune_spaces_.ContainsSpace(space) &&
   1203         space->GetLiveBitmap() != nullptr) {
   1204       if (space == heap_->GetNonMovingSpace()) {
   1205         non_moving_space = space;
   1206       } else {
   1207         sweep_spaces.push_back(space);
   1208       }
   1209     }
   1210   }
   1211   // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
   1212   // the other alloc spaces as an optimization.
   1213   if (non_moving_space != nullptr) {
   1214     sweep_spaces.push_back(non_moving_space);
   1215   }
   1216   // Start by sweeping the continuous spaces.
   1217   for (space::ContinuousSpace* space : sweep_spaces) {
   1218     space::AllocSpace* alloc_space = space->AsAllocSpace();
   1219     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1220     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   1221     if (swap_bitmaps) {
   1222       std::swap(live_bitmap, mark_bitmap);
   1223     }
   1224     StackReference<mirror::Object>* out = objects;
   1225     for (size_t i = 0; i < count; ++i) {
   1226       mirror::Object* const obj = objects[i].AsMirrorPtr();
   1227       if (kUseThreadLocalAllocationStack && obj == nullptr) {
   1228         continue;
   1229       }
   1230       if (space->HasAddress(obj)) {
   1231         // This object is in the space, remove it from the array and add it to the sweep buffer
   1232         // if needed.
   1233         if (!mark_bitmap->Test(obj)) {
   1234           if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
   1235             TimingLogger::ScopedTiming t2("FreeList", GetTimings());
   1236             freed.objects += chunk_free_pos;
   1237             freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
   1238             chunk_free_pos = 0;
   1239           }
   1240           chunk_free_buffer[chunk_free_pos++] = obj;
   1241         }
   1242       } else {
   1243         (out++)->Assign(obj);
   1244       }
   1245     }
   1246     if (chunk_free_pos > 0) {
   1247       TimingLogger::ScopedTiming t2("FreeList", GetTimings());
   1248       freed.objects += chunk_free_pos;
   1249       freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
   1250       chunk_free_pos = 0;
   1251     }
   1252     // All of the references which space contained are no longer in the allocation stack, update
   1253     // the count.
   1254     count = out - objects;
   1255   }
   1256   // Handle the large object space.
   1257   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
   1258   if (large_object_space != nullptr) {
   1259     accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
   1260     accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
   1261     if (swap_bitmaps) {
   1262       std::swap(large_live_objects, large_mark_objects);
   1263     }
   1264     for (size_t i = 0; i < count; ++i) {
   1265       mirror::Object* const obj = objects[i].AsMirrorPtr();
   1266       // Handle large objects.
   1267       if (kUseThreadLocalAllocationStack && obj == nullptr) {
   1268         continue;
   1269       }
   1270       if (!large_mark_objects->Test(obj)) {
   1271         ++freed_los.objects;
   1272         freed_los.bytes += large_object_space->Free(self, obj);
   1273       }
   1274     }
   1275   }
   1276   {
   1277     TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
   1278     RecordFree(freed);
   1279     RecordFreeLOS(freed_los);
   1280     t2.NewTiming("ResetStack");
   1281     allocations->Reset();
   1282   }
   1283   sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
   1284 }
   1285 
   1286 void MarkSweep::Sweep(bool swap_bitmaps) {
   1287   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1288   // Ensure that nobody inserted items in the live stack after we swapped the stacks.
   1289   CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
   1290   {
   1291     TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
   1292     // Mark everything allocated since the last as GC live so that we can sweep concurrently,
   1293     // knowing that new allocations won't be marked as live.
   1294     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
   1295     heap_->MarkAllocStackAsLive(live_stack);
   1296     live_stack->Reset();
   1297     DCHECK(mark_stack_->IsEmpty());
   1298   }
   1299   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   1300     if (space->IsContinuousMemMapAllocSpace()) {
   1301       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
   1302       TimingLogger::ScopedTiming split(
   1303           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace",
   1304           GetTimings());
   1305       RecordFree(alloc_space->Sweep(swap_bitmaps));
   1306     }
   1307   }
   1308   SweepLargeObjects(swap_bitmaps);
   1309 }
   1310 
   1311 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
   1312   space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
   1313   if (los != nullptr) {
   1314     TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
   1315     RecordFreeLOS(los->Sweep(swap_bitmaps));
   1316   }
   1317 }
   1318 
   1319 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
   1320 // marked, put it on the appropriate list in the heap for later processing.
   1321 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
   1322   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this);
   1323 }
   1324 
   1325 class MarkVisitor {
   1326  public:
   1327   ALWAYS_INLINE explicit MarkVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {}
   1328 
   1329   ALWAYS_INLINE void operator()(mirror::Object* obj,
   1330                                 MemberOffset offset,
   1331                                 bool is_static ATTRIBUTE_UNUSED) const
   1332       REQUIRES(Locks::heap_bitmap_lock_)
   1333       SHARED_REQUIRES(Locks::mutator_lock_) {
   1334     if (kCheckLocks) {
   1335       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
   1336       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
   1337     }
   1338     mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset);
   1339   }
   1340 
   1341   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   1342       REQUIRES(Locks::heap_bitmap_lock_)
   1343       SHARED_REQUIRES(Locks::mutator_lock_) {
   1344     if (!root->IsNull()) {
   1345       VisitRoot(root);
   1346     }
   1347   }
   1348 
   1349   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   1350       REQUIRES(Locks::heap_bitmap_lock_)
   1351       SHARED_REQUIRES(Locks::mutator_lock_) {
   1352     if (kCheckLocks) {
   1353       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
   1354       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
   1355     }
   1356     mark_sweep_->MarkObject(root->AsMirrorPtr());
   1357   }
   1358 
   1359  private:
   1360   MarkSweep* const mark_sweep_;
   1361 };
   1362 
   1363 // Scans an object reference.  Determines the type of the reference
   1364 // and dispatches to a specialized scanning routine.
   1365 void MarkSweep::ScanObject(mirror::Object* obj) {
   1366   MarkVisitor mark_visitor(this);
   1367   DelayReferenceReferentVisitor ref_visitor(this);
   1368   ScanObjectVisit(obj, mark_visitor, ref_visitor);
   1369 }
   1370 
   1371 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
   1372   Thread* self = Thread::Current();
   1373   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
   1374   const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
   1375                                      static_cast<size_t>(MarkStackTask<false>::kMaxSize));
   1376   CHECK_GT(chunk_size, 0U);
   1377   // Split the current mark stack up into work tasks.
   1378   for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) {
   1379     const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
   1380     thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
   1381     it += delta;
   1382   }
   1383   thread_pool->SetMaxActiveWorkers(thread_count - 1);
   1384   thread_pool->StartWorkers(self);
   1385   thread_pool->Wait(self, true, true);
   1386   thread_pool->StopWorkers(self);
   1387   mark_stack_->Reset();
   1388   CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
   1389            work_chunks_deleted_.LoadSequentiallyConsistent())
   1390       << " some of the work chunks were leaked";
   1391 }
   1392 
   1393 // Scan anything that's on the mark stack.
   1394 void MarkSweep::ProcessMarkStack(bool paused) {
   1395   TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
   1396   size_t thread_count = GetThreadCount(paused);
   1397   if (kParallelProcessMarkStack && thread_count > 1 &&
   1398       mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
   1399     ProcessMarkStackParallel(thread_count);
   1400   } else {
   1401     // TODO: Tune this.
   1402     static const size_t kFifoSize = 4;
   1403     BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
   1404     for (;;) {
   1405       mirror::Object* obj = nullptr;
   1406       if (kUseMarkStackPrefetch) {
   1407         while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
   1408           mirror::Object* mark_stack_obj = mark_stack_->PopBack();
   1409           DCHECK(mark_stack_obj != nullptr);
   1410           __builtin_prefetch(mark_stack_obj);
   1411           prefetch_fifo.push_back(mark_stack_obj);
   1412         }
   1413         if (prefetch_fifo.empty()) {
   1414           break;
   1415         }
   1416         obj = prefetch_fifo.front();
   1417         prefetch_fifo.pop_front();
   1418       } else {
   1419         if (mark_stack_->IsEmpty()) {
   1420           break;
   1421         }
   1422         obj = mark_stack_->PopBack();
   1423       }
   1424       DCHECK(obj != nullptr);
   1425       ScanObject(obj);
   1426     }
   1427   }
   1428 }
   1429 
   1430 inline mirror::Object* MarkSweep::IsMarked(mirror::Object* object) {
   1431   if (immune_spaces_.IsInImmuneRegion(object)) {
   1432     return object;
   1433   }
   1434   if (current_space_bitmap_->HasAddress(object)) {
   1435     return current_space_bitmap_->Test(object) ? object : nullptr;
   1436   }
   1437   return mark_bitmap_->Test(object) ? object : nullptr;
   1438 }
   1439 
   1440 void MarkSweep::FinishPhase() {
   1441   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1442   if (kCountScannedTypes) {
   1443     VLOG(gc)
   1444         << "MarkSweep scanned"
   1445         << " no reference objects=" << no_reference_class_count_.LoadRelaxed()
   1446         << " normal objects=" << normal_count_.LoadRelaxed()
   1447         << " classes=" << class_count_.LoadRelaxed()
   1448         << " object arrays=" << object_array_count_.LoadRelaxed()
   1449         << " references=" << reference_count_.LoadRelaxed()
   1450         << " other=" << other_count_.LoadRelaxed();
   1451   }
   1452   if (kCountTasks) {
   1453     VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
   1454   }
   1455   if (kMeasureOverhead) {
   1456     VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
   1457   }
   1458   if (kProfileLargeObjects) {
   1459     VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
   1460         << " marked " << large_object_mark_.LoadRelaxed();
   1461   }
   1462   if (kCountMarkedObjects) {
   1463     VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
   1464         << " immune=" <<  mark_immune_count_.LoadRelaxed()
   1465         << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
   1466         << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
   1467   }
   1468   CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
   1469   mark_stack_->Reset();
   1470   Thread* const self = Thread::Current();
   1471   ReaderMutexLock mu(self, *Locks::mutator_lock_);
   1472   WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   1473   heap_->ClearMarkedObjects();
   1474 }
   1475 
   1476 void MarkSweep::RevokeAllThreadLocalBuffers() {
   1477   if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
   1478     // If concurrent, rosalloc thread-local buffers are revoked at the
   1479     // thread checkpoint. Bump pointer space thread-local buffers must
   1480     // not be in use.
   1481     GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
   1482   } else {
   1483     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1484     GetHeap()->RevokeAllThreadLocalBuffers();
   1485   }
   1486 }
   1487 
   1488 }  // namespace collector
   1489 }  // namespace gc
   1490 }  // namespace art
   1491