Home | History | Annotate | Download | only in collector
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "semi_space-inl.h"
     18 
     19 #include <climits>
     20 #include <functional>
     21 #include <numeric>
     22 #include <sstream>
     23 #include <vector>
     24 
     25 #include "base/logging.h"
     26 #include "base/macros.h"
     27 #include "base/mutex-inl.h"
     28 #include "base/timing_logger.h"
     29 #include "gc/accounting/heap_bitmap-inl.h"
     30 #include "gc/accounting/mod_union_table.h"
     31 #include "gc/accounting/remembered_set.h"
     32 #include "gc/accounting/space_bitmap-inl.h"
     33 #include "gc/heap.h"
     34 #include "gc/reference_processor.h"
     35 #include "gc/space/bump_pointer_space.h"
     36 #include "gc/space/bump_pointer_space-inl.h"
     37 #include "gc/space/image_space.h"
     38 #include "gc/space/large_object_space.h"
     39 #include "gc/space/space-inl.h"
     40 #include "indirect_reference_table.h"
     41 #include "intern_table.h"
     42 #include "jni_internal.h"
     43 #include "mark_sweep-inl.h"
     44 #include "monitor.h"
     45 #include "mirror/reference-inl.h"
     46 #include "mirror/object-inl.h"
     47 #include "runtime.h"
     48 #include "thread-inl.h"
     49 #include "thread_list.h"
     50 
     51 using ::art::mirror::Object;
     52 
     53 namespace art {
     54 namespace gc {
     55 namespace collector {
     56 
     57 static constexpr bool kProtectFromSpace = true;
     58 static constexpr bool kStoreStackTraces = false;
     59 static constexpr size_t kBytesPromotedThreshold = 4 * MB;
     60 static constexpr size_t kLargeObjectBytesAllocatedThreshold = 16 * MB;
     61 
     62 void SemiSpace::BindBitmaps() {
     63   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
     64   WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
     65   // Mark all of the spaces we never collect as immune.
     66   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
     67     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
     68         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
     69       immune_spaces_.AddSpace(space);
     70     } else if (space->GetLiveBitmap() != nullptr) {
     71       // TODO: We can probably also add this space to the immune region.
     72       if (space == to_space_ || collect_from_space_only_) {
     73         if (collect_from_space_only_) {
     74           // Bind the bitmaps of the main free list space and the non-moving space we are doing a
     75           // bump pointer space only collection.
     76           CHECK(space == GetHeap()->GetPrimaryFreeListSpace() ||
     77                 space == GetHeap()->GetNonMovingSpace());
     78         }
     79         CHECK(space->IsContinuousMemMapAllocSpace());
     80         space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
     81       }
     82     }
     83   }
     84   if (collect_from_space_only_) {
     85     // We won't collect the large object space if a bump pointer space only collection.
     86     is_large_object_space_immune_ = true;
     87   }
     88 }
     89 
     90 SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
     91     : GarbageCollector(heap,
     92                        name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
     93       mark_stack_(nullptr),
     94       is_large_object_space_immune_(false),
     95       to_space_(nullptr),
     96       to_space_live_bitmap_(nullptr),
     97       from_space_(nullptr),
     98       mark_bitmap_(nullptr),
     99       self_(nullptr),
    100       generational_(generational),
    101       last_gc_to_space_end_(nullptr),
    102       bytes_promoted_(0),
    103       bytes_promoted_since_last_whole_heap_collection_(0),
    104       large_object_bytes_allocated_at_last_whole_heap_collection_(0),
    105       collect_from_space_only_(generational),
    106       promo_dest_space_(nullptr),
    107       fallback_space_(nullptr),
    108       bytes_moved_(0U),
    109       objects_moved_(0U),
    110       saved_bytes_(0U),
    111       collector_name_(name_),
    112       swap_semi_spaces_(true) {
    113 }
    114 
    115 void SemiSpace::RunPhases() {
    116   Thread* self = Thread::Current();
    117   InitializePhase();
    118   // Semi-space collector is special since it is sometimes called with the mutators suspended
    119   // during the zygote creation and collector transitions. If we already exclusively hold the
    120   // mutator lock, then we can't lock it again since it will cause a deadlock.
    121   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
    122     GetHeap()->PreGcVerificationPaused(this);
    123     GetHeap()->PrePauseRosAllocVerification(this);
    124     MarkingPhase();
    125     ReclaimPhase();
    126     GetHeap()->PostGcVerificationPaused(this);
    127   } else {
    128     Locks::mutator_lock_->AssertNotHeld(self);
    129     {
    130       ScopedPause pause(this);
    131       GetHeap()->PreGcVerificationPaused(this);
    132       GetHeap()->PrePauseRosAllocVerification(this);
    133       MarkingPhase();
    134     }
    135     {
    136       ReaderMutexLock mu(self, *Locks::mutator_lock_);
    137       ReclaimPhase();
    138     }
    139     GetHeap()->PostGcVerification(this);
    140   }
    141   FinishPhase();
    142 }
    143 
    144 void SemiSpace::InitializePhase() {
    145   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    146   mark_stack_ = heap_->GetMarkStack();
    147   DCHECK(mark_stack_ != nullptr);
    148   immune_spaces_.Reset();
    149   is_large_object_space_immune_ = false;
    150   saved_bytes_ = 0;
    151   bytes_moved_ = 0;
    152   objects_moved_ = 0;
    153   self_ = Thread::Current();
    154   CHECK(from_space_->CanMoveObjects()) << "Attempting to move from " << *from_space_;
    155   // Set the initial bitmap.
    156   to_space_live_bitmap_ = to_space_->GetLiveBitmap();
    157   {
    158     // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
    159     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    160     mark_bitmap_ = heap_->GetMarkBitmap();
    161   }
    162   if (generational_) {
    163     promo_dest_space_ = GetHeap()->GetPrimaryFreeListSpace();
    164   }
    165   fallback_space_ = GetHeap()->GetNonMovingSpace();
    166 }
    167 
    168 void SemiSpace::ProcessReferences(Thread* self) {
    169   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    170   GetHeap()->GetReferenceProcessor()->ProcessReferences(
    171       false, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
    172 }
    173 
    174 void SemiSpace::MarkingPhase() {
    175   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    176   CHECK(Locks::mutator_lock_->IsExclusiveHeld(self_));
    177   if (kStoreStackTraces) {
    178     Locks::mutator_lock_->AssertExclusiveHeld(self_);
    179     // Store the stack traces into the runtime fault string in case we Get a heap corruption
    180     // related crash later.
    181     ThreadState old_state = self_->SetStateUnsafe(kRunnable);
    182     std::ostringstream oss;
    183     Runtime* runtime = Runtime::Current();
    184     runtime->GetThreadList()->DumpForSigQuit(oss);
    185     runtime->GetThreadList()->DumpNativeStacks(oss);
    186     runtime->SetFaultMessage(oss.str());
    187     CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
    188   }
    189   // Revoke the thread local buffers since the GC may allocate into a RosAllocSpace and this helps
    190   // to prevent fragmentation.
    191   RevokeAllThreadLocalBuffers();
    192   if (generational_) {
    193     if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
    194         GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
    195         GetCurrentIteration()->GetClearSoftReferences()) {
    196       // If an explicit, native allocation-triggered, or last attempt
    197       // collection, collect the whole heap.
    198       collect_from_space_only_ = false;
    199     }
    200     if (!collect_from_space_only_) {
    201       VLOG(heap) << "Whole heap collection";
    202       name_ = collector_name_ + " whole";
    203     } else {
    204       VLOG(heap) << "Bump pointer space only collection";
    205       name_ = collector_name_ + " bps";
    206     }
    207   }
    208 
    209   if (!collect_from_space_only_) {
    210     // If non-generational, always clear soft references.
    211     // If generational, clear soft references if a whole heap collection.
    212     GetCurrentIteration()->SetClearSoftReferences(true);
    213   }
    214   Locks::mutator_lock_->AssertExclusiveHeld(self_);
    215   if (generational_) {
    216     // If last_gc_to_space_end_ is out of the bounds of the from-space
    217     // (the to-space from last GC), then point it to the beginning of
    218     // the from-space. For example, the very first GC or the
    219     // pre-zygote compaction.
    220     if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
    221       last_gc_to_space_end_ = from_space_->Begin();
    222     }
    223     // Reset this before the marking starts below.
    224     bytes_promoted_ = 0;
    225   }
    226   // Assume the cleared space is already empty.
    227   BindBitmaps();
    228   // Process dirty cards and add dirty cards to mod-union tables.
    229   heap_->ProcessCards(GetTimings(), kUseRememberedSet && generational_, false, true);
    230   // Clear the whole card table since we cannot get any additional dirty cards during the
    231   // paused GC. This saves memory but only works for pause the world collectors.
    232   t.NewTiming("ClearCardTable");
    233   heap_->GetCardTable()->ClearCardTable();
    234   // Need to do this before the checkpoint since we don't want any threads to add references to
    235   // the live stack during the recursive mark.
    236   if (kUseThreadLocalAllocationStack) {
    237     TimingLogger::ScopedTiming t2("RevokeAllThreadLocalAllocationStacks", GetTimings());
    238     heap_->RevokeAllThreadLocalAllocationStacks(self_);
    239   }
    240   heap_->SwapStacks();
    241   {
    242     WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
    243     MarkRoots();
    244     // Recursively mark remaining objects.
    245     MarkReachableObjects();
    246   }
    247   ProcessReferences(self_);
    248   {
    249     ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
    250     SweepSystemWeaks();
    251   }
    252   Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
    253   // Revoke buffers before measuring how many objects were moved since the TLABs need to be revoked
    254   // before they are properly counted.
    255   RevokeAllThreadLocalBuffers();
    256   GetHeap()->RecordFreeRevoke();  // this is for the non-moving rosalloc space used by GSS.
    257   // Record freed memory.
    258   const int64_t from_bytes = from_space_->GetBytesAllocated();
    259   const int64_t to_bytes = bytes_moved_;
    260   const uint64_t from_objects = from_space_->GetObjectsAllocated();
    261   const uint64_t to_objects = objects_moved_;
    262   CHECK_LE(to_objects, from_objects);
    263   // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
    264   // space.
    265   RecordFree(ObjectBytePair(from_objects - to_objects, from_bytes - to_bytes));
    266   // Clear and protect the from space.
    267   from_space_->Clear();
    268   if (kProtectFromSpace && !from_space_->IsRosAllocSpace()) {
    269     // Protect with PROT_NONE.
    270     VLOG(heap) << "Protecting from_space_ : " << *from_space_;
    271     from_space_->GetMemMap()->Protect(PROT_NONE);
    272   } else {
    273     // If RosAllocSpace, we'll leave it as PROT_READ here so the
    274     // rosaloc verification can read the metadata magic number and
    275     // protect it with PROT_NONE later in FinishPhase().
    276     VLOG(heap) << "Protecting from_space_ with PROT_READ : " << *from_space_;
    277     from_space_->GetMemMap()->Protect(PROT_READ);
    278   }
    279   heap_->PreSweepingGcVerification(this);
    280   if (swap_semi_spaces_) {
    281     heap_->SwapSemiSpaces();
    282   }
    283 }
    284 
    285 // Used to verify that there's no references to the from-space.
    286 class SemiSpace::VerifyNoFromSpaceReferencesVisitor {
    287  public:
    288   explicit VerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space)
    289       : from_space_(from_space) {}
    290 
    291   void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
    292       SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
    293     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
    294     if (from_space_->HasAddress(ref)) {
    295       Runtime::Current()->GetHeap()->DumpObject(LOG(INFO), obj);
    296       LOG(FATAL) << ref << " found in from space";
    297     }
    298   }
    299 
    300   // TODO: Remove NO_THREAD_SAFETY_ANALYSIS when clang better understands visitors.
    301   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    302       NO_THREAD_SAFETY_ANALYSIS {
    303     if (!root->IsNull()) {
    304       VisitRoot(root);
    305     }
    306   }
    307 
    308   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    309       NO_THREAD_SAFETY_ANALYSIS {
    310     if (kIsDebugBuild) {
    311       Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
    312       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    313     }
    314     CHECK(!from_space_->HasAddress(root->AsMirrorPtr()));
    315   }
    316 
    317  private:
    318   space::ContinuousMemMapAllocSpace* const from_space_;
    319 };
    320 
    321 void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
    322   DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
    323   VerifyNoFromSpaceReferencesVisitor visitor(from_space_);
    324   obj->VisitReferences(visitor, VoidFunctor());
    325 }
    326 
    327 void SemiSpace::MarkReachableObjects() {
    328   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    329   {
    330     TimingLogger::ScopedTiming t2("MarkStackAsLive", GetTimings());
    331     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
    332     heap_->MarkAllocStackAsLive(live_stack);
    333     live_stack->Reset();
    334   }
    335   for (auto& space : heap_->GetContinuousSpaces()) {
    336     // If the space is immune then we need to mark the references to other spaces.
    337     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
    338     if (table != nullptr) {
    339       // TODO: Improve naming.
    340       TimingLogger::ScopedTiming t2(
    341           space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
    342                                    "UpdateAndMarkImageModUnionTable",
    343                                    GetTimings());
    344       table->UpdateAndMarkReferences(this);
    345       DCHECK(GetHeap()->FindRememberedSetFromSpace(space) == nullptr);
    346     } else if ((space->IsImageSpace() || collect_from_space_only_) &&
    347                space->GetLiveBitmap() != nullptr) {
    348       // If the space has no mod union table (the non-moving space, app image spaces, main spaces
    349       // when the bump pointer space only collection is enabled,) then we need to scan its live
    350       // bitmap or dirty cards as roots (including the objects on the live stack which have just
    351       // marked in the live bitmap above in MarkAllocStackAsLive().)
    352       accounting::RememberedSet* rem_set = GetHeap()->FindRememberedSetFromSpace(space);
    353       if (!space->IsImageSpace()) {
    354         DCHECK(space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace())
    355             << "Space " << space->GetName() << " "
    356             << "generational_=" << generational_ << " "
    357             << "collect_from_space_only_=" << collect_from_space_only_;
    358         // App images currently do not have remembered sets.
    359         DCHECK_EQ(kUseRememberedSet, rem_set != nullptr);
    360       } else {
    361         DCHECK(rem_set == nullptr);
    362       }
    363       if (rem_set != nullptr) {
    364         TimingLogger::ScopedTiming t2("UpdateAndMarkRememberedSet", GetTimings());
    365         rem_set->UpdateAndMarkReferences(from_space_, this);
    366       } else {
    367         TimingLogger::ScopedTiming t2("VisitLiveBits", GetTimings());
    368         accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
    369         live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
    370                                       reinterpret_cast<uintptr_t>(space->End()),
    371                                       [this](mirror::Object* obj)
    372            REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    373           ScanObject(obj);
    374         });
    375       }
    376       if (kIsDebugBuild) {
    377         // Verify that there are no from-space references that
    378         // remain in the space, that is, the remembered set (and the
    379         // card table) didn't miss any from-space references in the
    380         // space.
    381         accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
    382         live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
    383                                       reinterpret_cast<uintptr_t>(space->End()),
    384                                       [this](Object* obj)
    385             SHARED_REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
    386           DCHECK(obj != nullptr);
    387           VerifyNoFromSpaceReferences(obj);
    388         });
    389       }
    390     }
    391   }
    392 
    393   CHECK_EQ(is_large_object_space_immune_, collect_from_space_only_);
    394   space::LargeObjectSpace* los = GetHeap()->GetLargeObjectsSpace();
    395   if (is_large_object_space_immune_ && los != nullptr) {
    396     TimingLogger::ScopedTiming t2("VisitLargeObjects", GetTimings());
    397     DCHECK(collect_from_space_only_);
    398     // Delay copying the live set to the marked set until here from
    399     // BindBitmaps() as the large objects on the allocation stack may
    400     // be newly added to the live set above in MarkAllocStackAsLive().
    401     los->CopyLiveToMarked();
    402 
    403     // When the large object space is immune, we need to scan the
    404     // large object space as roots as they contain references to their
    405     // classes (primitive array classes) that could move though they
    406     // don't contain any other references.
    407     accounting::LargeObjectBitmap* large_live_bitmap = los->GetLiveBitmap();
    408     large_live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(los->Begin()),
    409                                         reinterpret_cast<uintptr_t>(los->End()),
    410                                         [this](mirror::Object* obj)
    411         REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    412       ScanObject(obj);
    413     });
    414   }
    415   // Recursively process the mark stack.
    416   ProcessMarkStack();
    417 }
    418 
    419 void SemiSpace::ReclaimPhase() {
    420   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    421   WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
    422   // Reclaim unmarked objects.
    423   Sweep(false);
    424   // Swap the live and mark bitmaps for each space which we modified space. This is an
    425   // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
    426   // bitmaps.
    427   SwapBitmaps();
    428   // Unbind the live and mark bitmaps.
    429   GetHeap()->UnBindBitmaps();
    430   if (saved_bytes_ > 0) {
    431     VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
    432   }
    433   if (generational_) {
    434     // Record the end (top) of the to space so we can distinguish
    435     // between objects that were allocated since the last GC and the
    436     // older objects.
    437     last_gc_to_space_end_ = to_space_->End();
    438   }
    439 }
    440 
    441 void SemiSpace::ResizeMarkStack(size_t new_size) {
    442   std::vector<StackReference<Object>> temp(mark_stack_->Begin(), mark_stack_->End());
    443   CHECK_LE(mark_stack_->Size(), new_size);
    444   mark_stack_->Resize(new_size);
    445   for (auto& obj : temp) {
    446     mark_stack_->PushBack(obj.AsMirrorPtr());
    447   }
    448 }
    449 
    450 inline void SemiSpace::MarkStackPush(Object* obj) {
    451   if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
    452     ResizeMarkStack(mark_stack_->Capacity() * 2);
    453   }
    454   // The object must be pushed on to the mark stack.
    455   mark_stack_->PushBack(obj);
    456 }
    457 
    458 static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
    459   if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
    460     // We will dirty the current page and somewhere in the middle of the next page. This means
    461     // that the next object copied will also dirty that page.
    462     // TODO: Worth considering the last object copied? We may end up dirtying one page which is
    463     // not necessary per GC.
    464     memcpy(dest, src, size);
    465     return 0;
    466   }
    467   size_t saved_bytes = 0;
    468   uint8_t* byte_dest = reinterpret_cast<uint8_t*>(dest);
    469   if (kIsDebugBuild) {
    470     for (size_t i = 0; i < size; ++i) {
    471       CHECK_EQ(byte_dest[i], 0U);
    472     }
    473   }
    474   // Process the start of the page. The page must already be dirty, don't bother with checking.
    475   const uint8_t* byte_src = reinterpret_cast<const uint8_t*>(src);
    476   const uint8_t* limit = byte_src + size;
    477   size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
    478   // Copy the bytes until the start of the next page.
    479   memcpy(dest, src, page_remain);
    480   byte_src += page_remain;
    481   byte_dest += page_remain;
    482   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
    483   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
    484   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
    485   while (byte_src + kPageSize < limit) {
    486     bool all_zero = true;
    487     uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
    488     const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
    489     for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
    490       // Assumes the destination of the copy is all zeros.
    491       if (word_src[i] != 0) {
    492         all_zero = false;
    493         word_dest[i] = word_src[i];
    494       }
    495     }
    496     if (all_zero) {
    497       // Avoided copying into the page since it was all zeros.
    498       saved_bytes += kPageSize;
    499     }
    500     byte_src += kPageSize;
    501     byte_dest += kPageSize;
    502   }
    503   // Handle the part of the page at the end.
    504   memcpy(byte_dest, byte_src, limit - byte_src);
    505   return saved_bytes;
    506 }
    507 
    508 mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
    509   const size_t object_size = obj->SizeOf();
    510   size_t bytes_allocated, dummy;
    511   mirror::Object* forward_address = nullptr;
    512   if (generational_ && reinterpret_cast<uint8_t*>(obj) < last_gc_to_space_end_) {
    513     // If it's allocated before the last GC (older), move
    514     // (pseudo-promote) it to the main free list space (as sort
    515     // of an old generation.)
    516     forward_address = promo_dest_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
    517                                                            nullptr, &dummy);
    518     if (UNLIKELY(forward_address == nullptr)) {
    519       // If out of space, fall back to the to-space.
    520       forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr,
    521                                                      &dummy);
    522       // No logic for marking the bitmap, so it must be null.
    523       DCHECK(to_space_live_bitmap_ == nullptr);
    524     } else {
    525       bytes_promoted_ += bytes_allocated;
    526       // Dirty the card at the destionation as it may contain
    527       // references (including the class pointer) to the bump pointer
    528       // space.
    529       GetHeap()->WriteBarrierEveryFieldOf(forward_address);
    530       // Handle the bitmaps marking.
    531       accounting::ContinuousSpaceBitmap* live_bitmap = promo_dest_space_->GetLiveBitmap();
    532       DCHECK(live_bitmap != nullptr);
    533       accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
    534       DCHECK(mark_bitmap != nullptr);
    535       DCHECK(!live_bitmap->Test(forward_address));
    536       if (collect_from_space_only_) {
    537         // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
    538         DCHECK_EQ(live_bitmap, mark_bitmap);
    539 
    540         // If a bump pointer space only collection, delay the live
    541         // bitmap marking of the promoted object until it's popped off
    542         // the mark stack (ProcessMarkStack()). The rationale: we may
    543         // be in the middle of scanning the objects in the promo
    544         // destination space for
    545         // non-moving-space-to-bump-pointer-space references by
    546         // iterating over the marked bits of the live bitmap
    547         // (MarkReachableObjects()). If we don't delay it (and instead
    548         // mark the promoted object here), the above promo destination
    549         // space scan could encounter the just-promoted object and
    550         // forward the references in the promoted object's fields even
    551         // through it is pushed onto the mark stack. If this happens,
    552         // the promoted object would be in an inconsistent state, that
    553         // is, it's on the mark stack (gray) but its fields are
    554         // already forwarded (black), which would cause a
    555         // DCHECK(!to_space_->HasAddress(obj)) failure below.
    556       } else {
    557         // Mark forward_address on the live bit map.
    558         live_bitmap->Set(forward_address);
    559         // Mark forward_address on the mark bit map.
    560         DCHECK(!mark_bitmap->Test(forward_address));
    561         mark_bitmap->Set(forward_address);
    562       }
    563     }
    564   } else {
    565     // If it's allocated after the last GC (younger), copy it to the to-space.
    566     forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr,
    567                                                    &dummy);
    568     if (forward_address != nullptr && to_space_live_bitmap_ != nullptr) {
    569       to_space_live_bitmap_->Set(forward_address);
    570     }
    571   }
    572   // If it's still null, attempt to use the fallback space.
    573   if (UNLIKELY(forward_address == nullptr)) {
    574     forward_address = fallback_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
    575                                                          nullptr, &dummy);
    576     CHECK(forward_address != nullptr) << "Out of memory in the to-space and fallback space.";
    577     accounting::ContinuousSpaceBitmap* bitmap = fallback_space_->GetLiveBitmap();
    578     if (bitmap != nullptr) {
    579       bitmap->Set(forward_address);
    580     }
    581   }
    582   ++objects_moved_;
    583   bytes_moved_ += bytes_allocated;
    584   // Copy over the object and add it to the mark stack since we still need to update its
    585   // references.
    586   saved_bytes_ +=
    587       CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
    588   if (kUseBakerOrBrooksReadBarrier) {
    589     obj->AssertReadBarrierPointer();
    590     if (kUseBrooksReadBarrier) {
    591       DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
    592       forward_address->SetReadBarrierPointer(forward_address);
    593     }
    594     forward_address->AssertReadBarrierPointer();
    595   }
    596   DCHECK(to_space_->HasAddress(forward_address) ||
    597          fallback_space_->HasAddress(forward_address) ||
    598          (generational_ && promo_dest_space_->HasAddress(forward_address)))
    599       << forward_address << "\n" << GetHeap()->DumpSpaces();
    600   return forward_address;
    601 }
    602 
    603 mirror::Object* SemiSpace::MarkObject(mirror::Object* root) {
    604   auto ref = StackReference<mirror::Object>::FromMirrorPtr(root);
    605   MarkObjectIfNotInToSpace(&ref);
    606   return ref.AsMirrorPtr();
    607 }
    608 
    609 void SemiSpace::MarkHeapReference(mirror::HeapReference<mirror::Object>* obj_ptr) {
    610   MarkObject(obj_ptr);
    611 }
    612 
    613 void SemiSpace::VisitRoots(mirror::Object*** roots, size_t count,
    614                            const RootInfo& info ATTRIBUTE_UNUSED) {
    615   for (size_t i = 0; i < count; ++i) {
    616     auto* root = roots[i];
    617     auto ref = StackReference<mirror::Object>::FromMirrorPtr(*root);
    618     // The root can be in the to-space since we may visit the declaring class of an ArtMethod
    619     // multiple times if it is on the call stack.
    620     MarkObjectIfNotInToSpace(&ref);
    621     if (*root != ref.AsMirrorPtr()) {
    622       *root = ref.AsMirrorPtr();
    623     }
    624   }
    625 }
    626 
    627 void SemiSpace::VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
    628                            const RootInfo& info ATTRIBUTE_UNUSED) {
    629   for (size_t i = 0; i < count; ++i) {
    630     MarkObjectIfNotInToSpace(roots[i]);
    631   }
    632 }
    633 
    634 // Marks all objects in the root set.
    635 void SemiSpace::MarkRoots() {
    636   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    637   Runtime::Current()->VisitRoots(this);
    638 }
    639 
    640 void SemiSpace::SweepSystemWeaks() {
    641   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    642   Runtime::Current()->SweepSystemWeaks(this);
    643 }
    644 
    645 bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
    646   return space != from_space_ && space != to_space_;
    647 }
    648 
    649 void SemiSpace::Sweep(bool swap_bitmaps) {
    650   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    651   DCHECK(mark_stack_->IsEmpty());
    652   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    653     if (space->IsContinuousMemMapAllocSpace()) {
    654       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
    655       if (!ShouldSweepSpace(alloc_space)) {
    656         continue;
    657       }
    658       TimingLogger::ScopedTiming split(
    659           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
    660       RecordFree(alloc_space->Sweep(swap_bitmaps));
    661     }
    662   }
    663   if (!is_large_object_space_immune_) {
    664     SweepLargeObjects(swap_bitmaps);
    665   }
    666 }
    667 
    668 void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
    669   DCHECK(!is_large_object_space_immune_);
    670   space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
    671   if (los != nullptr) {
    672     TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
    673     RecordFreeLOS(los->Sweep(swap_bitmaps));
    674   }
    675 }
    676 
    677 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
    678 // marked, put it on the appropriate list in the heap for later processing.
    679 void SemiSpace::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
    680   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
    681 }
    682 
    683 class SemiSpace::MarkObjectVisitor {
    684  public:
    685   explicit MarkObjectVisitor(SemiSpace* collector) : collector_(collector) {}
    686 
    687   void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE
    688       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    689     // Object was already verified when we scanned it.
    690     collector_->MarkObject(obj->GetFieldObjectReferenceAddr<kVerifyNone>(offset));
    691   }
    692 
    693   void operator()(mirror::Class* klass, mirror::Reference* ref) const
    694       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    695     collector_->DelayReferenceReferent(klass, ref);
    696   }
    697 
    698   // TODO: Remove NO_THREAD_SAFETY_ANALYSIS when clang better understands visitors.
    699   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    700       NO_THREAD_SAFETY_ANALYSIS {
    701     if (!root->IsNull()) {
    702       VisitRoot(root);
    703     }
    704   }
    705 
    706   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    707       NO_THREAD_SAFETY_ANALYSIS {
    708     if (kIsDebugBuild) {
    709       Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
    710       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    711     }
    712     // We may visit the same root multiple times, so avoid marking things in the to-space since
    713     // this is not handled by the GC.
    714     collector_->MarkObjectIfNotInToSpace(root);
    715   }
    716 
    717  private:
    718   SemiSpace* const collector_;
    719 };
    720 
    721 // Visit all of the references of an object and update.
    722 void SemiSpace::ScanObject(Object* obj) {
    723   DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
    724   MarkObjectVisitor visitor(this);
    725   obj->VisitReferences(visitor, visitor);
    726 }
    727 
    728 // Scan anything that's on the mark stack.
    729 void SemiSpace::ProcessMarkStack() {
    730   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    731   accounting::ContinuousSpaceBitmap* live_bitmap = nullptr;
    732   if (collect_from_space_only_) {
    733     // If a bump pointer space only collection (and the promotion is
    734     // enabled,) we delay the live-bitmap marking of promoted objects
    735     // from MarkObject() until this function.
    736     live_bitmap = promo_dest_space_->GetLiveBitmap();
    737     DCHECK(live_bitmap != nullptr);
    738     accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
    739     DCHECK(mark_bitmap != nullptr);
    740     DCHECK_EQ(live_bitmap, mark_bitmap);
    741   }
    742   while (!mark_stack_->IsEmpty()) {
    743     Object* obj = mark_stack_->PopBack();
    744     if (collect_from_space_only_ && promo_dest_space_->HasAddress(obj)) {
    745       // obj has just been promoted. Mark the live bitmap for it,
    746       // which is delayed from MarkObject().
    747       DCHECK(!live_bitmap->Test(obj));
    748       live_bitmap->Set(obj);
    749     }
    750     ScanObject(obj);
    751   }
    752 }
    753 
    754 mirror::Object* SemiSpace::IsMarked(mirror::Object* obj) {
    755   // All immune objects are assumed marked.
    756   if (from_space_->HasAddress(obj)) {
    757     // Returns either the forwarding address or null.
    758     return GetForwardingAddressInFromSpace(obj);
    759   } else if (collect_from_space_only_ ||
    760              immune_spaces_.IsInImmuneRegion(obj) ||
    761              to_space_->HasAddress(obj)) {
    762     return obj;  // Already forwarded, must be marked.
    763   }
    764   return mark_bitmap_->Test(obj) ? obj : nullptr;
    765 }
    766 
    767 bool SemiSpace::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* object) {
    768   mirror::Object* obj = object->AsMirrorPtr();
    769   mirror::Object* new_obj = IsMarked(obj);
    770   if (new_obj == nullptr) {
    771     return false;
    772   }
    773   if (new_obj != obj) {
    774     // Write barrier is not necessary since it still points to the same object, just at a different
    775     // address.
    776     object->Assign(new_obj);
    777   }
    778   return true;
    779 }
    780 
    781 void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
    782   DCHECK(to_space != nullptr);
    783   to_space_ = to_space;
    784 }
    785 
    786 void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
    787   DCHECK(from_space != nullptr);
    788   from_space_ = from_space;
    789 }
    790 
    791 void SemiSpace::FinishPhase() {
    792   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    793   if (kProtectFromSpace && from_space_->IsRosAllocSpace()) {
    794     VLOG(heap) << "Protecting from_space_ with PROT_NONE : " << *from_space_;
    795     from_space_->GetMemMap()->Protect(PROT_NONE);
    796   }
    797   // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
    798   // further action is done by the heap.
    799   to_space_ = nullptr;
    800   from_space_ = nullptr;
    801   CHECK(mark_stack_->IsEmpty());
    802   mark_stack_->Reset();
    803   space::LargeObjectSpace* los = GetHeap()->GetLargeObjectsSpace();
    804   if (generational_) {
    805     // Decide whether to do a whole heap collection or a bump pointer
    806     // only space collection at the next collection by updating
    807     // collect_from_space_only_.
    808     if (collect_from_space_only_) {
    809       // Disable collect_from_space_only_ if the bytes promoted since the
    810       // last whole heap collection or the large object bytes
    811       // allocated exceeds a threshold.
    812       bytes_promoted_since_last_whole_heap_collection_ += bytes_promoted_;
    813       bool bytes_promoted_threshold_exceeded =
    814           bytes_promoted_since_last_whole_heap_collection_ >= kBytesPromotedThreshold;
    815       uint64_t current_los_bytes_allocated = los != nullptr ? los->GetBytesAllocated() : 0U;
    816       uint64_t last_los_bytes_allocated =
    817           large_object_bytes_allocated_at_last_whole_heap_collection_;
    818       bool large_object_bytes_threshold_exceeded =
    819           current_los_bytes_allocated >=
    820           last_los_bytes_allocated + kLargeObjectBytesAllocatedThreshold;
    821       if (bytes_promoted_threshold_exceeded || large_object_bytes_threshold_exceeded) {
    822         collect_from_space_only_ = false;
    823       }
    824     } else {
    825       // Reset the counters.
    826       bytes_promoted_since_last_whole_heap_collection_ = bytes_promoted_;
    827       large_object_bytes_allocated_at_last_whole_heap_collection_ =
    828           los != nullptr ? los->GetBytesAllocated() : 0U;
    829       collect_from_space_only_ = true;
    830     }
    831   }
    832   // Clear all of the spaces' mark bitmaps.
    833   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    834   heap_->ClearMarkedObjects();
    835 }
    836 
    837 void SemiSpace::RevokeAllThreadLocalBuffers() {
    838   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    839   GetHeap()->RevokeAllThreadLocalBuffers();
    840 }
    841 
    842 }  // namespace collector
    843 }  // namespace gc
    844 }  // namespace art
    845