Home | History | Annotate | Download | only in gc
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "heap.h"
     18 
     19 #include <limits>
     20 #include <memory>
     21 #include <unwind.h>  // For GC verification.
     22 #include <vector>
     23 
     24 #include "art_field-inl.h"
     25 #include "base/allocator.h"
     26 #include "base/arena_allocator.h"
     27 #include "base/dumpable.h"
     28 #include "base/histogram-inl.h"
     29 #include "base/stl_util.h"
     30 #include "base/systrace.h"
     31 #include "base/time_utils.h"
     32 #include "common_throws.h"
     33 #include "cutils/sched_policy.h"
     34 #include "debugger.h"
     35 #include "dex_file-inl.h"
     36 #include "gc/accounting/atomic_stack.h"
     37 #include "gc/accounting/card_table-inl.h"
     38 #include "gc/accounting/heap_bitmap-inl.h"
     39 #include "gc/accounting/mod_union_table-inl.h"
     40 #include "gc/accounting/remembered_set.h"
     41 #include "gc/accounting/space_bitmap-inl.h"
     42 #include "gc/collector/concurrent_copying.h"
     43 #include "gc/collector/mark_compact.h"
     44 #include "gc/collector/mark_sweep.h"
     45 #include "gc/collector/partial_mark_sweep.h"
     46 #include "gc/collector/semi_space.h"
     47 #include "gc/collector/sticky_mark_sweep.h"
     48 #include "gc/reference_processor.h"
     49 #include "gc/space/bump_pointer_space.h"
     50 #include "gc/space/dlmalloc_space-inl.h"
     51 #include "gc/space/image_space.h"
     52 #include "gc/space/large_object_space.h"
     53 #include "gc/space/region_space.h"
     54 #include "gc/space/rosalloc_space-inl.h"
     55 #include "gc/space/space-inl.h"
     56 #include "gc/space/zygote_space.h"
     57 #include "gc/task_processor.h"
     58 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     59 #include "heap-inl.h"
     60 #include "image.h"
     61 #include "intern_table.h"
     62 #include "jit/jit.h"
     63 #include "jit/jit_code_cache.h"
     64 #include "mirror/class-inl.h"
     65 #include "mirror/object-inl.h"
     66 #include "mirror/object_array-inl.h"
     67 #include "mirror/reference-inl.h"
     68 #include "os.h"
     69 #include "reflection.h"
     70 #include "runtime.h"
     71 #include "ScopedLocalRef.h"
     72 #include "scoped_thread_state_change.h"
     73 #include "handle_scope-inl.h"
     74 #include "thread_list.h"
     75 #include "well_known_classes.h"
     76 
     77 namespace art {
     78 
     79 namespace gc {
     80 
     81 static constexpr size_t kCollectorTransitionStressIterations = 0;
     82 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
     83 // Minimum amount of remaining bytes before a concurrent GC is triggered.
     84 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
     85 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
     86 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
     87 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
     88 // threads (lower pauses, use less memory bandwidth).
     89 static constexpr double kStickyGcThroughputAdjustment = 1.0;
     90 // Whether or not we compact the zygote in PreZygoteFork.
     91 static constexpr bool kCompactZygote = kMovingCollector;
     92 // How many reserve entries are at the end of the allocation stack, these are only needed if the
     93 // allocation stack overflows.
     94 static constexpr size_t kAllocationStackReserveSize = 1024;
     95 // Default mark stack size in bytes.
     96 static const size_t kDefaultMarkStackSize = 64 * KB;
     97 // Define space name.
     98 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
     99 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
    100 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
    101 static const char* kNonMovingSpaceName = "non moving space";
    102 static const char* kZygoteSpaceName = "zygote space";
    103 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
    104 static constexpr bool kGCALotMode = false;
    105 // GC alot mode uses a small allocation stack to stress test a lot of GC.
    106 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
    107     sizeof(mirror::HeapReference<mirror::Object>);
    108 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
    109 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
    110     sizeof(mirror::HeapReference<mirror::Object>);
    111 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
    112     sizeof(mirror::HeapReference<mirror::Object>);
    113 // System.runFinalization can deadlock with native allocations, to deal with this, we have a
    114 // timeout on how long we wait for finalizers to run. b/21544853
    115 static constexpr uint64_t kNativeAllocationFinalizeTimeout = MsToNs(250u);
    116 
    117 // For deterministic compilation, we need the heap to be at a well-known address.
    118 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
    119 // Dump the rosalloc stats on SIGQUIT.
    120 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
    121 
    122 static constexpr size_t kNativeAllocationHistogramBuckets = 16;
    123 
    124 static inline bool CareAboutPauseTimes() {
    125   return Runtime::Current()->InJankPerceptibleProcessState();
    126 }
    127 
    128 Heap::Heap(size_t initial_size,
    129            size_t growth_limit,
    130            size_t min_free,
    131            size_t max_free,
    132            double target_utilization,
    133            double foreground_heap_growth_multiplier,
    134            size_t capacity,
    135            size_t non_moving_space_capacity,
    136            const std::string& image_file_name,
    137            const InstructionSet image_instruction_set,
    138            CollectorType foreground_collector_type,
    139            CollectorType background_collector_type,
    140            space::LargeObjectSpaceType large_object_space_type,
    141            size_t large_object_threshold,
    142            size_t parallel_gc_threads,
    143            size_t conc_gc_threads,
    144            bool low_memory_mode,
    145            size_t long_pause_log_threshold,
    146            size_t long_gc_log_threshold,
    147            bool ignore_max_footprint,
    148            bool use_tlab,
    149            bool verify_pre_gc_heap,
    150            bool verify_pre_sweeping_heap,
    151            bool verify_post_gc_heap,
    152            bool verify_pre_gc_rosalloc,
    153            bool verify_pre_sweeping_rosalloc,
    154            bool verify_post_gc_rosalloc,
    155            bool gc_stress_mode,
    156            bool use_homogeneous_space_compaction_for_oom,
    157            uint64_t min_interval_homogeneous_space_compaction_by_oom)
    158     : non_moving_space_(nullptr),
    159       rosalloc_space_(nullptr),
    160       dlmalloc_space_(nullptr),
    161       main_space_(nullptr),
    162       collector_type_(kCollectorTypeNone),
    163       foreground_collector_type_(foreground_collector_type),
    164       background_collector_type_(background_collector_type),
    165       desired_collector_type_(foreground_collector_type_),
    166       pending_task_lock_(nullptr),
    167       parallel_gc_threads_(parallel_gc_threads),
    168       conc_gc_threads_(conc_gc_threads),
    169       low_memory_mode_(low_memory_mode),
    170       long_pause_log_threshold_(long_pause_log_threshold),
    171       long_gc_log_threshold_(long_gc_log_threshold),
    172       ignore_max_footprint_(ignore_max_footprint),
    173       zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
    174       zygote_space_(nullptr),
    175       large_object_threshold_(large_object_threshold),
    176       disable_thread_flip_count_(0),
    177       thread_flip_running_(false),
    178       collector_type_running_(kCollectorTypeNone),
    179       last_gc_type_(collector::kGcTypeNone),
    180       next_gc_type_(collector::kGcTypePartial),
    181       capacity_(capacity),
    182       growth_limit_(growth_limit),
    183       max_allowed_footprint_(initial_size),
    184       native_footprint_gc_watermark_(initial_size),
    185       native_need_to_run_finalization_(false),
    186       concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
    187       total_bytes_freed_ever_(0),
    188       total_objects_freed_ever_(0),
    189       num_bytes_allocated_(0),
    190       native_bytes_allocated_(0),
    191       native_histogram_lock_("Native allocation lock"),
    192       native_allocation_histogram_("Native allocation sizes",
    193                                    1U,
    194                                    kNativeAllocationHistogramBuckets),
    195       native_free_histogram_("Native free sizes", 1U, kNativeAllocationHistogramBuckets),
    196       num_bytes_freed_revoke_(0),
    197       verify_missing_card_marks_(false),
    198       verify_system_weaks_(false),
    199       verify_pre_gc_heap_(verify_pre_gc_heap),
    200       verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
    201       verify_post_gc_heap_(verify_post_gc_heap),
    202       verify_mod_union_table_(false),
    203       verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
    204       verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
    205       verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
    206       gc_stress_mode_(gc_stress_mode),
    207       /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
    208        * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
    209        * verification is enabled, we limit the size of allocation stacks to speed up their
    210        * searching.
    211        */
    212       max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
    213           : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
    214           kDefaultAllocationStackSize),
    215       current_allocator_(kAllocatorTypeDlMalloc),
    216       current_non_moving_allocator_(kAllocatorTypeNonMoving),
    217       bump_pointer_space_(nullptr),
    218       temp_space_(nullptr),
    219       region_space_(nullptr),
    220       min_free_(min_free),
    221       max_free_(max_free),
    222       target_utilization_(target_utilization),
    223       foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
    224       total_wait_time_(0),
    225       verify_object_mode_(kVerifyObjectModeDisabled),
    226       disable_moving_gc_count_(0),
    227       is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
    228       use_tlab_(use_tlab),
    229       main_space_backup_(nullptr),
    230       min_interval_homogeneous_space_compaction_by_oom_(
    231           min_interval_homogeneous_space_compaction_by_oom),
    232       last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
    233       pending_collector_transition_(nullptr),
    234       pending_heap_trim_(nullptr),
    235       use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
    236       running_collection_is_blocking_(false),
    237       blocking_gc_count_(0U),
    238       blocking_gc_time_(0U),
    239       last_update_time_gc_count_rate_histograms_(  // Round down by the window duration.
    240           (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
    241       gc_count_last_window_(0U),
    242       blocking_gc_count_last_window_(0U),
    243       gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
    244       blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
    245                                         kGcCountRateMaxBucketCount),
    246       alloc_tracking_enabled_(false),
    247       backtrace_lock_(nullptr),
    248       seen_backtrace_count_(0u),
    249       unique_backtrace_count_(0u),
    250       gc_disabled_for_shutdown_(false) {
    251   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    252     LOG(INFO) << "Heap() entering";
    253   }
    254   ScopedTrace trace(__FUNCTION__);
    255   Runtime* const runtime = Runtime::Current();
    256   // If we aren't the zygote, switch to the default non zygote allocator. This may update the
    257   // entrypoints.
    258   const bool is_zygote = runtime->IsZygote();
    259   if (!is_zygote) {
    260     // Background compaction is currently not supported for command line runs.
    261     if (background_collector_type_ != foreground_collector_type_) {
    262       VLOG(heap) << "Disabling background compaction for non zygote";
    263       background_collector_type_ = foreground_collector_type_;
    264     }
    265   }
    266   ChangeCollector(desired_collector_type_);
    267   live_bitmap_.reset(new accounting::HeapBitmap(this));
    268   mark_bitmap_.reset(new accounting::HeapBitmap(this));
    269   // Requested begin for the alloc space, to follow the mapped image and oat files
    270   uint8_t* requested_alloc_space_begin = nullptr;
    271   if (foreground_collector_type_ == kCollectorTypeCC) {
    272     // Need to use a low address so that we can allocate a contiguous
    273     // 2 * Xmx space when there's no image (dex2oat for target).
    274     CHECK_GE(300 * MB, non_moving_space_capacity);
    275     requested_alloc_space_begin = reinterpret_cast<uint8_t*>(300 * MB) - non_moving_space_capacity;
    276   }
    277 
    278   // Load image space(s).
    279   if (!image_file_name.empty()) {
    280     // For code reuse, handle this like a work queue.
    281     std::vector<std::string> image_file_names;
    282     image_file_names.push_back(image_file_name);
    283     // The loaded spaces. Secondary images may fail to load, in which case we need to remove
    284     // already added spaces.
    285     std::vector<space::Space*> added_image_spaces;
    286     uint8_t* const original_requested_alloc_space_begin = requested_alloc_space_begin;
    287     for (size_t index = 0; index < image_file_names.size(); ++index) {
    288       std::string& image_name = image_file_names[index];
    289       std::string error_msg;
    290       space::ImageSpace* boot_image_space = space::ImageSpace::CreateBootImage(
    291           image_name.c_str(),
    292           image_instruction_set,
    293           index > 0,
    294           &error_msg);
    295       if (boot_image_space != nullptr) {
    296         AddSpace(boot_image_space);
    297         added_image_spaces.push_back(boot_image_space);
    298         // Oat files referenced by image files immediately follow them in memory, ensure alloc space
    299         // isn't going to get in the middle
    300         uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd();
    301         CHECK_GT(oat_file_end_addr, boot_image_space->End());
    302         requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
    303         boot_image_spaces_.push_back(boot_image_space);
    304 
    305         if (index == 0) {
    306           // If this was the first space, check whether there are more images to load.
    307           const OatFile* boot_oat_file = boot_image_space->GetOatFile();
    308           if (boot_oat_file == nullptr) {
    309             continue;
    310           }
    311 
    312           const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader();
    313           const char* boot_classpath =
    314               boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
    315           if (boot_classpath == nullptr) {
    316             continue;
    317           }
    318 
    319           space::ImageSpace::ExtractMultiImageLocations(image_file_name,
    320                                                         boot_classpath,
    321                                                         &image_file_names);
    322         }
    323       } else {
    324         LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
    325             << "Attempting to fall back to imageless running. Error was: " << error_msg
    326             << "\nAttempted image: " << image_name;
    327         // Remove already loaded spaces.
    328         for (space::Space* loaded_space : added_image_spaces) {
    329           RemoveSpace(loaded_space);
    330           delete loaded_space;
    331         }
    332         boot_image_spaces_.clear();
    333         requested_alloc_space_begin = original_requested_alloc_space_begin;
    334         break;
    335       }
    336     }
    337   }
    338   /*
    339   requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    340                                      +-  nonmoving space (non_moving_space_capacity)+-
    341                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    342                                      +-????????????????????????????????????????????+-
    343                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    344                                      +-main alloc space / bump space 1 (capacity_) +-
    345                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    346                                      +-????????????????????????????????????????????+-
    347                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    348                                      +-main alloc space2 / bump space 2 (capacity_)+-
    349                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    350   */
    351   // We don't have hspace compaction enabled with GSS or CC.
    352   if (foreground_collector_type_ == kCollectorTypeGSS ||
    353       foreground_collector_type_ == kCollectorTypeCC) {
    354     use_homogeneous_space_compaction_for_oom_ = false;
    355   }
    356   bool support_homogeneous_space_compaction =
    357       background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
    358       use_homogeneous_space_compaction_for_oom_;
    359   // We may use the same space the main space for the non moving space if we don't need to compact
    360   // from the main space.
    361   // This is not the case if we support homogeneous compaction or have a moving background
    362   // collector type.
    363   bool separate_non_moving_space = is_zygote ||
    364       support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
    365       IsMovingGc(background_collector_type_);
    366   if (foreground_collector_type_ == kCollectorTypeGSS) {
    367     separate_non_moving_space = false;
    368   }
    369   std::unique_ptr<MemMap> main_mem_map_1;
    370   std::unique_ptr<MemMap> main_mem_map_2;
    371 
    372   // Gross hack to make dex2oat deterministic.
    373   if (foreground_collector_type_ == kCollectorTypeMS &&
    374       requested_alloc_space_begin == nullptr &&
    375       Runtime::Current()->IsAotCompiler()) {
    376     // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
    377     // b/26849108
    378     requested_alloc_space_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
    379   }
    380   uint8_t* request_begin = requested_alloc_space_begin;
    381   if (request_begin != nullptr && separate_non_moving_space) {
    382     request_begin += non_moving_space_capacity;
    383   }
    384   std::string error_str;
    385   std::unique_ptr<MemMap> non_moving_space_mem_map;
    386   if (separate_non_moving_space) {
    387     ScopedTrace trace2("Create separate non moving space");
    388     // If we are the zygote, the non moving space becomes the zygote space when we run
    389     // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
    390     // rename the mem map later.
    391     const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName;
    392     // Reserve the non moving mem map before the other two since it needs to be at a specific
    393     // address.
    394     non_moving_space_mem_map.reset(
    395         MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
    396                              non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false,
    397                              &error_str));
    398     CHECK(non_moving_space_mem_map != nullptr) << error_str;
    399     // Try to reserve virtual memory at a lower address if we have a separate non moving space.
    400     request_begin = reinterpret_cast<uint8_t*>(300 * MB);
    401   }
    402   // Attempt to create 2 mem maps at or after the requested begin.
    403   if (foreground_collector_type_ != kCollectorTypeCC) {
    404     ScopedTrace trace2("Create main mem map");
    405     if (separate_non_moving_space || !is_zygote) {
    406       main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0],
    407                                                         request_begin,
    408                                                         capacity_,
    409                                                         &error_str));
    410     } else {
    411       // If no separate non-moving space and we are the zygote, the main space must come right
    412       // after the image space to avoid a gap. This is required since we want the zygote space to
    413       // be adjacent to the image space.
    414       main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
    415                                                 PROT_READ | PROT_WRITE, true, false,
    416                                                 &error_str));
    417     }
    418     CHECK(main_mem_map_1.get() != nullptr) << error_str;
    419   }
    420   if (support_homogeneous_space_compaction ||
    421       background_collector_type_ == kCollectorTypeSS ||
    422       foreground_collector_type_ == kCollectorTypeSS) {
    423     ScopedTrace trace2("Create main mem map 2");
    424     main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
    425                                                       capacity_, &error_str));
    426     CHECK(main_mem_map_2.get() != nullptr) << error_str;
    427   }
    428 
    429   // Create the non moving space first so that bitmaps don't take up the address range.
    430   if (separate_non_moving_space) {
    431     ScopedTrace trace2("Add non moving space");
    432     // Non moving space is always dlmalloc since we currently don't have support for multiple
    433     // active rosalloc spaces.
    434     const size_t size = non_moving_space_mem_map->Size();
    435     non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
    436         non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
    437         initial_size, size, size, false);
    438     non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
    439     CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
    440         << requested_alloc_space_begin;
    441     AddSpace(non_moving_space_);
    442   }
    443   // Create other spaces based on whether or not we have a moving GC.
    444   if (foreground_collector_type_ == kCollectorTypeCC) {
    445     region_space_ = space::RegionSpace::Create("Region space", capacity_ * 2, request_begin);
    446     AddSpace(region_space_);
    447   } else if (IsMovingGc(foreground_collector_type_) &&
    448       foreground_collector_type_ != kCollectorTypeGSS) {
    449     // Create bump pointer spaces.
    450     // We only to create the bump pointer if the foreground collector is a compacting GC.
    451     // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
    452     bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
    453                                                                     main_mem_map_1.release());
    454     CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
    455     AddSpace(bump_pointer_space_);
    456     temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
    457                                                             main_mem_map_2.release());
    458     CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
    459     AddSpace(temp_space_);
    460     CHECK(separate_non_moving_space);
    461   } else {
    462     CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
    463     CHECK(main_space_ != nullptr);
    464     AddSpace(main_space_);
    465     if (!separate_non_moving_space) {
    466       non_moving_space_ = main_space_;
    467       CHECK(!non_moving_space_->CanMoveObjects());
    468     }
    469     if (foreground_collector_type_ == kCollectorTypeGSS) {
    470       CHECK_EQ(foreground_collector_type_, background_collector_type_);
    471       // Create bump pointer spaces instead of a backup space.
    472       main_mem_map_2.release();
    473       bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
    474                                                             kGSSBumpPointerSpaceCapacity, nullptr);
    475       CHECK(bump_pointer_space_ != nullptr);
    476       AddSpace(bump_pointer_space_);
    477       temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
    478                                                     kGSSBumpPointerSpaceCapacity, nullptr);
    479       CHECK(temp_space_ != nullptr);
    480       AddSpace(temp_space_);
    481     } else if (main_mem_map_2.get() != nullptr) {
    482       const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
    483       main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
    484                                                            growth_limit_, capacity_, name, true));
    485       CHECK(main_space_backup_.get() != nullptr);
    486       // Add the space so its accounted for in the heap_begin and heap_end.
    487       AddSpace(main_space_backup_.get());
    488     }
    489   }
    490   CHECK(non_moving_space_ != nullptr);
    491   CHECK(!non_moving_space_->CanMoveObjects());
    492   // Allocate the large object space.
    493   if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
    494     large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
    495                                                        capacity_);
    496     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
    497   } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
    498     large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
    499     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
    500   } else {
    501     // Disable the large object space by making the cutoff excessively large.
    502     large_object_threshold_ = std::numeric_limits<size_t>::max();
    503     large_object_space_ = nullptr;
    504   }
    505   if (large_object_space_ != nullptr) {
    506     AddSpace(large_object_space_);
    507   }
    508   // Compute heap capacity. Continuous spaces are sorted in order of Begin().
    509   CHECK(!continuous_spaces_.empty());
    510   // Relies on the spaces being sorted.
    511   uint8_t* heap_begin = continuous_spaces_.front()->Begin();
    512   uint8_t* heap_end = continuous_spaces_.back()->Limit();
    513   size_t heap_capacity = heap_end - heap_begin;
    514   // Remove the main backup space since it slows down the GC to have unused extra spaces.
    515   // TODO: Avoid needing to do this.
    516   if (main_space_backup_.get() != nullptr) {
    517     RemoveSpace(main_space_backup_.get());
    518   }
    519   // Allocate the card table.
    520   // We currently don't support dynamically resizing the card table.
    521   // Since we don't know where in the low_4gb the app image will be located, make the card table
    522   // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
    523   UNUSED(heap_capacity);
    524   // Start at 64 KB, we can be sure there are no spaces mapped this low since the address range is
    525   // reserved by the kernel.
    526   static constexpr size_t kMinHeapAddress = 4 * KB;
    527   card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
    528                                                   4 * GB - kMinHeapAddress));
    529   CHECK(card_table_.get() != nullptr) << "Failed to create card table";
    530   if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
    531     rb_table_.reset(new accounting::ReadBarrierTable());
    532     DCHECK(rb_table_->IsAllCleared());
    533   }
    534   if (HasBootImageSpace()) {
    535     // Don't add the image mod union table if we are running without an image, this can crash if
    536     // we use the CardCache implementation.
    537     for (space::ImageSpace* image_space : GetBootImageSpaces()) {
    538       accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
    539           "Image mod-union table", this, image_space);
    540       CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
    541       AddModUnionTable(mod_union_table);
    542     }
    543   }
    544   if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
    545     accounting::RememberedSet* non_moving_space_rem_set =
    546         new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
    547     CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
    548     AddRememberedSet(non_moving_space_rem_set);
    549   }
    550   // TODO: Count objects in the image space here?
    551   num_bytes_allocated_.StoreRelaxed(0);
    552   mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
    553                                                     kDefaultMarkStackSize));
    554   const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
    555   allocation_stack_.reset(accounting::ObjectStack::Create(
    556       "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
    557   live_stack_.reset(accounting::ObjectStack::Create(
    558       "live stack", max_allocation_stack_size_, alloc_stack_capacity));
    559   // It's still too early to take a lock because there are no threads yet, but we can create locks
    560   // now. We don't create it earlier to make it clear that you can't use locks during heap
    561   // initialization.
    562   gc_complete_lock_ = new Mutex("GC complete lock");
    563   gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
    564                                                 *gc_complete_lock_));
    565   thread_flip_lock_ = new Mutex("GC thread flip lock");
    566   thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
    567                                                 *thread_flip_lock_));
    568   task_processor_.reset(new TaskProcessor());
    569   reference_processor_.reset(new ReferenceProcessor());
    570   pending_task_lock_ = new Mutex("Pending task lock");
    571   if (ignore_max_footprint_) {
    572     SetIdealFootprint(std::numeric_limits<size_t>::max());
    573     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
    574   }
    575   CHECK_NE(max_allowed_footprint_, 0U);
    576   // Create our garbage collectors.
    577   for (size_t i = 0; i < 2; ++i) {
    578     const bool concurrent = i != 0;
    579     if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
    580         (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
    581       garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
    582       garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
    583       garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
    584     }
    585   }
    586   if (kMovingCollector) {
    587     if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
    588         MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
    589         use_homogeneous_space_compaction_for_oom_) {
    590       // TODO: Clean this up.
    591       const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
    592       semi_space_collector_ = new collector::SemiSpace(this, generational,
    593                                                        generational ? "generational" : "");
    594       garbage_collectors_.push_back(semi_space_collector_);
    595     }
    596     if (MayUseCollector(kCollectorTypeCC)) {
    597       concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
    598       garbage_collectors_.push_back(concurrent_copying_collector_);
    599     }
    600     if (MayUseCollector(kCollectorTypeMC)) {
    601       mark_compact_collector_ = new collector::MarkCompact(this);
    602       garbage_collectors_.push_back(mark_compact_collector_);
    603     }
    604   }
    605   if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
    606       (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
    607     // Check that there's no gap between the image space and the non moving space so that the
    608     // immune region won't break (eg. due to a large object allocated in the gap). This is only
    609     // required when we're the zygote or using GSS.
    610     // Space with smallest Begin().
    611     space::ImageSpace* first_space = nullptr;
    612     for (space::ImageSpace* space : boot_image_spaces_) {
    613       if (first_space == nullptr || space->Begin() < first_space->Begin()) {
    614         first_space = space;
    615       }
    616     }
    617     bool no_gap = MemMap::CheckNoGaps(first_space->GetMemMap(), non_moving_space_->GetMemMap());
    618     if (!no_gap) {
    619       PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
    620       MemMap::DumpMaps(LOG(ERROR), true);
    621       LOG(FATAL) << "There's a gap between the image space and the non-moving space";
    622     }
    623   }
    624   instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
    625   if (gc_stress_mode_) {
    626     backtrace_lock_ = new Mutex("GC complete lock");
    627   }
    628   if (is_running_on_memory_tool_ || gc_stress_mode_) {
    629     instrumentation->InstrumentQuickAllocEntryPoints();
    630   }
    631   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    632     LOG(INFO) << "Heap() exiting";
    633   }
    634 }
    635 
    636 MemMap* Heap::MapAnonymousPreferredAddress(const char* name,
    637                                            uint8_t* request_begin,
    638                                            size_t capacity,
    639                                            std::string* out_error_str) {
    640   while (true) {
    641     MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
    642                                        PROT_READ | PROT_WRITE, true, false, out_error_str);
    643     if (map != nullptr || request_begin == nullptr) {
    644       return map;
    645     }
    646     // Retry a  second time with no specified request begin.
    647     request_begin = nullptr;
    648   }
    649 }
    650 
    651 bool Heap::MayUseCollector(CollectorType type) const {
    652   return foreground_collector_type_ == type || background_collector_type_ == type;
    653 }
    654 
    655 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map,
    656                                                       size_t initial_size,
    657                                                       size_t growth_limit,
    658                                                       size_t capacity,
    659                                                       const char* name,
    660                                                       bool can_move_objects) {
    661   space::MallocSpace* malloc_space = nullptr;
    662   if (kUseRosAlloc) {
    663     // Create rosalloc space.
    664     malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
    665                                                           initial_size, growth_limit, capacity,
    666                                                           low_memory_mode_, can_move_objects);
    667   } else {
    668     malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
    669                                                           initial_size, growth_limit, capacity,
    670                                                           can_move_objects);
    671   }
    672   if (collector::SemiSpace::kUseRememberedSet) {
    673     accounting::RememberedSet* rem_set  =
    674         new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
    675     CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
    676     AddRememberedSet(rem_set);
    677   }
    678   CHECK(malloc_space != nullptr) << "Failed to create " << name;
    679   malloc_space->SetFootprintLimit(malloc_space->Capacity());
    680   return malloc_space;
    681 }
    682 
    683 void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
    684                                  size_t capacity) {
    685   // Is background compaction is enabled?
    686   bool can_move_objects = IsMovingGc(background_collector_type_) !=
    687       IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
    688   // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
    689   // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
    690   // from the main space to the zygote space. If background compaction is enabled, always pass in
    691   // that we can move objets.
    692   if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
    693     // After the zygote we want this to be false if we don't have background compaction enabled so
    694     // that getting primitive array elements is faster.
    695     // We never have homogeneous compaction with GSS and don't need a space with movable objects.
    696     can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
    697   }
    698   if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
    699     RemoveRememberedSet(main_space_);
    700   }
    701   const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
    702   main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
    703                                             can_move_objects);
    704   SetSpaceAsDefault(main_space_);
    705   VLOG(heap) << "Created main space " << main_space_;
    706 }
    707 
    708 void Heap::ChangeAllocator(AllocatorType allocator) {
    709   if (current_allocator_ != allocator) {
    710     // These two allocators are only used internally and don't have any entrypoints.
    711     CHECK_NE(allocator, kAllocatorTypeLOS);
    712     CHECK_NE(allocator, kAllocatorTypeNonMoving);
    713     current_allocator_ = allocator;
    714     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    715     SetQuickAllocEntryPointsAllocator(current_allocator_);
    716     Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
    717   }
    718 }
    719 
    720 void Heap::DisableMovingGc() {
    721   if (IsMovingGc(foreground_collector_type_)) {
    722     foreground_collector_type_ = kCollectorTypeCMS;
    723   }
    724   if (IsMovingGc(background_collector_type_)) {
    725     background_collector_type_ = foreground_collector_type_;
    726   }
    727   TransitionCollector(foreground_collector_type_);
    728   Thread* const self = Thread::Current();
    729   ScopedThreadStateChange tsc(self, kSuspended);
    730   ScopedSuspendAll ssa(__FUNCTION__);
    731   // Something may have caused the transition to fail.
    732   if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
    733     CHECK(main_space_ != nullptr);
    734     // The allocation stack may have non movable objects in it. We need to flush it since the GC
    735     // can't only handle marking allocation stack objects of one non moving space and one main
    736     // space.
    737     {
    738       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    739       FlushAllocStack();
    740     }
    741     main_space_->DisableMovingObjects();
    742     non_moving_space_ = main_space_;
    743     CHECK(!non_moving_space_->CanMoveObjects());
    744   }
    745 }
    746 
    747 std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
    748   if (!IsValidContinuousSpaceObjectAddress(klass)) {
    749     return StringPrintf("<non heap address klass %p>", klass);
    750   }
    751   mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
    752   if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
    753     std::string result("[");
    754     result += SafeGetClassDescriptor(component_type);
    755     return result;
    756   } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
    757     return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
    758   } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
    759     return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
    760   } else {
    761     mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
    762     if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
    763       return StringPrintf("<non heap address dex_cache %p>", dex_cache);
    764     }
    765     const DexFile* dex_file = dex_cache->GetDexFile();
    766     uint16_t class_def_idx = klass->GetDexClassDefIndex();
    767     if (class_def_idx == DexFile::kDexNoIndex16) {
    768       return "<class def not found>";
    769     }
    770     const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
    771     const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
    772     return dex_file->GetTypeDescriptor(type_id);
    773   }
    774 }
    775 
    776 std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
    777   if (obj == nullptr) {
    778     return "null";
    779   }
    780   mirror::Class* klass = obj->GetClass<kVerifyNone>();
    781   if (klass == nullptr) {
    782     return "(class=null)";
    783   }
    784   std::string result(SafeGetClassDescriptor(klass));
    785   if (obj->IsClass()) {
    786     result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
    787   }
    788   return result;
    789 }
    790 
    791 void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
    792   if (obj == nullptr) {
    793     stream << "(obj=null)";
    794     return;
    795   }
    796   if (IsAligned<kObjectAlignment>(obj)) {
    797     space::Space* space = nullptr;
    798     // Don't use find space since it only finds spaces which actually contain objects instead of
    799     // spaces which may contain objects (e.g. cleared bump pointer spaces).
    800     for (const auto& cur_space : continuous_spaces_) {
    801       if (cur_space->HasAddress(obj)) {
    802         space = cur_space;
    803         break;
    804       }
    805     }
    806     // Unprotect all the spaces.
    807     for (const auto& con_space : continuous_spaces_) {
    808       mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE);
    809     }
    810     stream << "Object " << obj;
    811     if (space != nullptr) {
    812       stream << " in space " << *space;
    813     }
    814     mirror::Class* klass = obj->GetClass<kVerifyNone>();
    815     stream << "\nclass=" << klass;
    816     if (klass != nullptr) {
    817       stream << " type= " << SafePrettyTypeOf(obj);
    818     }
    819     // Re-protect the address we faulted on.
    820     mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
    821   }
    822 }
    823 
    824 bool Heap::IsCompilingBoot() const {
    825   if (!Runtime::Current()->IsAotCompiler()) {
    826     return false;
    827   }
    828   ScopedObjectAccess soa(Thread::Current());
    829   for (const auto& space : continuous_spaces_) {
    830     if (space->IsImageSpace() || space->IsZygoteSpace()) {
    831       return false;
    832     }
    833   }
    834   return true;
    835 }
    836 
    837 void Heap::IncrementDisableMovingGC(Thread* self) {
    838   // Need to do this holding the lock to prevent races where the GC is about to run / running when
    839   // we attempt to disable it.
    840   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
    841   MutexLock mu(self, *gc_complete_lock_);
    842   ++disable_moving_gc_count_;
    843   if (IsMovingGc(collector_type_running_)) {
    844     WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
    845   }
    846 }
    847 
    848 void Heap::DecrementDisableMovingGC(Thread* self) {
    849   MutexLock mu(self, *gc_complete_lock_);
    850   CHECK_GT(disable_moving_gc_count_, 0U);
    851   --disable_moving_gc_count_;
    852 }
    853 
    854 void Heap::IncrementDisableThreadFlip(Thread* self) {
    855   // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
    856   CHECK(kUseReadBarrier);
    857   bool is_nested = self->GetDisableThreadFlipCount() > 0;
    858   self->IncrementDisableThreadFlipCount();
    859   if (is_nested) {
    860     // If this is a nested JNI critical section enter, we don't need to wait or increment the global
    861     // counter. The global counter is incremented only once for a thread for the outermost enter.
    862     return;
    863   }
    864   ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
    865   MutexLock mu(self, *thread_flip_lock_);
    866   bool has_waited = false;
    867   uint64_t wait_start = NanoTime();
    868   while (thread_flip_running_) {
    869     has_waited = true;
    870     thread_flip_cond_->Wait(self);
    871   }
    872   ++disable_thread_flip_count_;
    873   if (has_waited) {
    874     uint64_t wait_time = NanoTime() - wait_start;
    875     total_wait_time_ += wait_time;
    876     if (wait_time > long_pause_log_threshold_) {
    877       LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
    878     }
    879   }
    880 }
    881 
    882 void Heap::DecrementDisableThreadFlip(Thread* self) {
    883   // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
    884   // the GC waiting before doing a thread flip.
    885   CHECK(kUseReadBarrier);
    886   self->DecrementDisableThreadFlipCount();
    887   bool is_outermost = self->GetDisableThreadFlipCount() == 0;
    888   if (!is_outermost) {
    889     // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
    890     // The global counter is decremented only once for a thread for the outermost exit.
    891     return;
    892   }
    893   MutexLock mu(self, *thread_flip_lock_);
    894   CHECK_GT(disable_thread_flip_count_, 0U);
    895   --disable_thread_flip_count_;
    896   if (disable_thread_flip_count_ == 0) {
    897     // Potentially notify the GC thread blocking to begin a thread flip.
    898     thread_flip_cond_->Broadcast(self);
    899   }
    900 }
    901 
    902 void Heap::ThreadFlipBegin(Thread* self) {
    903   // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
    904   // > 0, block. Otherwise, go ahead.
    905   CHECK(kUseReadBarrier);
    906   ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
    907   MutexLock mu(self, *thread_flip_lock_);
    908   bool has_waited = false;
    909   uint64_t wait_start = NanoTime();
    910   CHECK(!thread_flip_running_);
    911   // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
    912   // GC. This like a writer preference of a reader-writer lock.
    913   thread_flip_running_ = true;
    914   while (disable_thread_flip_count_ > 0) {
    915     has_waited = true;
    916     thread_flip_cond_->Wait(self);
    917   }
    918   if (has_waited) {
    919     uint64_t wait_time = NanoTime() - wait_start;
    920     total_wait_time_ += wait_time;
    921     if (wait_time > long_pause_log_threshold_) {
    922       LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
    923     }
    924   }
    925 }
    926 
    927 void Heap::ThreadFlipEnd(Thread* self) {
    928   // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
    929   // waiting before doing a JNI critical.
    930   CHECK(kUseReadBarrier);
    931   MutexLock mu(self, *thread_flip_lock_);
    932   CHECK(thread_flip_running_);
    933   thread_flip_running_ = false;
    934   // Potentially notify mutator threads blocking to enter a JNI critical section.
    935   thread_flip_cond_->Broadcast(self);
    936 }
    937 
    938 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
    939   if (old_process_state != new_process_state) {
    940     const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
    941     for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
    942       // Start at index 1 to avoid "is always false" warning.
    943       // Have iteration 1 always transition the collector.
    944       TransitionCollector((((i & 1) == 1) == jank_perceptible)
    945           ? foreground_collector_type_
    946           : background_collector_type_);
    947       usleep(kCollectorTransitionStressWait);
    948     }
    949     if (jank_perceptible) {
    950       // Transition back to foreground right away to prevent jank.
    951       RequestCollectorTransition(foreground_collector_type_, 0);
    952     } else {
    953       // Don't delay for debug builds since we may want to stress test the GC.
    954       // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
    955       // special handling which does a homogenous space compaction once but then doesn't transition
    956       // the collector.
    957       RequestCollectorTransition(background_collector_type_,
    958                                  kIsDebugBuild ? 0 : kCollectorTransitionWait);
    959     }
    960   }
    961 }
    962 
    963 void Heap::CreateThreadPool() {
    964   const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
    965   if (num_threads != 0) {
    966     thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
    967   }
    968 }
    969 
    970 // Visit objects when threads aren't suspended. If concurrent moving
    971 // GC, disable moving GC and suspend threads and then visit objects.
    972 void Heap::VisitObjects(ObjectCallback callback, void* arg) {
    973   Thread* self = Thread::Current();
    974   Locks::mutator_lock_->AssertSharedHeld(self);
    975   DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead";
    976   if (IsGcConcurrentAndMoving()) {
    977     // Concurrent moving GC. Just suspending threads isn't sufficient
    978     // because a collection isn't one big pause and we could suspend
    979     // threads in the middle (between phases) of a concurrent moving
    980     // collection where it's not easily known which objects are alive
    981     // (both the region space and the non-moving space) or which
    982     // copies of objects to visit, and the to-space invariant could be
    983     // easily broken. Visit objects while GC isn't running by using
    984     // IncrementDisableMovingGC() and threads are suspended.
    985     IncrementDisableMovingGC(self);
    986     {
    987       ScopedThreadSuspension sts(self, kWaitingForVisitObjects);
    988       ScopedSuspendAll ssa(__FUNCTION__);
    989       VisitObjectsInternalRegionSpace(callback, arg);
    990       VisitObjectsInternal(callback, arg);
    991     }
    992     DecrementDisableMovingGC(self);
    993   } else {
    994     // GCs can move objects, so don't allow this.
    995     ScopedAssertNoThreadSuspension ants(self, "Visiting objects");
    996     DCHECK(region_space_ == nullptr);
    997     VisitObjectsInternal(callback, arg);
    998   }
    999 }
   1000 
   1001 // Visit objects when threads are already suspended.
   1002 void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) {
   1003   Thread* self = Thread::Current();
   1004   Locks::mutator_lock_->AssertExclusiveHeld(self);
   1005   VisitObjectsInternalRegionSpace(callback, arg);
   1006   VisitObjectsInternal(callback, arg);
   1007 }
   1008 
   1009 // Visit objects in the region spaces.
   1010 void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) {
   1011   Thread* self = Thread::Current();
   1012   Locks::mutator_lock_->AssertExclusiveHeld(self);
   1013   if (region_space_ != nullptr) {
   1014     DCHECK(IsGcConcurrentAndMoving());
   1015     if (!zygote_creation_lock_.IsExclusiveHeld(self)) {
   1016       // Exclude the pre-zygote fork time where the semi-space collector
   1017       // calls VerifyHeapReferences() as part of the zygote compaction
   1018       // which then would call here without the moving GC disabled,
   1019       // which is fine.
   1020       DCHECK(IsMovingGCDisabled(self));
   1021     }
   1022     region_space_->Walk(callback, arg);
   1023   }
   1024 }
   1025 
   1026 // Visit objects in the other spaces.
   1027 void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) {
   1028   if (bump_pointer_space_ != nullptr) {
   1029     // Visit objects in bump pointer space.
   1030     bump_pointer_space_->Walk(callback, arg);
   1031   }
   1032   // TODO: Switch to standard begin and end to use ranged a based loop.
   1033   for (auto* it = allocation_stack_->Begin(), *end = allocation_stack_->End(); it < end; ++it) {
   1034     mirror::Object* const obj = it->AsMirrorPtr();
   1035     if (obj != nullptr && obj->GetClass() != nullptr) {
   1036       // Avoid the race condition caused by the object not yet being written into the allocation
   1037       // stack or the class not yet being written in the object. Or, if
   1038       // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack.
   1039       callback(obj, arg);
   1040     }
   1041   }
   1042   {
   1043     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1044     GetLiveBitmap()->Walk(callback, arg);
   1045   }
   1046 }
   1047 
   1048 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
   1049   space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
   1050   space::ContinuousSpace* space2 = non_moving_space_;
   1051   // TODO: Generalize this to n bitmaps?
   1052   CHECK(space1 != nullptr);
   1053   CHECK(space2 != nullptr);
   1054   MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
   1055                  (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
   1056                  stack);
   1057 }
   1058 
   1059 void Heap::DeleteThreadPool() {
   1060   thread_pool_.reset(nullptr);
   1061 }
   1062 
   1063 void Heap::AddSpace(space::Space* space) {
   1064   CHECK(space != nullptr);
   1065   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1066   if (space->IsContinuousSpace()) {
   1067     DCHECK(!space->IsDiscontinuousSpace());
   1068     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
   1069     // Continuous spaces don't necessarily have bitmaps.
   1070     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
   1071     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
   1072     if (live_bitmap != nullptr) {
   1073       CHECK(mark_bitmap != nullptr);
   1074       live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
   1075       mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
   1076     }
   1077     continuous_spaces_.push_back(continuous_space);
   1078     // Ensure that spaces remain sorted in increasing order of start address.
   1079     std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
   1080               [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
   1081       return a->Begin() < b->Begin();
   1082     });
   1083   } else {
   1084     CHECK(space->IsDiscontinuousSpace());
   1085     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
   1086     live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
   1087     mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
   1088     discontinuous_spaces_.push_back(discontinuous_space);
   1089   }
   1090   if (space->IsAllocSpace()) {
   1091     alloc_spaces_.push_back(space->AsAllocSpace());
   1092   }
   1093 }
   1094 
   1095 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
   1096   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1097   if (continuous_space->IsDlMallocSpace()) {
   1098     dlmalloc_space_ = continuous_space->AsDlMallocSpace();
   1099   } else if (continuous_space->IsRosAllocSpace()) {
   1100     rosalloc_space_ = continuous_space->AsRosAllocSpace();
   1101   }
   1102 }
   1103 
   1104 void Heap::RemoveSpace(space::Space* space) {
   1105   DCHECK(space != nullptr);
   1106   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1107   if (space->IsContinuousSpace()) {
   1108     DCHECK(!space->IsDiscontinuousSpace());
   1109     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
   1110     // Continuous spaces don't necessarily have bitmaps.
   1111     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
   1112     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
   1113     if (live_bitmap != nullptr) {
   1114       DCHECK(mark_bitmap != nullptr);
   1115       live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
   1116       mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
   1117     }
   1118     auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
   1119     DCHECK(it != continuous_spaces_.end());
   1120     continuous_spaces_.erase(it);
   1121   } else {
   1122     DCHECK(space->IsDiscontinuousSpace());
   1123     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
   1124     live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
   1125     mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
   1126     auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
   1127                         discontinuous_space);
   1128     DCHECK(it != discontinuous_spaces_.end());
   1129     discontinuous_spaces_.erase(it);
   1130   }
   1131   if (space->IsAllocSpace()) {
   1132     auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
   1133     DCHECK(it != alloc_spaces_.end());
   1134     alloc_spaces_.erase(it);
   1135   }
   1136 }
   1137 
   1138 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
   1139   // Dump cumulative timings.
   1140   os << "Dumping cumulative Gc timings\n";
   1141   uint64_t total_duration = 0;
   1142   // Dump cumulative loggers for each GC type.
   1143   uint64_t total_paused_time = 0;
   1144   for (auto& collector : garbage_collectors_) {
   1145     total_duration += collector->GetCumulativeTimings().GetTotalNs();
   1146     total_paused_time += collector->GetTotalPausedTimeNs();
   1147     collector->DumpPerformanceInfo(os);
   1148   }
   1149   if (total_duration != 0) {
   1150     const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
   1151     os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
   1152     os << "Mean GC size throughput: "
   1153        << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
   1154     os << "Mean GC object throughput: "
   1155        << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
   1156   }
   1157   uint64_t total_objects_allocated = GetObjectsAllocatedEver();
   1158   os << "Total number of allocations " << total_objects_allocated << "\n";
   1159   os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
   1160   os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
   1161   os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
   1162   os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
   1163   os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
   1164   os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
   1165   os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
   1166   if (HasZygoteSpace()) {
   1167     os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
   1168   }
   1169   os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
   1170   os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
   1171   os << "Total GC count: " << GetGcCount() << "\n";
   1172   os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
   1173   os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
   1174   os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
   1175 
   1176   {
   1177     MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1178     if (gc_count_rate_histogram_.SampleSize() > 0U) {
   1179       os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
   1180       gc_count_rate_histogram_.DumpBins(os);
   1181       os << "\n";
   1182     }
   1183     if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
   1184       os << "Histogram of blocking GC count per "
   1185          << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
   1186       blocking_gc_count_rate_histogram_.DumpBins(os);
   1187       os << "\n";
   1188     }
   1189   }
   1190 
   1191   if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
   1192     rosalloc_space_->DumpStats(os);
   1193   }
   1194 
   1195   {
   1196     MutexLock mu(Thread::Current(), native_histogram_lock_);
   1197     if (native_allocation_histogram_.SampleSize() > 0u) {
   1198       os << "Histogram of native allocation ";
   1199       native_allocation_histogram_.DumpBins(os);
   1200       os << " bucket size " << native_allocation_histogram_.BucketWidth() << "\n";
   1201     }
   1202     if (native_free_histogram_.SampleSize() > 0u) {
   1203       os << "Histogram of native free ";
   1204       native_free_histogram_.DumpBins(os);
   1205       os << " bucket size " << native_free_histogram_.BucketWidth() << "\n";
   1206     }
   1207   }
   1208 
   1209   BaseMutex::DumpAll(os);
   1210 }
   1211 
   1212 void Heap::ResetGcPerformanceInfo() {
   1213   for (auto& collector : garbage_collectors_) {
   1214     collector->ResetMeasurements();
   1215   }
   1216   total_bytes_freed_ever_ = 0;
   1217   total_objects_freed_ever_ = 0;
   1218   total_wait_time_ = 0;
   1219   blocking_gc_count_ = 0;
   1220   blocking_gc_time_ = 0;
   1221   gc_count_last_window_ = 0;
   1222   blocking_gc_count_last_window_ = 0;
   1223   last_update_time_gc_count_rate_histograms_ =  // Round down by the window duration.
   1224       (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
   1225   {
   1226     MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1227     gc_count_rate_histogram_.Reset();
   1228     blocking_gc_count_rate_histogram_.Reset();
   1229   }
   1230 }
   1231 
   1232 uint64_t Heap::GetGcCount() const {
   1233   uint64_t gc_count = 0U;
   1234   for (auto& collector : garbage_collectors_) {
   1235     gc_count += collector->GetCumulativeTimings().GetIterations();
   1236   }
   1237   return gc_count;
   1238 }
   1239 
   1240 uint64_t Heap::GetGcTime() const {
   1241   uint64_t gc_time = 0U;
   1242   for (auto& collector : garbage_collectors_) {
   1243     gc_time += collector->GetCumulativeTimings().GetTotalNs();
   1244   }
   1245   return gc_time;
   1246 }
   1247 
   1248 uint64_t Heap::GetBlockingGcCount() const {
   1249   return blocking_gc_count_;
   1250 }
   1251 
   1252 uint64_t Heap::GetBlockingGcTime() const {
   1253   return blocking_gc_time_;
   1254 }
   1255 
   1256 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
   1257   MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1258   if (gc_count_rate_histogram_.SampleSize() > 0U) {
   1259     gc_count_rate_histogram_.DumpBins(os);
   1260   }
   1261 }
   1262 
   1263 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
   1264   MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1265   if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
   1266     blocking_gc_count_rate_histogram_.DumpBins(os);
   1267   }
   1268 }
   1269 
   1270 Heap::~Heap() {
   1271   VLOG(heap) << "Starting ~Heap()";
   1272   STLDeleteElements(&garbage_collectors_);
   1273   // If we don't reset then the mark stack complains in its destructor.
   1274   allocation_stack_->Reset();
   1275   allocation_records_.reset();
   1276   live_stack_->Reset();
   1277   STLDeleteValues(&mod_union_tables_);
   1278   STLDeleteValues(&remembered_sets_);
   1279   STLDeleteElements(&continuous_spaces_);
   1280   STLDeleteElements(&discontinuous_spaces_);
   1281   delete gc_complete_lock_;
   1282   delete thread_flip_lock_;
   1283   delete pending_task_lock_;
   1284   delete backtrace_lock_;
   1285   if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) {
   1286     LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed()
   1287         << " total=" << seen_backtrace_count_.LoadRelaxed() +
   1288             unique_backtrace_count_.LoadRelaxed();
   1289   }
   1290   VLOG(heap) << "Finished ~Heap()";
   1291 }
   1292 
   1293 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
   1294                                                             bool fail_ok) const {
   1295   for (const auto& space : continuous_spaces_) {
   1296     if (space->Contains(obj)) {
   1297       return space;
   1298     }
   1299   }
   1300   if (!fail_ok) {
   1301     LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
   1302   }
   1303   return nullptr;
   1304 }
   1305 
   1306 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
   1307                                                                   bool fail_ok) const {
   1308   for (const auto& space : discontinuous_spaces_) {
   1309     if (space->Contains(obj)) {
   1310       return space;
   1311     }
   1312   }
   1313   if (!fail_ok) {
   1314     LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
   1315   }
   1316   return nullptr;
   1317 }
   1318 
   1319 space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
   1320   space::Space* result = FindContinuousSpaceFromObject(obj, true);
   1321   if (result != nullptr) {
   1322     return result;
   1323   }
   1324   return FindDiscontinuousSpaceFromObject(obj, fail_ok);
   1325 }
   1326 
   1327 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
   1328   // If we're in a stack overflow, do not create a new exception. It would require running the
   1329   // constructor, which will of course still be in a stack overflow.
   1330   if (self->IsHandlingStackOverflow()) {
   1331     self->SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   1332     return;
   1333   }
   1334 
   1335   std::ostringstream oss;
   1336   size_t total_bytes_free = GetFreeMemory();
   1337   oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
   1338       << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
   1339   // If the allocation failed due to fragmentation, print out the largest continuous allocation.
   1340   if (total_bytes_free >= byte_count) {
   1341     space::AllocSpace* space = nullptr;
   1342     if (allocator_type == kAllocatorTypeNonMoving) {
   1343       space = non_moving_space_;
   1344     } else if (allocator_type == kAllocatorTypeRosAlloc ||
   1345                allocator_type == kAllocatorTypeDlMalloc) {
   1346       space = main_space_;
   1347     } else if (allocator_type == kAllocatorTypeBumpPointer ||
   1348                allocator_type == kAllocatorTypeTLAB) {
   1349       space = bump_pointer_space_;
   1350     } else if (allocator_type == kAllocatorTypeRegion ||
   1351                allocator_type == kAllocatorTypeRegionTLAB) {
   1352       space = region_space_;
   1353     }
   1354     if (space != nullptr) {
   1355       space->LogFragmentationAllocFailure(oss, byte_count);
   1356     }
   1357   }
   1358   self->ThrowOutOfMemoryError(oss.str().c_str());
   1359 }
   1360 
   1361 void Heap::DoPendingCollectorTransition() {
   1362   CollectorType desired_collector_type = desired_collector_type_;
   1363   // Launch homogeneous space compaction if it is desired.
   1364   if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
   1365     if (!CareAboutPauseTimes()) {
   1366       PerformHomogeneousSpaceCompact();
   1367     } else {
   1368       VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
   1369     }
   1370   } else {
   1371     TransitionCollector(desired_collector_type);
   1372   }
   1373 }
   1374 
   1375 void Heap::Trim(Thread* self) {
   1376   Runtime* const runtime = Runtime::Current();
   1377   if (!CareAboutPauseTimes()) {
   1378     // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
   1379     // about pauses.
   1380     ScopedTrace trace("Deflating monitors");
   1381     ScopedSuspendAll ssa(__FUNCTION__);
   1382     uint64_t start_time = NanoTime();
   1383     size_t count = runtime->GetMonitorList()->DeflateMonitors();
   1384     VLOG(heap) << "Deflating " << count << " monitors took "
   1385         << PrettyDuration(NanoTime() - start_time);
   1386   }
   1387   TrimIndirectReferenceTables(self);
   1388   TrimSpaces(self);
   1389   // Trim arenas that may have been used by JIT or verifier.
   1390   runtime->GetArenaPool()->TrimMaps();
   1391 }
   1392 
   1393 class TrimIndirectReferenceTableClosure : public Closure {
   1394  public:
   1395   explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
   1396   }
   1397   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
   1398     thread->GetJniEnv()->locals.Trim();
   1399     // If thread is a running mutator, then act on behalf of the trim thread.
   1400     // See the code in ThreadList::RunCheckpoint.
   1401     barrier_->Pass(Thread::Current());
   1402   }
   1403 
   1404  private:
   1405   Barrier* const barrier_;
   1406 };
   1407 
   1408 void Heap::TrimIndirectReferenceTables(Thread* self) {
   1409   ScopedObjectAccess soa(self);
   1410   ScopedTrace trace(__PRETTY_FUNCTION__);
   1411   JavaVMExt* vm = soa.Vm();
   1412   // Trim globals indirect reference table.
   1413   vm->TrimGlobals();
   1414   // Trim locals indirect reference tables.
   1415   Barrier barrier(0);
   1416   TrimIndirectReferenceTableClosure closure(&barrier);
   1417   ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1418   size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
   1419   if (barrier_count != 0) {
   1420     barrier.Increment(self, barrier_count);
   1421   }
   1422 }
   1423 
   1424 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
   1425   MutexLock mu(self, *gc_complete_lock_);
   1426   // Ensure there is only one GC at a time.
   1427   WaitForGcToCompleteLocked(cause, self);
   1428   collector_type_running_ = collector_type;
   1429 }
   1430 
   1431 void Heap::TrimSpaces(Thread* self) {
   1432   {
   1433     // Need to do this before acquiring the locks since we don't want to get suspended while
   1434     // holding any locks.
   1435     ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   1436     // Pretend we are doing a GC to prevent background compaction from deleting the space we are
   1437     // trimming.
   1438     StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
   1439   }
   1440   ScopedTrace trace(__PRETTY_FUNCTION__);
   1441   const uint64_t start_ns = NanoTime();
   1442   // Trim the managed spaces.
   1443   uint64_t total_alloc_space_allocated = 0;
   1444   uint64_t total_alloc_space_size = 0;
   1445   uint64_t managed_reclaimed = 0;
   1446   {
   1447     ScopedObjectAccess soa(self);
   1448     for (const auto& space : continuous_spaces_) {
   1449       if (space->IsMallocSpace()) {
   1450         gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   1451         if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
   1452           // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
   1453           // for a long period of time.
   1454           managed_reclaimed += malloc_space->Trim();
   1455         }
   1456         total_alloc_space_size += malloc_space->Size();
   1457       }
   1458     }
   1459   }
   1460   total_alloc_space_allocated = GetBytesAllocated();
   1461   if (large_object_space_ != nullptr) {
   1462     total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
   1463   }
   1464   if (bump_pointer_space_ != nullptr) {
   1465     total_alloc_space_allocated -= bump_pointer_space_->Size();
   1466   }
   1467   if (region_space_ != nullptr) {
   1468     total_alloc_space_allocated -= region_space_->GetBytesAllocated();
   1469   }
   1470   const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
   1471       static_cast<float>(total_alloc_space_size);
   1472   uint64_t gc_heap_end_ns = NanoTime();
   1473   // We never move things in the native heap, so we can finish the GC at this point.
   1474   FinishGC(self, collector::kGcTypeNone);
   1475 
   1476   VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
   1477       << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
   1478       << static_cast<int>(100 * managed_utilization) << "%.";
   1479 }
   1480 
   1481 bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
   1482   // Note: we deliberately don't take the lock here, and mustn't test anything that would require
   1483   // taking the lock.
   1484   if (obj == nullptr) {
   1485     return true;
   1486   }
   1487   return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
   1488 }
   1489 
   1490 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
   1491   return FindContinuousSpaceFromObject(obj, true) != nullptr;
   1492 }
   1493 
   1494 bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
   1495   if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
   1496     return false;
   1497   }
   1498   for (const auto& space : continuous_spaces_) {
   1499     if (space->HasAddress(obj)) {
   1500       return true;
   1501     }
   1502   }
   1503   return false;
   1504 }
   1505 
   1506 bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
   1507                               bool search_live_stack, bool sorted) {
   1508   if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
   1509     return false;
   1510   }
   1511   if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
   1512     mirror::Class* klass = obj->GetClass<kVerifyNone>();
   1513     if (obj == klass) {
   1514       // This case happens for java.lang.Class.
   1515       return true;
   1516     }
   1517     return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
   1518   } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
   1519     // If we are in the allocated region of the temp space, then we are probably live (e.g. during
   1520     // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
   1521     return temp_space_->Contains(obj);
   1522   }
   1523   if (region_space_ != nullptr && region_space_->HasAddress(obj)) {
   1524     return true;
   1525   }
   1526   space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
   1527   space::DiscontinuousSpace* d_space = nullptr;
   1528   if (c_space != nullptr) {
   1529     if (c_space->GetLiveBitmap()->Test(obj)) {
   1530       return true;
   1531     }
   1532   } else {
   1533     d_space = FindDiscontinuousSpaceFromObject(obj, true);
   1534     if (d_space != nullptr) {
   1535       if (d_space->GetLiveBitmap()->Test(obj)) {
   1536         return true;
   1537       }
   1538     }
   1539   }
   1540   // This is covering the allocation/live stack swapping that is done without mutators suspended.
   1541   for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
   1542     if (i > 0) {
   1543       NanoSleep(MsToNs(10));
   1544     }
   1545     if (search_allocation_stack) {
   1546       if (sorted) {
   1547         if (allocation_stack_->ContainsSorted(obj)) {
   1548           return true;
   1549         }
   1550       } else if (allocation_stack_->Contains(obj)) {
   1551         return true;
   1552       }
   1553     }
   1554 
   1555     if (search_live_stack) {
   1556       if (sorted) {
   1557         if (live_stack_->ContainsSorted(obj)) {
   1558           return true;
   1559         }
   1560       } else if (live_stack_->Contains(obj)) {
   1561         return true;
   1562       }
   1563     }
   1564   }
   1565   // We need to check the bitmaps again since there is a race where we mark something as live and
   1566   // then clear the stack containing it.
   1567   if (c_space != nullptr) {
   1568     if (c_space->GetLiveBitmap()->Test(obj)) {
   1569       return true;
   1570     }
   1571   } else {
   1572     d_space = FindDiscontinuousSpaceFromObject(obj, true);
   1573     if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
   1574       return true;
   1575     }
   1576   }
   1577   return false;
   1578 }
   1579 
   1580 std::string Heap::DumpSpaces() const {
   1581   std::ostringstream oss;
   1582   DumpSpaces(oss);
   1583   return oss.str();
   1584 }
   1585 
   1586 void Heap::DumpSpaces(std::ostream& stream) const {
   1587   for (const auto& space : continuous_spaces_) {
   1588     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1589     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   1590     stream << space << " " << *space << "\n";
   1591     if (live_bitmap != nullptr) {
   1592       stream << live_bitmap << " " << *live_bitmap << "\n";
   1593     }
   1594     if (mark_bitmap != nullptr) {
   1595       stream << mark_bitmap << " " << *mark_bitmap << "\n";
   1596     }
   1597   }
   1598   for (const auto& space : discontinuous_spaces_) {
   1599     stream << space << " " << *space << "\n";
   1600   }
   1601 }
   1602 
   1603 void Heap::VerifyObjectBody(mirror::Object* obj) {
   1604   if (verify_object_mode_ == kVerifyObjectModeDisabled) {
   1605     return;
   1606   }
   1607 
   1608   // Ignore early dawn of the universe verifications.
   1609   if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
   1610     return;
   1611   }
   1612   CHECK_ALIGNED(obj, kObjectAlignment) << "Object isn't aligned";
   1613   mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
   1614   CHECK(c != nullptr) << "Null class in object " << obj;
   1615   CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
   1616   CHECK(VerifyClassClass(c));
   1617 
   1618   if (verify_object_mode_ > kVerifyObjectModeFast) {
   1619     // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
   1620     CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
   1621   }
   1622 }
   1623 
   1624 void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
   1625   reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
   1626 }
   1627 
   1628 void Heap::VerifyHeap() {
   1629   ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1630   GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
   1631 }
   1632 
   1633 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
   1634   // Use signed comparison since freed bytes can be negative when background compaction foreground
   1635   // transitions occurs. This is caused by the moving objects from a bump pointer space to a
   1636   // free list backed space typically increasing memory footprint due to padding and binning.
   1637   DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
   1638   // Note: This relies on 2s complement for handling negative freed_bytes.
   1639   num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
   1640   if (Runtime::Current()->HasStatsEnabled()) {
   1641     RuntimeStats* thread_stats = Thread::Current()->GetStats();
   1642     thread_stats->freed_objects += freed_objects;
   1643     thread_stats->freed_bytes += freed_bytes;
   1644     // TODO: Do this concurrently.
   1645     RuntimeStats* global_stats = Runtime::Current()->GetStats();
   1646     global_stats->freed_objects += freed_objects;
   1647     global_stats->freed_bytes += freed_bytes;
   1648   }
   1649 }
   1650 
   1651 void Heap::RecordFreeRevoke() {
   1652   // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
   1653   // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
   1654   // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
   1655   // all the way to zero exactly as the remainder will be subtracted at the next GC.
   1656   size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent();
   1657   CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed),
   1658            bytes_freed) << "num_bytes_freed_revoke_ underflow";
   1659   CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed),
   1660            bytes_freed) << "num_bytes_allocated_ underflow";
   1661   GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
   1662 }
   1663 
   1664 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
   1665   if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
   1666     return rosalloc_space_;
   1667   }
   1668   for (const auto& space : continuous_spaces_) {
   1669     if (space->AsContinuousSpace()->IsRosAllocSpace()) {
   1670       if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
   1671         return space->AsContinuousSpace()->AsRosAllocSpace();
   1672       }
   1673     }
   1674   }
   1675   return nullptr;
   1676 }
   1677 
   1678 static inline bool EntrypointsInstrumented() SHARED_REQUIRES(Locks::mutator_lock_) {
   1679   instrumentation::Instrumentation* const instrumentation =
   1680       Runtime::Current()->GetInstrumentation();
   1681   return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
   1682 }
   1683 
   1684 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
   1685                                              AllocatorType allocator,
   1686                                              bool instrumented,
   1687                                              size_t alloc_size,
   1688                                              size_t* bytes_allocated,
   1689                                              size_t* usable_size,
   1690                                              size_t* bytes_tl_bulk_allocated,
   1691                                              mirror::Class** klass) {
   1692   bool was_default_allocator = allocator == GetCurrentAllocator();
   1693   // Make sure there is no pending exception since we may need to throw an OOME.
   1694   self->AssertNoPendingException();
   1695   DCHECK(klass != nullptr);
   1696   StackHandleScope<1> hs(self);
   1697   HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
   1698   klass = nullptr;  // Invalidate for safety.
   1699   // The allocation failed. If the GC is running, block until it completes, and then retry the
   1700   // allocation.
   1701   collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
   1702   // If we were the default allocator but the allocator changed while we were suspended,
   1703   // abort the allocation.
   1704   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1705       (!instrumented && EntrypointsInstrumented())) {
   1706     return nullptr;
   1707   }
   1708   if (last_gc != collector::kGcTypeNone) {
   1709     // A GC was in progress and we blocked, retry allocation now that memory has been freed.
   1710     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1711                                                      usable_size, bytes_tl_bulk_allocated);
   1712     if (ptr != nullptr) {
   1713       return ptr;
   1714     }
   1715   }
   1716 
   1717   collector::GcType tried_type = next_gc_type_;
   1718   const bool gc_ran =
   1719       CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
   1720   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1721       (!instrumented && EntrypointsInstrumented())) {
   1722     return nullptr;
   1723   }
   1724   if (gc_ran) {
   1725     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1726                                                      usable_size, bytes_tl_bulk_allocated);
   1727     if (ptr != nullptr) {
   1728       return ptr;
   1729     }
   1730   }
   1731 
   1732   // Loop through our different Gc types and try to Gc until we get enough free memory.
   1733   for (collector::GcType gc_type : gc_plan_) {
   1734     if (gc_type == tried_type) {
   1735       continue;
   1736     }
   1737     // Attempt to run the collector, if we succeed, re-try the allocation.
   1738     const bool plan_gc_ran =
   1739         CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
   1740     if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1741         (!instrumented && EntrypointsInstrumented())) {
   1742       return nullptr;
   1743     }
   1744     if (plan_gc_ran) {
   1745       // Did we free sufficient memory for the allocation to succeed?
   1746       mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1747                                                        usable_size, bytes_tl_bulk_allocated);
   1748       if (ptr != nullptr) {
   1749         return ptr;
   1750       }
   1751     }
   1752   }
   1753   // Allocations have failed after GCs;  this is an exceptional state.
   1754   // Try harder, growing the heap if necessary.
   1755   mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1756                                                   usable_size, bytes_tl_bulk_allocated);
   1757   if (ptr != nullptr) {
   1758     return ptr;
   1759   }
   1760   // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
   1761   // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
   1762   // VM spec requires that all SoftReferences have been collected and cleared before throwing
   1763   // OOME.
   1764   VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
   1765            << " allocation";
   1766   // TODO: Run finalization, but this may cause more allocations to occur.
   1767   // We don't need a WaitForGcToComplete here either.
   1768   DCHECK(!gc_plan_.empty());
   1769   CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
   1770   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1771       (!instrumented && EntrypointsInstrumented())) {
   1772     return nullptr;
   1773   }
   1774   ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
   1775                                   bytes_tl_bulk_allocated);
   1776   if (ptr == nullptr) {
   1777     const uint64_t current_time = NanoTime();
   1778     switch (allocator) {
   1779       case kAllocatorTypeRosAlloc:
   1780         // Fall-through.
   1781       case kAllocatorTypeDlMalloc: {
   1782         if (use_homogeneous_space_compaction_for_oom_ &&
   1783             current_time - last_time_homogeneous_space_compaction_by_oom_ >
   1784             min_interval_homogeneous_space_compaction_by_oom_) {
   1785           last_time_homogeneous_space_compaction_by_oom_ = current_time;
   1786           HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
   1787           // Thread suspension could have occurred.
   1788           if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1789               (!instrumented && EntrypointsInstrumented())) {
   1790             return nullptr;
   1791           }
   1792           switch (result) {
   1793             case HomogeneousSpaceCompactResult::kSuccess:
   1794               // If the allocation succeeded, we delayed an oom.
   1795               ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1796                                               usable_size, bytes_tl_bulk_allocated);
   1797               if (ptr != nullptr) {
   1798                 count_delayed_oom_++;
   1799               }
   1800               break;
   1801             case HomogeneousSpaceCompactResult::kErrorReject:
   1802               // Reject due to disabled moving GC.
   1803               break;
   1804             case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
   1805               // Throw OOM by default.
   1806               break;
   1807             default: {
   1808               UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
   1809                   << static_cast<size_t>(result);
   1810               UNREACHABLE();
   1811             }
   1812           }
   1813           // Always print that we ran homogeneous space compation since this can cause jank.
   1814           VLOG(heap) << "Ran heap homogeneous space compaction, "
   1815                     << " requested defragmentation "
   1816                     << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1817                     << " performed defragmentation "
   1818                     << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1819                     << " ignored homogeneous space compaction "
   1820                     << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1821                     << " delayed count = "
   1822                     << count_delayed_oom_.LoadSequentiallyConsistent();
   1823         }
   1824         break;
   1825       }
   1826       case kAllocatorTypeNonMoving: {
   1827         // Try to transition the heap if the allocation failure was due to the space being full.
   1828         if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
   1829           // If we aren't out of memory then the OOM was probably from the non moving space being
   1830           // full. Attempt to disable compaction and turn the main space into a non moving space.
   1831           DisableMovingGc();
   1832           // Thread suspension could have occurred.
   1833           if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1834               (!instrumented && EntrypointsInstrumented())) {
   1835             return nullptr;
   1836           }
   1837           // If we are still a moving GC then something must have caused the transition to fail.
   1838           if (IsMovingGc(collector_type_)) {
   1839             MutexLock mu(self, *gc_complete_lock_);
   1840             // If we couldn't disable moving GC, just throw OOME and return null.
   1841             LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
   1842                          << disable_moving_gc_count_;
   1843           } else {
   1844             LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
   1845             ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1846                                             usable_size, bytes_tl_bulk_allocated);
   1847           }
   1848         }
   1849         break;
   1850       }
   1851       default: {
   1852         // Do nothing for others allocators.
   1853       }
   1854     }
   1855   }
   1856   // If the allocation hasn't succeeded by this point, throw an OOM error.
   1857   if (ptr == nullptr) {
   1858     ThrowOutOfMemoryError(self, alloc_size, allocator);
   1859   }
   1860   return ptr;
   1861 }
   1862 
   1863 void Heap::SetTargetHeapUtilization(float target) {
   1864   DCHECK_GT(target, 0.0f);  // asserted in Java code
   1865   DCHECK_LT(target, 1.0f);
   1866   target_utilization_ = target;
   1867 }
   1868 
   1869 size_t Heap::GetObjectsAllocated() const {
   1870   Thread* const self = Thread::Current();
   1871   ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
   1872   // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
   1873   ScopedSuspendAll ssa(__FUNCTION__);
   1874   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1875   size_t total = 0;
   1876   for (space::AllocSpace* space : alloc_spaces_) {
   1877     total += space->GetObjectsAllocated();
   1878   }
   1879   return total;
   1880 }
   1881 
   1882 uint64_t Heap::GetObjectsAllocatedEver() const {
   1883   uint64_t total = GetObjectsFreedEver();
   1884   // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
   1885   if (Thread::Current() != nullptr) {
   1886     total += GetObjectsAllocated();
   1887   }
   1888   return total;
   1889 }
   1890 
   1891 uint64_t Heap::GetBytesAllocatedEver() const {
   1892   return GetBytesFreedEver() + GetBytesAllocated();
   1893 }
   1894 
   1895 class InstanceCounter {
   1896  public:
   1897   InstanceCounter(const std::vector<mirror::Class*>& classes,
   1898                   bool use_is_assignable_from,
   1899                   uint64_t* counts)
   1900       SHARED_REQUIRES(Locks::mutator_lock_)
   1901       : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {}
   1902 
   1903   static void Callback(mirror::Object* obj, void* arg)
   1904       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1905     InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
   1906     mirror::Class* instance_class = obj->GetClass();
   1907     CHECK(instance_class != nullptr);
   1908     for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
   1909       mirror::Class* klass = instance_counter->classes_[i];
   1910       if (instance_counter->use_is_assignable_from_) {
   1911         if (klass != nullptr && klass->IsAssignableFrom(instance_class)) {
   1912           ++instance_counter->counts_[i];
   1913         }
   1914       } else if (instance_class == klass) {
   1915         ++instance_counter->counts_[i];
   1916       }
   1917     }
   1918   }
   1919 
   1920  private:
   1921   const std::vector<mirror::Class*>& classes_;
   1922   bool use_is_assignable_from_;
   1923   uint64_t* const counts_;
   1924   DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
   1925 };
   1926 
   1927 void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
   1928                           uint64_t* counts) {
   1929   InstanceCounter counter(classes, use_is_assignable_from, counts);
   1930   VisitObjects(InstanceCounter::Callback, &counter);
   1931 }
   1932 
   1933 class InstanceCollector {
   1934  public:
   1935   InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
   1936       SHARED_REQUIRES(Locks::mutator_lock_)
   1937       : class_(c), max_count_(max_count), instances_(instances) {
   1938   }
   1939   static void Callback(mirror::Object* obj, void* arg)
   1940       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1941     DCHECK(arg != nullptr);
   1942     InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
   1943     if (obj->GetClass() == instance_collector->class_) {
   1944       if (instance_collector->max_count_ == 0 ||
   1945           instance_collector->instances_.size() < instance_collector->max_count_) {
   1946         instance_collector->instances_.push_back(obj);
   1947       }
   1948     }
   1949   }
   1950 
   1951  private:
   1952   const mirror::Class* const class_;
   1953   const uint32_t max_count_;
   1954   std::vector<mirror::Object*>& instances_;
   1955   DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
   1956 };
   1957 
   1958 void Heap::GetInstances(mirror::Class* c,
   1959                         int32_t max_count,
   1960                         std::vector<mirror::Object*>& instances) {
   1961   InstanceCollector collector(c, max_count, instances);
   1962   VisitObjects(&InstanceCollector::Callback, &collector);
   1963 }
   1964 
   1965 class ReferringObjectsFinder {
   1966  public:
   1967   ReferringObjectsFinder(mirror::Object* object,
   1968                          int32_t max_count,
   1969                          std::vector<mirror::Object*>& referring_objects)
   1970       SHARED_REQUIRES(Locks::mutator_lock_)
   1971       : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
   1972   }
   1973 
   1974   static void Callback(mirror::Object* obj, void* arg)
   1975       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1976     reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
   1977   }
   1978 
   1979   // For bitmap Visit.
   1980   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
   1981   // annotalysis on visitors.
   1982   void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
   1983     o->VisitReferences(*this, VoidFunctor());
   1984   }
   1985 
   1986   // For Object::VisitReferences.
   1987   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
   1988       SHARED_REQUIRES(Locks::mutator_lock_) {
   1989     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
   1990     if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
   1991       referring_objects_.push_back(obj);
   1992     }
   1993   }
   1994 
   1995   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
   1996       const {}
   1997   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
   1998 
   1999  private:
   2000   const mirror::Object* const object_;
   2001   const uint32_t max_count_;
   2002   std::vector<mirror::Object*>& referring_objects_;
   2003   DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
   2004 };
   2005 
   2006 void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
   2007                                std::vector<mirror::Object*>& referring_objects) {
   2008   ReferringObjectsFinder finder(o, max_count, referring_objects);
   2009   VisitObjects(&ReferringObjectsFinder::Callback, &finder);
   2010 }
   2011 
   2012 void Heap::CollectGarbage(bool clear_soft_references) {
   2013   // Even if we waited for a GC we still need to do another GC since weaks allocated during the
   2014   // last GC will not have necessarily been cleared.
   2015   CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
   2016 }
   2017 
   2018 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
   2019   return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
   2020       foreground_collector_type_ == kCollectorTypeCMS;
   2021 }
   2022 
   2023 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
   2024   Thread* self = Thread::Current();
   2025   // Inc requested homogeneous space compaction.
   2026   count_requested_homogeneous_space_compaction_++;
   2027   // Store performed homogeneous space compaction at a new request arrival.
   2028   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2029   Locks::mutator_lock_->AssertNotHeld(self);
   2030   {
   2031     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   2032     MutexLock mu(self, *gc_complete_lock_);
   2033     // Ensure there is only one GC at a time.
   2034     WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
   2035     // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
   2036     // is non zero.
   2037     // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
   2038     // exit.
   2039     if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
   2040         !main_space_->CanMoveObjects()) {
   2041       return kErrorReject;
   2042     }
   2043     if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
   2044       return kErrorUnsupported;
   2045     }
   2046     collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
   2047   }
   2048   if (Runtime::Current()->IsShuttingDown(self)) {
   2049     // Don't allow heap transitions to happen if the runtime is shutting down since these can
   2050     // cause objects to get finalized.
   2051     FinishGC(self, collector::kGcTypeNone);
   2052     return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
   2053   }
   2054   collector::GarbageCollector* collector;
   2055   {
   2056     ScopedSuspendAll ssa(__FUNCTION__);
   2057     uint64_t start_time = NanoTime();
   2058     // Launch compaction.
   2059     space::MallocSpace* to_space = main_space_backup_.release();
   2060     space::MallocSpace* from_space = main_space_;
   2061     to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2062     const uint64_t space_size_before_compaction = from_space->Size();
   2063     AddSpace(to_space);
   2064     // Make sure that we will have enough room to copy.
   2065     CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
   2066     collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
   2067     const uint64_t space_size_after_compaction = to_space->Size();
   2068     main_space_ = to_space;
   2069     main_space_backup_.reset(from_space);
   2070     RemoveSpace(from_space);
   2071     SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
   2072     // Update performed homogeneous space compaction count.
   2073     count_performed_homogeneous_space_compaction_++;
   2074     // Print statics log and resume all threads.
   2075     uint64_t duration = NanoTime() - start_time;
   2076     VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
   2077                << PrettySize(space_size_before_compaction) << " -> "
   2078                << PrettySize(space_size_after_compaction) << " compact-ratio: "
   2079                << std::fixed << static_cast<double>(space_size_after_compaction) /
   2080                static_cast<double>(space_size_before_compaction);
   2081   }
   2082   // Finish GC.
   2083   reference_processor_->EnqueueClearedReferences(self);
   2084   GrowForUtilization(semi_space_collector_);
   2085   LogGC(kGcCauseHomogeneousSpaceCompact, collector);
   2086   FinishGC(self, collector::kGcTypeFull);
   2087   {
   2088     ScopedObjectAccess soa(self);
   2089     soa.Vm()->UnloadNativeLibraries();
   2090   }
   2091   return HomogeneousSpaceCompactResult::kSuccess;
   2092 }
   2093 
   2094 void Heap::TransitionCollector(CollectorType collector_type) {
   2095   if (collector_type == collector_type_) {
   2096     return;
   2097   }
   2098   VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
   2099              << " -> " << static_cast<int>(collector_type);
   2100   uint64_t start_time = NanoTime();
   2101   uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
   2102   Runtime* const runtime = Runtime::Current();
   2103   Thread* const self = Thread::Current();
   2104   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2105   Locks::mutator_lock_->AssertNotHeld(self);
   2106   // Busy wait until we can GC (StartGC can fail if we have a non-zero
   2107   // compacting_gc_disable_count_, this should rarely occurs).
   2108   for (;;) {
   2109     {
   2110       ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   2111       MutexLock mu(self, *gc_complete_lock_);
   2112       // Ensure there is only one GC at a time.
   2113       WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
   2114       // Currently we only need a heap transition if we switch from a moving collector to a
   2115       // non-moving one, or visa versa.
   2116       const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
   2117       // If someone else beat us to it and changed the collector before we could, exit.
   2118       // This is safe to do before the suspend all since we set the collector_type_running_ before
   2119       // we exit the loop. If another thread attempts to do the heap transition before we exit,
   2120       // then it would get blocked on WaitForGcToCompleteLocked.
   2121       if (collector_type == collector_type_) {
   2122         return;
   2123       }
   2124       // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
   2125       if (!copying_transition || disable_moving_gc_count_ == 0) {
   2126         // TODO: Not hard code in semi-space collector?
   2127         collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
   2128         break;
   2129       }
   2130     }
   2131     usleep(1000);
   2132   }
   2133   if (runtime->IsShuttingDown(self)) {
   2134     // Don't allow heap transitions to happen if the runtime is shutting down since these can
   2135     // cause objects to get finalized.
   2136     FinishGC(self, collector::kGcTypeNone);
   2137     return;
   2138   }
   2139   collector::GarbageCollector* collector = nullptr;
   2140   {
   2141     ScopedSuspendAll ssa(__FUNCTION__);
   2142     switch (collector_type) {
   2143       case kCollectorTypeSS: {
   2144         if (!IsMovingGc(collector_type_)) {
   2145           // Create the bump pointer space from the backup space.
   2146           CHECK(main_space_backup_ != nullptr);
   2147           std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
   2148           // We are transitioning from non moving GC -> moving GC, since we copied from the bump
   2149           // pointer space last transition it will be protected.
   2150           CHECK(mem_map != nullptr);
   2151           mem_map->Protect(PROT_READ | PROT_WRITE);
   2152           bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
   2153                                                                           mem_map.release());
   2154           AddSpace(bump_pointer_space_);
   2155           collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
   2156           // Use the now empty main space mem map for the bump pointer temp space.
   2157           mem_map.reset(main_space_->ReleaseMemMap());
   2158           // Unset the pointers just in case.
   2159           if (dlmalloc_space_ == main_space_) {
   2160             dlmalloc_space_ = nullptr;
   2161           } else if (rosalloc_space_ == main_space_) {
   2162             rosalloc_space_ = nullptr;
   2163           }
   2164           // Remove the main space so that we don't try to trim it, this doens't work for debug
   2165           // builds since RosAlloc attempts to read the magic number from a protected page.
   2166           RemoveSpace(main_space_);
   2167           RemoveRememberedSet(main_space_);
   2168           delete main_space_;  // Delete the space since it has been removed.
   2169           main_space_ = nullptr;
   2170           RemoveRememberedSet(main_space_backup_.get());
   2171           main_space_backup_.reset(nullptr);  // Deletes the space.
   2172           temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
   2173                                                                   mem_map.release());
   2174           AddSpace(temp_space_);
   2175         }
   2176         break;
   2177       }
   2178       case kCollectorTypeMS:
   2179         // Fall through.
   2180       case kCollectorTypeCMS: {
   2181         if (IsMovingGc(collector_type_)) {
   2182           CHECK(temp_space_ != nullptr);
   2183           std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
   2184           RemoveSpace(temp_space_);
   2185           temp_space_ = nullptr;
   2186           mem_map->Protect(PROT_READ | PROT_WRITE);
   2187           CreateMainMallocSpace(mem_map.get(),
   2188                                 kDefaultInitialSize,
   2189                                 std::min(mem_map->Size(), growth_limit_),
   2190                                 mem_map->Size());
   2191           mem_map.release();
   2192           // Compact to the main space from the bump pointer space, don't need to swap semispaces.
   2193           AddSpace(main_space_);
   2194           collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
   2195           mem_map.reset(bump_pointer_space_->ReleaseMemMap());
   2196           RemoveSpace(bump_pointer_space_);
   2197           bump_pointer_space_ = nullptr;
   2198           const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
   2199           // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
   2200           if (kIsDebugBuild && kUseRosAlloc) {
   2201             mem_map->Protect(PROT_READ | PROT_WRITE);
   2202           }
   2203           main_space_backup_.reset(CreateMallocSpaceFromMemMap(
   2204               mem_map.get(),
   2205               kDefaultInitialSize,
   2206               std::min(mem_map->Size(), growth_limit_),
   2207               mem_map->Size(),
   2208               name,
   2209               true));
   2210           if (kIsDebugBuild && kUseRosAlloc) {
   2211             mem_map->Protect(PROT_NONE);
   2212           }
   2213           mem_map.release();
   2214         }
   2215         break;
   2216       }
   2217       default: {
   2218         LOG(FATAL) << "Attempted to transition to invalid collector type "
   2219                    << static_cast<size_t>(collector_type);
   2220         break;
   2221       }
   2222     }
   2223     ChangeCollector(collector_type);
   2224   }
   2225   // Can't call into java code with all threads suspended.
   2226   reference_processor_->EnqueueClearedReferences(self);
   2227   uint64_t duration = NanoTime() - start_time;
   2228   GrowForUtilization(semi_space_collector_);
   2229   DCHECK(collector != nullptr);
   2230   LogGC(kGcCauseCollectorTransition, collector);
   2231   FinishGC(self, collector::kGcTypeFull);
   2232   {
   2233     ScopedObjectAccess soa(self);
   2234     soa.Vm()->UnloadNativeLibraries();
   2235   }
   2236   int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
   2237   int32_t delta_allocated = before_allocated - after_allocated;
   2238   std::string saved_str;
   2239   if (delta_allocated >= 0) {
   2240     saved_str = " saved at least " + PrettySize(delta_allocated);
   2241   } else {
   2242     saved_str = " expanded " + PrettySize(-delta_allocated);
   2243   }
   2244   VLOG(heap) << "Collector transition to " << collector_type << " took "
   2245              << PrettyDuration(duration) << saved_str;
   2246 }
   2247 
   2248 void Heap::ChangeCollector(CollectorType collector_type) {
   2249   // TODO: Only do this with all mutators suspended to avoid races.
   2250   if (collector_type != collector_type_) {
   2251     if (collector_type == kCollectorTypeMC) {
   2252       // Don't allow mark compact unless support is compiled in.
   2253       CHECK(kMarkCompactSupport);
   2254     }
   2255     collector_type_ = collector_type;
   2256     gc_plan_.clear();
   2257     switch (collector_type_) {
   2258       case kCollectorTypeCC: {
   2259         gc_plan_.push_back(collector::kGcTypeFull);
   2260         if (use_tlab_) {
   2261           ChangeAllocator(kAllocatorTypeRegionTLAB);
   2262         } else {
   2263           ChangeAllocator(kAllocatorTypeRegion);
   2264         }
   2265         break;
   2266       }
   2267       case kCollectorTypeMC:  // Fall-through.
   2268       case kCollectorTypeSS:  // Fall-through.
   2269       case kCollectorTypeGSS: {
   2270         gc_plan_.push_back(collector::kGcTypeFull);
   2271         if (use_tlab_) {
   2272           ChangeAllocator(kAllocatorTypeTLAB);
   2273         } else {
   2274           ChangeAllocator(kAllocatorTypeBumpPointer);
   2275         }
   2276         break;
   2277       }
   2278       case kCollectorTypeMS: {
   2279         gc_plan_.push_back(collector::kGcTypeSticky);
   2280         gc_plan_.push_back(collector::kGcTypePartial);
   2281         gc_plan_.push_back(collector::kGcTypeFull);
   2282         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
   2283         break;
   2284       }
   2285       case kCollectorTypeCMS: {
   2286         gc_plan_.push_back(collector::kGcTypeSticky);
   2287         gc_plan_.push_back(collector::kGcTypePartial);
   2288         gc_plan_.push_back(collector::kGcTypeFull);
   2289         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
   2290         break;
   2291       }
   2292       default: {
   2293         UNIMPLEMENTED(FATAL);
   2294         UNREACHABLE();
   2295       }
   2296     }
   2297     if (IsGcConcurrent()) {
   2298       concurrent_start_bytes_ =
   2299           std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
   2300     } else {
   2301       concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
   2302     }
   2303   }
   2304 }
   2305 
   2306 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
   2307 class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
   2308  public:
   2309   ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
   2310       : SemiSpace(heap, false, "zygote collector"),
   2311         bin_live_bitmap_(nullptr),
   2312         bin_mark_bitmap_(nullptr),
   2313         is_running_on_memory_tool_(is_running_on_memory_tool) {}
   2314 
   2315   void BuildBins(space::ContinuousSpace* space) {
   2316     bin_live_bitmap_ = space->GetLiveBitmap();
   2317     bin_mark_bitmap_ = space->GetMarkBitmap();
   2318     BinContext context;
   2319     context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
   2320     context.collector_ = this;
   2321     WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   2322     // Note: This requires traversing the space in increasing order of object addresses.
   2323     bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
   2324     // Add the last bin which spans after the last object to the end of the space.
   2325     AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
   2326   }
   2327 
   2328  private:
   2329   struct BinContext {
   2330     uintptr_t prev_;  // The end of the previous object.
   2331     ZygoteCompactingCollector* collector_;
   2332   };
   2333   // Maps from bin sizes to locations.
   2334   std::multimap<size_t, uintptr_t> bins_;
   2335   // Live bitmap of the space which contains the bins.
   2336   accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
   2337   // Mark bitmap of the space which contains the bins.
   2338   accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
   2339   const bool is_running_on_memory_tool_;
   2340 
   2341   static void Callback(mirror::Object* obj, void* arg)
   2342       SHARED_REQUIRES(Locks::mutator_lock_) {
   2343     DCHECK(arg != nullptr);
   2344     BinContext* context = reinterpret_cast<BinContext*>(arg);
   2345     ZygoteCompactingCollector* collector = context->collector_;
   2346     uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
   2347     size_t bin_size = object_addr - context->prev_;
   2348     // Add the bin consisting of the end of the previous object to the start of the current object.
   2349     collector->AddBin(bin_size, context->prev_);
   2350     context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
   2351   }
   2352 
   2353   void AddBin(size_t size, uintptr_t position) {
   2354     if (is_running_on_memory_tool_) {
   2355       MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
   2356     }
   2357     if (size != 0) {
   2358       bins_.insert(std::make_pair(size, position));
   2359     }
   2360   }
   2361 
   2362   virtual bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const {
   2363     // Don't sweep any spaces since we probably blasted the internal accounting of the free list
   2364     // allocator.
   2365     return false;
   2366   }
   2367 
   2368   virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
   2369       REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
   2370     size_t obj_size = obj->SizeOf();
   2371     size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
   2372     mirror::Object* forward_address;
   2373     // Find the smallest bin which we can move obj in.
   2374     auto it = bins_.lower_bound(alloc_size);
   2375     if (it == bins_.end()) {
   2376       // No available space in the bins, place it in the target space instead (grows the zygote
   2377       // space).
   2378       size_t bytes_allocated, dummy;
   2379       forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
   2380       if (to_space_live_bitmap_ != nullptr) {
   2381         to_space_live_bitmap_->Set(forward_address);
   2382       } else {
   2383         GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
   2384         GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
   2385       }
   2386     } else {
   2387       size_t size = it->first;
   2388       uintptr_t pos = it->second;
   2389       bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
   2390       forward_address = reinterpret_cast<mirror::Object*>(pos);
   2391       // Set the live and mark bits so that sweeping system weaks works properly.
   2392       bin_live_bitmap_->Set(forward_address);
   2393       bin_mark_bitmap_->Set(forward_address);
   2394       DCHECK_GE(size, alloc_size);
   2395       // Add a new bin with the remaining space.
   2396       AddBin(size - alloc_size, pos + alloc_size);
   2397     }
   2398     // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error.
   2399     memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
   2400     if (kUseBakerOrBrooksReadBarrier) {
   2401       obj->AssertReadBarrierPointer();
   2402       if (kUseBrooksReadBarrier) {
   2403         DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
   2404         forward_address->SetReadBarrierPointer(forward_address);
   2405       }
   2406       forward_address->AssertReadBarrierPointer();
   2407     }
   2408     return forward_address;
   2409   }
   2410 };
   2411 
   2412 void Heap::UnBindBitmaps() {
   2413   TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
   2414   for (const auto& space : GetContinuousSpaces()) {
   2415     if (space->IsContinuousMemMapAllocSpace()) {
   2416       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
   2417       if (alloc_space->HasBoundBitmaps()) {
   2418         alloc_space->UnBindBitmaps();
   2419       }
   2420     }
   2421   }
   2422 }
   2423 
   2424 void Heap::PreZygoteFork() {
   2425   if (!HasZygoteSpace()) {
   2426     // We still want to GC in case there is some unreachable non moving objects that could cause a
   2427     // suboptimal bin packing when we compact the zygote space.
   2428     CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
   2429     // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
   2430     // the trim process may require locking the mutator lock.
   2431     non_moving_space_->Trim();
   2432   }
   2433   Thread* self = Thread::Current();
   2434   MutexLock mu(self, zygote_creation_lock_);
   2435   // Try to see if we have any Zygote spaces.
   2436   if (HasZygoteSpace()) {
   2437     return;
   2438   }
   2439   Runtime::Current()->GetInternTable()->AddNewTable();
   2440   Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
   2441   VLOG(heap) << "Starting PreZygoteFork";
   2442   // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
   2443   // there.
   2444   non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2445   const bool same_space = non_moving_space_ == main_space_;
   2446   if (kCompactZygote) {
   2447     // Temporarily disable rosalloc verification because the zygote
   2448     // compaction will mess up the rosalloc internal metadata.
   2449     ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
   2450     ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
   2451     zygote_collector.BuildBins(non_moving_space_);
   2452     // Create a new bump pointer space which we will compact into.
   2453     space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
   2454                                          non_moving_space_->Limit());
   2455     // Compact the bump pointer space to a new zygote bump pointer space.
   2456     bool reset_main_space = false;
   2457     if (IsMovingGc(collector_type_)) {
   2458       if (collector_type_ == kCollectorTypeCC) {
   2459         zygote_collector.SetFromSpace(region_space_);
   2460       } else {
   2461         zygote_collector.SetFromSpace(bump_pointer_space_);
   2462       }
   2463     } else {
   2464       CHECK(main_space_ != nullptr);
   2465       CHECK_NE(main_space_, non_moving_space_)
   2466           << "Does not make sense to compact within the same space";
   2467       // Copy from the main space.
   2468       zygote_collector.SetFromSpace(main_space_);
   2469       reset_main_space = true;
   2470     }
   2471     zygote_collector.SetToSpace(&target_space);
   2472     zygote_collector.SetSwapSemiSpaces(false);
   2473     zygote_collector.Run(kGcCauseCollectorTransition, false);
   2474     if (reset_main_space) {
   2475       main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2476       madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
   2477       MemMap* mem_map = main_space_->ReleaseMemMap();
   2478       RemoveSpace(main_space_);
   2479       space::Space* old_main_space = main_space_;
   2480       CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
   2481                             mem_map->Size());
   2482       delete old_main_space;
   2483       AddSpace(main_space_);
   2484     } else {
   2485       if (collector_type_ == kCollectorTypeCC) {
   2486         region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2487       } else {
   2488         bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2489       }
   2490     }
   2491     if (temp_space_ != nullptr) {
   2492       CHECK(temp_space_->IsEmpty());
   2493     }
   2494     total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
   2495     total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
   2496     // Update the end and write out image.
   2497     non_moving_space_->SetEnd(target_space.End());
   2498     non_moving_space_->SetLimit(target_space.Limit());
   2499     VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
   2500   }
   2501   // Change the collector to the post zygote one.
   2502   ChangeCollector(foreground_collector_type_);
   2503   // Save the old space so that we can remove it after we complete creating the zygote space.
   2504   space::MallocSpace* old_alloc_space = non_moving_space_;
   2505   // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
   2506   // the remaining available space.
   2507   // Remove the old space before creating the zygote space since creating the zygote space sets
   2508   // the old alloc space's bitmaps to null.
   2509   RemoveSpace(old_alloc_space);
   2510   if (collector::SemiSpace::kUseRememberedSet) {
   2511     // Sanity bound check.
   2512     FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
   2513     // Remove the remembered set for the now zygote space (the old
   2514     // non-moving space). Note now that we have compacted objects into
   2515     // the zygote space, the data in the remembered set is no longer
   2516     // needed. The zygote space will instead have a mod-union table
   2517     // from this point on.
   2518     RemoveRememberedSet(old_alloc_space);
   2519   }
   2520   // Remaining space becomes the new non moving space.
   2521   zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
   2522                                                      &non_moving_space_);
   2523   CHECK(!non_moving_space_->CanMoveObjects());
   2524   if (same_space) {
   2525     main_space_ = non_moving_space_;
   2526     SetSpaceAsDefault(main_space_);
   2527   }
   2528   delete old_alloc_space;
   2529   CHECK(HasZygoteSpace()) << "Failed creating zygote space";
   2530   AddSpace(zygote_space_);
   2531   non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
   2532   AddSpace(non_moving_space_);
   2533   // Create the zygote space mod union table.
   2534   accounting::ModUnionTable* mod_union_table =
   2535       new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
   2536                                              zygote_space_);
   2537   CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
   2538   // Set all the cards in the mod-union table since we don't know which objects contain references
   2539   // to large objects.
   2540   mod_union_table->SetCards();
   2541   AddModUnionTable(mod_union_table);
   2542   large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
   2543   if (collector::SemiSpace::kUseRememberedSet) {
   2544     // Add a new remembered set for the post-zygote non-moving space.
   2545     accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
   2546         new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
   2547                                       non_moving_space_);
   2548     CHECK(post_zygote_non_moving_space_rem_set != nullptr)
   2549         << "Failed to create post-zygote non-moving space remembered set";
   2550     AddRememberedSet(post_zygote_non_moving_space_rem_set);
   2551   }
   2552 }
   2553 
   2554 void Heap::FlushAllocStack() {
   2555   MarkAllocStackAsLive(allocation_stack_.get());
   2556   allocation_stack_->Reset();
   2557 }
   2558 
   2559 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
   2560                           accounting::ContinuousSpaceBitmap* bitmap2,
   2561                           accounting::LargeObjectBitmap* large_objects,
   2562                           accounting::ObjectStack* stack) {
   2563   DCHECK(bitmap1 != nullptr);
   2564   DCHECK(bitmap2 != nullptr);
   2565   const auto* limit = stack->End();
   2566   for (auto* it = stack->Begin(); it != limit; ++it) {
   2567     const mirror::Object* obj = it->AsMirrorPtr();
   2568     if (!kUseThreadLocalAllocationStack || obj != nullptr) {
   2569       if (bitmap1->HasAddress(obj)) {
   2570         bitmap1->Set(obj);
   2571       } else if (bitmap2->HasAddress(obj)) {
   2572         bitmap2->Set(obj);
   2573       } else {
   2574         DCHECK(large_objects != nullptr);
   2575         large_objects->Set(obj);
   2576       }
   2577     }
   2578   }
   2579 }
   2580 
   2581 void Heap::SwapSemiSpaces() {
   2582   CHECK(bump_pointer_space_ != nullptr);
   2583   CHECK(temp_space_ != nullptr);
   2584   std::swap(bump_pointer_space_, temp_space_);
   2585 }
   2586 
   2587 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
   2588                                            space::ContinuousMemMapAllocSpace* source_space,
   2589                                            GcCause gc_cause) {
   2590   CHECK(kMovingCollector);
   2591   if (target_space != source_space) {
   2592     // Don't swap spaces since this isn't a typical semi space collection.
   2593     semi_space_collector_->SetSwapSemiSpaces(false);
   2594     semi_space_collector_->SetFromSpace(source_space);
   2595     semi_space_collector_->SetToSpace(target_space);
   2596     semi_space_collector_->Run(gc_cause, false);
   2597     return semi_space_collector_;
   2598   } else {
   2599     CHECK(target_space->IsBumpPointerSpace())
   2600         << "In-place compaction is only supported for bump pointer spaces";
   2601     mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
   2602     mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
   2603     return mark_compact_collector_;
   2604   }
   2605 }
   2606 
   2607 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
   2608                                                GcCause gc_cause,
   2609                                                bool clear_soft_references) {
   2610   Thread* self = Thread::Current();
   2611   Runtime* runtime = Runtime::Current();
   2612   // If the heap can't run the GC, silently fail and return that no GC was run.
   2613   switch (gc_type) {
   2614     case collector::kGcTypePartial: {
   2615       if (!HasZygoteSpace()) {
   2616         return collector::kGcTypeNone;
   2617       }
   2618       break;
   2619     }
   2620     default: {
   2621       // Other GC types don't have any special cases which makes them not runnable. The main case
   2622       // here is full GC.
   2623     }
   2624   }
   2625   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2626   Locks::mutator_lock_->AssertNotHeld(self);
   2627   if (self->IsHandlingStackOverflow()) {
   2628     // If we are throwing a stack overflow error we probably don't have enough remaining stack
   2629     // space to run the GC.
   2630     return collector::kGcTypeNone;
   2631   }
   2632   bool compacting_gc;
   2633   {
   2634     gc_complete_lock_->AssertNotHeld(self);
   2635     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   2636     MutexLock mu(self, *gc_complete_lock_);
   2637     // Ensure there is only one GC at a time.
   2638     WaitForGcToCompleteLocked(gc_cause, self);
   2639     compacting_gc = IsMovingGc(collector_type_);
   2640     // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
   2641     if (compacting_gc && disable_moving_gc_count_ != 0) {
   2642       LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
   2643       return collector::kGcTypeNone;
   2644     }
   2645     if (gc_disabled_for_shutdown_) {
   2646       return collector::kGcTypeNone;
   2647     }
   2648     collector_type_running_ = collector_type_;
   2649   }
   2650   if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
   2651     ++runtime->GetStats()->gc_for_alloc_count;
   2652     ++self->GetStats()->gc_for_alloc_count;
   2653   }
   2654   const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
   2655   // Approximate heap size.
   2656   ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB);
   2657 
   2658   DCHECK_LT(gc_type, collector::kGcTypeMax);
   2659   DCHECK_NE(gc_type, collector::kGcTypeNone);
   2660 
   2661   collector::GarbageCollector* collector = nullptr;
   2662   // TODO: Clean this up.
   2663   if (compacting_gc) {
   2664     DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
   2665            current_allocator_ == kAllocatorTypeTLAB ||
   2666            current_allocator_ == kAllocatorTypeRegion ||
   2667            current_allocator_ == kAllocatorTypeRegionTLAB);
   2668     switch (collector_type_) {
   2669       case kCollectorTypeSS:
   2670         // Fall-through.
   2671       case kCollectorTypeGSS:
   2672         semi_space_collector_->SetFromSpace(bump_pointer_space_);
   2673         semi_space_collector_->SetToSpace(temp_space_);
   2674         semi_space_collector_->SetSwapSemiSpaces(true);
   2675         collector = semi_space_collector_;
   2676         break;
   2677       case kCollectorTypeCC:
   2678         concurrent_copying_collector_->SetRegionSpace(region_space_);
   2679         collector = concurrent_copying_collector_;
   2680         break;
   2681       case kCollectorTypeMC:
   2682         mark_compact_collector_->SetSpace(bump_pointer_space_);
   2683         collector = mark_compact_collector_;
   2684         break;
   2685       default:
   2686         LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
   2687     }
   2688     if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
   2689       temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2690       if (kIsDebugBuild) {
   2691         // Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
   2692         temp_space_->GetMemMap()->TryReadable();
   2693       }
   2694       CHECK(temp_space_->IsEmpty());
   2695     }
   2696     gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
   2697   } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
   2698       current_allocator_ == kAllocatorTypeDlMalloc) {
   2699     collector = FindCollectorByGcType(gc_type);
   2700   } else {
   2701     LOG(FATAL) << "Invalid current allocator " << current_allocator_;
   2702   }
   2703   if (IsGcConcurrent()) {
   2704     // Disable concurrent GC check so that we don't have spammy JNI requests.
   2705     // This gets recalculated in GrowForUtilization. It is important that it is disabled /
   2706     // calculated in the same thread so that there aren't any races that can cause it to become
   2707     // permanantly disabled. b/17942071
   2708     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
   2709   }
   2710 
   2711   // It's time to clear all inline caches, in case some classes can be unloaded.
   2712   if (((gc_type == collector::kGcTypeFull) || (gc_type == collector::kGcTypePartial)) &&
   2713       (runtime->GetJit() != nullptr)) {
   2714     runtime->GetJit()->GetCodeCache()->ClearGcRootsInInlineCaches(self);
   2715   }
   2716 
   2717   CHECK(collector != nullptr)
   2718       << "Could not find garbage collector with collector_type="
   2719       << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
   2720   collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
   2721   total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
   2722   total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
   2723   RequestTrim(self);
   2724   // Enqueue cleared references.
   2725   reference_processor_->EnqueueClearedReferences(self);
   2726   // Grow the heap so that we know when to perform the next GC.
   2727   GrowForUtilization(collector, bytes_allocated_before_gc);
   2728   LogGC(gc_cause, collector);
   2729   FinishGC(self, gc_type);
   2730   // Inform DDMS that a GC completed.
   2731   Dbg::GcDidFinish();
   2732   // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
   2733   // deadlocks in case the JNI_OnUnload function does allocations.
   2734   {
   2735     ScopedObjectAccess soa(self);
   2736     soa.Vm()->UnloadNativeLibraries();
   2737   }
   2738   return gc_type;
   2739 }
   2740 
   2741 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
   2742   const size_t duration = GetCurrentGcIteration()->GetDurationNs();
   2743   const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
   2744   // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
   2745   // (mutator time blocked >= long_pause_log_threshold_).
   2746   bool log_gc = gc_cause == kGcCauseExplicit;
   2747   if (!log_gc && CareAboutPauseTimes()) {
   2748     // GC for alloc pauses the allocating thread, so consider it as a pause.
   2749     log_gc = duration > long_gc_log_threshold_ ||
   2750         (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
   2751     for (uint64_t pause : pause_times) {
   2752       log_gc = log_gc || pause >= long_pause_log_threshold_;
   2753     }
   2754   }
   2755   if (log_gc) {
   2756     const size_t percent_free = GetPercentFree();
   2757     const size_t current_heap_size = GetBytesAllocated();
   2758     const size_t total_memory = GetTotalMemory();
   2759     std::ostringstream pause_string;
   2760     for (size_t i = 0; i < pause_times.size(); ++i) {
   2761       pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
   2762                    << ((i != pause_times.size() - 1) ? "," : "");
   2763     }
   2764     LOG(INFO) << gc_cause << " " << collector->GetName()
   2765               << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
   2766               << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
   2767               << current_gc_iteration_.GetFreedLargeObjects() << "("
   2768               << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
   2769               << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
   2770               << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
   2771               << " total " << PrettyDuration((duration / 1000) * 1000);
   2772     VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
   2773   }
   2774 }
   2775 
   2776 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
   2777   MutexLock mu(self, *gc_complete_lock_);
   2778   collector_type_running_ = kCollectorTypeNone;
   2779   if (gc_type != collector::kGcTypeNone) {
   2780     last_gc_type_ = gc_type;
   2781 
   2782     // Update stats.
   2783     ++gc_count_last_window_;
   2784     if (running_collection_is_blocking_) {
   2785       // If the currently running collection was a blocking one,
   2786       // increment the counters and reset the flag.
   2787       ++blocking_gc_count_;
   2788       blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
   2789       ++blocking_gc_count_last_window_;
   2790     }
   2791     // Update the gc count rate histograms if due.
   2792     UpdateGcCountRateHistograms();
   2793   }
   2794   // Reset.
   2795   running_collection_is_blocking_ = false;
   2796   // Wake anyone who may have been waiting for the GC to complete.
   2797   gc_complete_cond_->Broadcast(self);
   2798 }
   2799 
   2800 void Heap::UpdateGcCountRateHistograms() {
   2801   // Invariant: if the time since the last update includes more than
   2802   // one windows, all the GC runs (if > 0) must have happened in first
   2803   // window because otherwise the update must have already taken place
   2804   // at an earlier GC run. So, we report the non-first windows with
   2805   // zero counts to the histograms.
   2806   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
   2807   uint64_t now = NanoTime();
   2808   DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
   2809   uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
   2810   uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
   2811   if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
   2812     // Record the first window.
   2813     gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1);  // Exclude the current run.
   2814     blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
   2815         blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
   2816     // Record the other windows (with zero counts).
   2817     for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
   2818       gc_count_rate_histogram_.AddValue(0);
   2819       blocking_gc_count_rate_histogram_.AddValue(0);
   2820     }
   2821     // Update the last update time and reset the counters.
   2822     last_update_time_gc_count_rate_histograms_ =
   2823         (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
   2824     gc_count_last_window_ = 1;  // Include the current run.
   2825     blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
   2826   }
   2827   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
   2828 }
   2829 
   2830 class RootMatchesObjectVisitor : public SingleRootVisitor {
   2831  public:
   2832   explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
   2833 
   2834   void VisitRoot(mirror::Object* root, const RootInfo& info)
   2835       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
   2836     if (root == obj_) {
   2837       LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
   2838     }
   2839   }
   2840 
   2841  private:
   2842   const mirror::Object* const obj_;
   2843 };
   2844 
   2845 
   2846 class ScanVisitor {
   2847  public:
   2848   void operator()(const mirror::Object* obj) const {
   2849     LOG(ERROR) << "Would have rescanned object " << obj;
   2850   }
   2851 };
   2852 
   2853 // Verify a reference from an object.
   2854 class VerifyReferenceVisitor : public SingleRootVisitor {
   2855  public:
   2856   VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
   2857       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
   2858       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
   2859 
   2860   size_t GetFailureCount() const {
   2861     return fail_count_->LoadSequentiallyConsistent();
   2862   }
   2863 
   2864   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
   2865       SHARED_REQUIRES(Locks::mutator_lock_) {
   2866     if (verify_referent_) {
   2867       VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
   2868     }
   2869   }
   2870 
   2871   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
   2872       SHARED_REQUIRES(Locks::mutator_lock_) {
   2873     VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
   2874   }
   2875 
   2876   bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
   2877     return heap_->IsLiveObjectLocked(obj, true, false, true);
   2878   }
   2879 
   2880   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   2881       SHARED_REQUIRES(Locks::mutator_lock_) {
   2882     if (!root->IsNull()) {
   2883       VisitRoot(root);
   2884     }
   2885   }
   2886   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   2887       SHARED_REQUIRES(Locks::mutator_lock_) {
   2888     const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
   2889         root->AsMirrorPtr(), RootInfo(kRootVMInternal));
   2890   }
   2891 
   2892   virtual void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE
   2893       SHARED_REQUIRES(Locks::mutator_lock_) {
   2894     if (root == nullptr) {
   2895       LOG(ERROR) << "Root is null with info " << root_info.GetType();
   2896     } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
   2897       LOG(ERROR) << "Root " << root << " is dead with type " << PrettyTypeOf(root)
   2898           << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
   2899     }
   2900   }
   2901 
   2902  private:
   2903   // TODO: Fix the no thread safety analysis.
   2904   // Returns false on failure.
   2905   bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
   2906       NO_THREAD_SAFETY_ANALYSIS {
   2907     if (ref == nullptr || IsLive(ref)) {
   2908       // Verify that the reference is live.
   2909       return true;
   2910     }
   2911     if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
   2912       // Print message on only on first failure to prevent spam.
   2913       LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
   2914     }
   2915     if (obj != nullptr) {
   2916       // Only do this part for non roots.
   2917       accounting::CardTable* card_table = heap_->GetCardTable();
   2918       accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
   2919       accounting::ObjectStack* live_stack = heap_->live_stack_.get();
   2920       uint8_t* card_addr = card_table->CardFromAddr(obj);
   2921       LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
   2922                  << offset << "\n card value = " << static_cast<int>(*card_addr);
   2923       if (heap_->IsValidObjectAddress(obj->GetClass())) {
   2924         LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
   2925       } else {
   2926         LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
   2927       }
   2928 
   2929       // Attempt to find the class inside of the recently freed objects.
   2930       space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
   2931       if (ref_space != nullptr && ref_space->IsMallocSpace()) {
   2932         space::MallocSpace* space = ref_space->AsMallocSpace();
   2933         mirror::Class* ref_class = space->FindRecentFreedObject(ref);
   2934         if (ref_class != nullptr) {
   2935           LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
   2936                      << PrettyClass(ref_class);
   2937         } else {
   2938           LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
   2939         }
   2940       }
   2941 
   2942       if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
   2943           ref->GetClass()->IsClass()) {
   2944         LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
   2945       } else {
   2946         LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
   2947                    << ") is not a valid heap address";
   2948       }
   2949 
   2950       card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
   2951       void* cover_begin = card_table->AddrFromCard(card_addr);
   2952       void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
   2953           accounting::CardTable::kCardSize);
   2954       LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
   2955           << "-" << cover_end;
   2956       accounting::ContinuousSpaceBitmap* bitmap =
   2957           heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
   2958 
   2959       if (bitmap == nullptr) {
   2960         LOG(ERROR) << "Object " << obj << " has no bitmap";
   2961         if (!VerifyClassClass(obj->GetClass())) {
   2962           LOG(ERROR) << "Object " << obj << " failed class verification!";
   2963         }
   2964       } else {
   2965         // Print out how the object is live.
   2966         if (bitmap->Test(obj)) {
   2967           LOG(ERROR) << "Object " << obj << " found in live bitmap";
   2968         }
   2969         if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
   2970           LOG(ERROR) << "Object " << obj << " found in allocation stack";
   2971         }
   2972         if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
   2973           LOG(ERROR) << "Object " << obj << " found in live stack";
   2974         }
   2975         if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
   2976           LOG(ERROR) << "Ref " << ref << " found in allocation stack";
   2977         }
   2978         if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
   2979           LOG(ERROR) << "Ref " << ref << " found in live stack";
   2980         }
   2981         // Attempt to see if the card table missed the reference.
   2982         ScanVisitor scan_visitor;
   2983         uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
   2984         card_table->Scan<false>(bitmap, byte_cover_begin,
   2985                                 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
   2986       }
   2987 
   2988       // Search to see if any of the roots reference our object.
   2989       RootMatchesObjectVisitor visitor1(obj);
   2990       Runtime::Current()->VisitRoots(&visitor1);
   2991       // Search to see if any of the roots reference our reference.
   2992       RootMatchesObjectVisitor visitor2(ref);
   2993       Runtime::Current()->VisitRoots(&visitor2);
   2994     }
   2995     return false;
   2996   }
   2997 
   2998   Heap* const heap_;
   2999   Atomic<size_t>* const fail_count_;
   3000   const bool verify_referent_;
   3001 };
   3002 
   3003 // Verify all references within an object, for use with HeapBitmap::Visit.
   3004 class VerifyObjectVisitor {
   3005  public:
   3006   VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
   3007       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
   3008 
   3009   void operator()(mirror::Object* obj)
   3010       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   3011     // Note: we are verifying the references in obj but not obj itself, this is because obj must
   3012     // be live or else how did we find it in the live bitmap?
   3013     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
   3014     // The class doesn't count as a reference but we should verify it anyways.
   3015     obj->VisitReferences(visitor, visitor);
   3016   }
   3017 
   3018   static void VisitCallback(mirror::Object* obj, void* arg)
   3019       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   3020     VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
   3021     visitor->operator()(obj);
   3022   }
   3023 
   3024   void VerifyRoots() SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
   3025     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   3026     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
   3027     Runtime::Current()->VisitRoots(&visitor);
   3028   }
   3029 
   3030   size_t GetFailureCount() const {
   3031     return fail_count_->LoadSequentiallyConsistent();
   3032   }
   3033 
   3034  private:
   3035   Heap* const heap_;
   3036   Atomic<size_t>* const fail_count_;
   3037   const bool verify_referent_;
   3038 };
   3039 
   3040 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
   3041   // Slow path, the allocation stack push back must have already failed.
   3042   DCHECK(!allocation_stack_->AtomicPushBack(*obj));
   3043   do {
   3044     // TODO: Add handle VerifyObject.
   3045     StackHandleScope<1> hs(self);
   3046     HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   3047     // Push our object into the reserve region of the allocaiton stack. This is only required due
   3048     // to heap verification requiring that roots are live (either in the live bitmap or in the
   3049     // allocation stack).
   3050     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
   3051     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
   3052   } while (!allocation_stack_->AtomicPushBack(*obj));
   3053 }
   3054 
   3055 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
   3056   // Slow path, the allocation stack push back must have already failed.
   3057   DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
   3058   StackReference<mirror::Object>* start_address;
   3059   StackReference<mirror::Object>* end_address;
   3060   while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
   3061                                             &end_address)) {
   3062     // TODO: Add handle VerifyObject.
   3063     StackHandleScope<1> hs(self);
   3064     HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   3065     // Push our object into the reserve region of the allocaiton stack. This is only required due
   3066     // to heap verification requiring that roots are live (either in the live bitmap or in the
   3067     // allocation stack).
   3068     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
   3069     // Push into the reserve allocation stack.
   3070     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
   3071   }
   3072   self->SetThreadLocalAllocationStack(start_address, end_address);
   3073   // Retry on the new thread-local allocation stack.
   3074   CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
   3075 }
   3076 
   3077 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
   3078 size_t Heap::VerifyHeapReferences(bool verify_referents) {
   3079   Thread* self = Thread::Current();
   3080   Locks::mutator_lock_->AssertExclusiveHeld(self);
   3081   // Lets sort our allocation stacks so that we can efficiently binary search them.
   3082   allocation_stack_->Sort();
   3083   live_stack_->Sort();
   3084   // Since we sorted the allocation stack content, need to revoke all
   3085   // thread-local allocation stacks.
   3086   RevokeAllThreadLocalAllocationStacks(self);
   3087   Atomic<size_t> fail_count_(0);
   3088   VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
   3089   // Verify objects in the allocation stack since these will be objects which were:
   3090   // 1. Allocated prior to the GC (pre GC verification).
   3091   // 2. Allocated during the GC (pre sweep GC verification).
   3092   // We don't want to verify the objects in the live stack since they themselves may be
   3093   // pointing to dead objects if they are not reachable.
   3094   VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor);
   3095   // Verify the roots:
   3096   visitor.VerifyRoots();
   3097   if (visitor.GetFailureCount() > 0) {
   3098     // Dump mod-union tables.
   3099     for (const auto& table_pair : mod_union_tables_) {
   3100       accounting::ModUnionTable* mod_union_table = table_pair.second;
   3101       mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
   3102     }
   3103     // Dump remembered sets.
   3104     for (const auto& table_pair : remembered_sets_) {
   3105       accounting::RememberedSet* remembered_set = table_pair.second;
   3106       remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
   3107     }
   3108     DumpSpaces(LOG(ERROR));
   3109   }
   3110   return visitor.GetFailureCount();
   3111 }
   3112 
   3113 class VerifyReferenceCardVisitor {
   3114  public:
   3115   VerifyReferenceCardVisitor(Heap* heap, bool* failed)
   3116       SHARED_REQUIRES(Locks::mutator_lock_,
   3117                             Locks::heap_bitmap_lock_)
   3118       : heap_(heap), failed_(failed) {
   3119   }
   3120 
   3121   // There is no card marks for native roots on a class.
   3122   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
   3123       const {}
   3124   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
   3125 
   3126   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
   3127   // annotalysis on visitors.
   3128   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
   3129       NO_THREAD_SAFETY_ANALYSIS {
   3130     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
   3131     // Filter out class references since changing an object's class does not mark the card as dirty.
   3132     // Also handles large objects, since the only reference they hold is a class reference.
   3133     if (ref != nullptr && !ref->IsClass()) {
   3134       accounting::CardTable* card_table = heap_->GetCardTable();
   3135       // If the object is not dirty and it is referencing something in the live stack other than
   3136       // class, then it must be on a dirty card.
   3137       if (!card_table->AddrIsInCardTable(obj)) {
   3138         LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
   3139         *failed_ = true;
   3140       } else if (!card_table->IsDirty(obj)) {
   3141         // TODO: Check mod-union tables.
   3142         // Card should be either kCardDirty if it got re-dirtied after we aged it, or
   3143         // kCardDirty - 1 if it didnt get touched since we aged it.
   3144         accounting::ObjectStack* live_stack = heap_->live_stack_.get();
   3145         if (live_stack->ContainsSorted(ref)) {
   3146           if (live_stack->ContainsSorted(obj)) {
   3147             LOG(ERROR) << "Object " << obj << " found in live stack";
   3148           }
   3149           if (heap_->GetLiveBitmap()->Test(obj)) {
   3150             LOG(ERROR) << "Object " << obj << " found in live bitmap";
   3151           }
   3152           LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
   3153                     << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
   3154 
   3155           // Print which field of the object is dead.
   3156           if (!obj->IsObjectArray()) {
   3157             mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
   3158             CHECK(klass != nullptr);
   3159             for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
   3160               if (field.GetOffset().Int32Value() == offset.Int32Value()) {
   3161                 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
   3162                            << PrettyField(&field);
   3163                 break;
   3164               }
   3165             }
   3166           } else {
   3167             mirror::ObjectArray<mirror::Object>* object_array =
   3168                 obj->AsObjectArray<mirror::Object>();
   3169             for (int32_t i = 0; i < object_array->GetLength(); ++i) {
   3170               if (object_array->Get(i) == ref) {
   3171                 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
   3172               }
   3173             }
   3174           }
   3175 
   3176           *failed_ = true;
   3177         }
   3178       }
   3179     }
   3180   }
   3181 
   3182  private:
   3183   Heap* const heap_;
   3184   bool* const failed_;
   3185 };
   3186 
   3187 class VerifyLiveStackReferences {
   3188  public:
   3189   explicit VerifyLiveStackReferences(Heap* heap)
   3190       : heap_(heap),
   3191         failed_(false) {}
   3192 
   3193   void operator()(mirror::Object* obj) const
   3194       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   3195     VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
   3196     obj->VisitReferences(visitor, VoidFunctor());
   3197   }
   3198 
   3199   bool Failed() const {
   3200     return failed_;
   3201   }
   3202 
   3203  private:
   3204   Heap* const heap_;
   3205   bool failed_;
   3206 };
   3207 
   3208 bool Heap::VerifyMissingCardMarks() {
   3209   Thread* self = Thread::Current();
   3210   Locks::mutator_lock_->AssertExclusiveHeld(self);
   3211   // We need to sort the live stack since we binary search it.
   3212   live_stack_->Sort();
   3213   // Since we sorted the allocation stack content, need to revoke all
   3214   // thread-local allocation stacks.
   3215   RevokeAllThreadLocalAllocationStacks(self);
   3216   VerifyLiveStackReferences visitor(this);
   3217   GetLiveBitmap()->Visit(visitor);
   3218   // We can verify objects in the live stack since none of these should reference dead objects.
   3219   for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
   3220     if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
   3221       visitor(it->AsMirrorPtr());
   3222     }
   3223   }
   3224   return !visitor.Failed();
   3225 }
   3226 
   3227 void Heap::SwapStacks() {
   3228   if (kUseThreadLocalAllocationStack) {
   3229     live_stack_->AssertAllZero();
   3230   }
   3231   allocation_stack_.swap(live_stack_);
   3232 }
   3233 
   3234 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
   3235   // This must be called only during the pause.
   3236   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
   3237   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
   3238   MutexLock mu2(self, *Locks::thread_list_lock_);
   3239   std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
   3240   for (Thread* t : thread_list) {
   3241     t->RevokeThreadLocalAllocationStack();
   3242   }
   3243 }
   3244 
   3245 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
   3246   if (kIsDebugBuild) {
   3247     if (rosalloc_space_ != nullptr) {
   3248       rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
   3249     }
   3250     if (bump_pointer_space_ != nullptr) {
   3251       bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
   3252     }
   3253   }
   3254 }
   3255 
   3256 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
   3257   if (kIsDebugBuild) {
   3258     if (bump_pointer_space_ != nullptr) {
   3259       bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
   3260     }
   3261   }
   3262 }
   3263 
   3264 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
   3265   auto it = mod_union_tables_.find(space);
   3266   if (it == mod_union_tables_.end()) {
   3267     return nullptr;
   3268   }
   3269   return it->second;
   3270 }
   3271 
   3272 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
   3273   auto it = remembered_sets_.find(space);
   3274   if (it == remembered_sets_.end()) {
   3275     return nullptr;
   3276   }
   3277   return it->second;
   3278 }
   3279 
   3280 void Heap::ProcessCards(TimingLogger* timings,
   3281                         bool use_rem_sets,
   3282                         bool process_alloc_space_cards,
   3283                         bool clear_alloc_space_cards) {
   3284   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3285   // Clear cards and keep track of cards cleared in the mod-union table.
   3286   for (const auto& space : continuous_spaces_) {
   3287     accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
   3288     accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
   3289     if (table != nullptr) {
   3290       const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
   3291           "ImageModUnionClearCards";
   3292       TimingLogger::ScopedTiming t2(name, timings);
   3293       table->ClearCards();
   3294     } else if (use_rem_sets && rem_set != nullptr) {
   3295       DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
   3296           << static_cast<int>(collector_type_);
   3297       TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
   3298       rem_set->ClearCards();
   3299     } else if (process_alloc_space_cards) {
   3300       TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
   3301       if (clear_alloc_space_cards) {
   3302         uint8_t* end = space->End();
   3303         if (space->IsImageSpace()) {
   3304           // Image space end is the end of the mirror objects, it is not necessarily page or card
   3305           // aligned. Align up so that the check in ClearCardRange does not fail.
   3306           end = AlignUp(end, accounting::CardTable::kCardSize);
   3307         }
   3308         card_table_->ClearCardRange(space->Begin(), end);
   3309       } else {
   3310         // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
   3311         // cards were dirty before the GC started.
   3312         // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
   3313         // -> clean(cleaning thread).
   3314         // The races are we either end up with: Aged card, unaged card. Since we have the
   3315         // checkpoint roots and then we scan / update mod union tables after. We will always
   3316         // scan either card. If we end up with the non aged card, we scan it it in the pause.
   3317         card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
   3318                                        VoidFunctor());
   3319       }
   3320     }
   3321   }
   3322 }
   3323 
   3324 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
   3325   virtual mirror::Object* MarkObject(mirror::Object* obj) OVERRIDE {
   3326     return obj;
   3327   }
   3328   virtual void MarkHeapReference(mirror::HeapReference<mirror::Object>*) OVERRIDE {
   3329   }
   3330 };
   3331 
   3332 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
   3333   Thread* const self = Thread::Current();
   3334   TimingLogger* const timings = current_gc_iteration_.GetTimings();
   3335   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3336   if (verify_pre_gc_heap_) {
   3337     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
   3338     size_t failures = VerifyHeapReferences();
   3339     if (failures > 0) {
   3340       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
   3341           << " failures";
   3342     }
   3343   }
   3344   // Check that all objects which reference things in the live stack are on dirty cards.
   3345   if (verify_missing_card_marks_) {
   3346     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
   3347     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3348     SwapStacks();
   3349     // Sort the live stack so that we can quickly binary search it later.
   3350     CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
   3351                                     << " missing card mark verification failed\n" << DumpSpaces();
   3352     SwapStacks();
   3353   }
   3354   if (verify_mod_union_table_) {
   3355     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
   3356     ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
   3357     for (const auto& table_pair : mod_union_tables_) {
   3358       accounting::ModUnionTable* mod_union_table = table_pair.second;
   3359       IdentityMarkHeapReferenceVisitor visitor;
   3360       mod_union_table->UpdateAndMarkReferences(&visitor);
   3361       mod_union_table->Verify();
   3362     }
   3363   }
   3364 }
   3365 
   3366 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
   3367   if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
   3368     collector::GarbageCollector::ScopedPause pause(gc);
   3369     PreGcVerificationPaused(gc);
   3370   }
   3371 }
   3372 
   3373 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
   3374   // TODO: Add a new runtime option for this?
   3375   if (verify_pre_gc_rosalloc_) {
   3376     RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
   3377   }
   3378 }
   3379 
   3380 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
   3381   Thread* const self = Thread::Current();
   3382   TimingLogger* const timings = current_gc_iteration_.GetTimings();
   3383   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3384   // Called before sweeping occurs since we want to make sure we are not going so reclaim any
   3385   // reachable objects.
   3386   if (verify_pre_sweeping_heap_) {
   3387     TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
   3388     CHECK_NE(self->GetState(), kRunnable);
   3389     {
   3390       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3391       // Swapping bound bitmaps does nothing.
   3392       gc->SwapBitmaps();
   3393     }
   3394     // Pass in false since concurrent reference processing can mean that the reference referents
   3395     // may point to dead objects at the point which PreSweepingGcVerification is called.
   3396     size_t failures = VerifyHeapReferences(false);
   3397     if (failures > 0) {
   3398       LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
   3399           << " failures";
   3400     }
   3401     {
   3402       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3403       gc->SwapBitmaps();
   3404     }
   3405   }
   3406   if (verify_pre_sweeping_rosalloc_) {
   3407     RosAllocVerification(timings, "PreSweepingRosAllocVerification");
   3408   }
   3409 }
   3410 
   3411 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
   3412   // Only pause if we have to do some verification.
   3413   Thread* const self = Thread::Current();
   3414   TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
   3415   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3416   if (verify_system_weaks_) {
   3417     ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   3418     collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
   3419     mark_sweep->VerifySystemWeaks();
   3420   }
   3421   if (verify_post_gc_rosalloc_) {
   3422     RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
   3423   }
   3424   if (verify_post_gc_heap_) {
   3425     TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
   3426     size_t failures = VerifyHeapReferences();
   3427     if (failures > 0) {
   3428       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
   3429           << " failures";
   3430     }
   3431   }
   3432 }
   3433 
   3434 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
   3435   if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
   3436     collector::GarbageCollector::ScopedPause pause(gc);
   3437     PostGcVerificationPaused(gc);
   3438   }
   3439 }
   3440 
   3441 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
   3442   TimingLogger::ScopedTiming t(name, timings);
   3443   for (const auto& space : continuous_spaces_) {
   3444     if (space->IsRosAllocSpace()) {
   3445       VLOG(heap) << name << " : " << space->GetName();
   3446       space->AsRosAllocSpace()->Verify();
   3447     }
   3448   }
   3449 }
   3450 
   3451 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
   3452   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   3453   MutexLock mu(self, *gc_complete_lock_);
   3454   return WaitForGcToCompleteLocked(cause, self);
   3455 }
   3456 
   3457 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
   3458   collector::GcType last_gc_type = collector::kGcTypeNone;
   3459   uint64_t wait_start = NanoTime();
   3460   while (collector_type_running_ != kCollectorTypeNone) {
   3461     if (self != task_processor_->GetRunningThread()) {
   3462       // The current thread is about to wait for a currently running
   3463       // collection to finish. If the waiting thread is not the heap
   3464       // task daemon thread, the currently running collection is
   3465       // considered as a blocking GC.
   3466       running_collection_is_blocking_ = true;
   3467       VLOG(gc) << "Waiting for a blocking GC " << cause;
   3468     }
   3469     ScopedTrace trace("GC: Wait For Completion");
   3470     // We must wait, change thread state then sleep on gc_complete_cond_;
   3471     gc_complete_cond_->Wait(self);
   3472     last_gc_type = last_gc_type_;
   3473   }
   3474   uint64_t wait_time = NanoTime() - wait_start;
   3475   total_wait_time_ += wait_time;
   3476   if (wait_time > long_pause_log_threshold_) {
   3477     LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
   3478         << " for cause " << cause;
   3479   }
   3480   if (self != task_processor_->GetRunningThread()) {
   3481     // The current thread is about to run a collection. If the thread
   3482     // is not the heap task daemon thread, it's considered as a
   3483     // blocking GC (i.e., blocking itself).
   3484     running_collection_is_blocking_ = true;
   3485     VLOG(gc) << "Starting a blocking GC " << cause;
   3486   }
   3487   return last_gc_type;
   3488 }
   3489 
   3490 void Heap::DumpForSigQuit(std::ostream& os) {
   3491   os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
   3492      << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
   3493   DumpGcPerformanceInfo(os);
   3494 }
   3495 
   3496 size_t Heap::GetPercentFree() {
   3497   return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
   3498 }
   3499 
   3500 void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
   3501   if (max_allowed_footprint > GetMaxMemory()) {
   3502     VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
   3503              << PrettySize(GetMaxMemory());
   3504     max_allowed_footprint = GetMaxMemory();
   3505   }
   3506   max_allowed_footprint_ = max_allowed_footprint;
   3507 }
   3508 
   3509 bool Heap::IsMovableObject(const mirror::Object* obj) const {
   3510   if (kMovingCollector) {
   3511     space::Space* space = FindContinuousSpaceFromObject(obj, true);
   3512     if (space != nullptr) {
   3513       // TODO: Check large object?
   3514       return space->CanMoveObjects();
   3515     }
   3516   }
   3517   return false;
   3518 }
   3519 
   3520 void Heap::UpdateMaxNativeFootprint() {
   3521   size_t native_size = native_bytes_allocated_.LoadRelaxed();
   3522   // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
   3523   size_t target_size = native_size / GetTargetHeapUtilization();
   3524   if (target_size > native_size + max_free_) {
   3525     target_size = native_size + max_free_;
   3526   } else if (target_size < native_size + min_free_) {
   3527     target_size = native_size + min_free_;
   3528   }
   3529   native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
   3530 }
   3531 
   3532 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
   3533   for (const auto& collector : garbage_collectors_) {
   3534     if (collector->GetCollectorType() == collector_type_ &&
   3535         collector->GetGcType() == gc_type) {
   3536       return collector;
   3537     }
   3538   }
   3539   return nullptr;
   3540 }
   3541 
   3542 double Heap::HeapGrowthMultiplier() const {
   3543   // If we don't care about pause times we are background, so return 1.0.
   3544   if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
   3545     return 1.0;
   3546   }
   3547   return foreground_heap_growth_multiplier_;
   3548 }
   3549 
   3550 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
   3551                               uint64_t bytes_allocated_before_gc) {
   3552   // We know what our utilization is at this moment.
   3553   // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
   3554   const uint64_t bytes_allocated = GetBytesAllocated();
   3555   uint64_t target_size;
   3556   collector::GcType gc_type = collector_ran->GetGcType();
   3557   const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
   3558   // foreground.
   3559   const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
   3560   const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
   3561   if (gc_type != collector::kGcTypeSticky) {
   3562     // Grow the heap for non sticky GC.
   3563     ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
   3564     CHECK_GE(delta, 0);
   3565     target_size = bytes_allocated + delta * multiplier;
   3566     target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
   3567     target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
   3568     native_need_to_run_finalization_ = true;
   3569     next_gc_type_ = collector::kGcTypeSticky;
   3570   } else {
   3571     collector::GcType non_sticky_gc_type =
   3572         HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
   3573     // Find what the next non sticky collector will be.
   3574     collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
   3575     // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
   3576     // do another sticky collection next.
   3577     // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
   3578     // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
   3579     // if the sticky GC throughput always remained >= the full/partial throughput.
   3580     if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
   3581         non_sticky_collector->GetEstimatedMeanThroughput() &&
   3582         non_sticky_collector->NumberOfIterations() > 0 &&
   3583         bytes_allocated <= max_allowed_footprint_) {
   3584       next_gc_type_ = collector::kGcTypeSticky;
   3585     } else {
   3586       next_gc_type_ = non_sticky_gc_type;
   3587     }
   3588     // If we have freed enough memory, shrink the heap back down.
   3589     if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
   3590       target_size = bytes_allocated + adjusted_max_free;
   3591     } else {
   3592       target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
   3593     }
   3594   }
   3595   if (!ignore_max_footprint_) {
   3596     SetIdealFootprint(target_size);
   3597     if (IsGcConcurrent()) {
   3598       const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
   3599           current_gc_iteration_.GetFreedLargeObjectBytes() +
   3600           current_gc_iteration_.GetFreedRevokeBytes();
   3601       // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
   3602       // how many bytes were allocated during the GC we need to add freed_bytes back on.
   3603       CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
   3604       const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
   3605           bytes_allocated_before_gc;
   3606       // Calculate when to perform the next ConcurrentGC.
   3607       // Calculate the estimated GC duration.
   3608       const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
   3609       // Estimate how many remaining bytes we will have when we need to start the next GC.
   3610       size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
   3611       remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
   3612       remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
   3613       if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
   3614         // A never going to happen situation that from the estimated allocation rate we will exceed
   3615         // the applications entire footprint with the given estimated allocation rate. Schedule
   3616         // another GC nearly straight away.
   3617         remaining_bytes = kMinConcurrentRemainingBytes;
   3618       }
   3619       DCHECK_LE(remaining_bytes, max_allowed_footprint_);
   3620       DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
   3621       // Start a concurrent GC when we get close to the estimated remaining bytes. When the
   3622       // allocation rate is very high, remaining_bytes could tell us that we should start a GC
   3623       // right away.
   3624       concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
   3625                                          static_cast<size_t>(bytes_allocated));
   3626     }
   3627   }
   3628 }
   3629 
   3630 void Heap::ClampGrowthLimit() {
   3631   // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
   3632   ScopedObjectAccess soa(Thread::Current());
   3633   WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
   3634   capacity_ = growth_limit_;
   3635   for (const auto& space : continuous_spaces_) {
   3636     if (space->IsMallocSpace()) {
   3637       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   3638       malloc_space->ClampGrowthLimit();
   3639     }
   3640   }
   3641   // This space isn't added for performance reasons.
   3642   if (main_space_backup_.get() != nullptr) {
   3643     main_space_backup_->ClampGrowthLimit();
   3644   }
   3645 }
   3646 
   3647 void Heap::ClearGrowthLimit() {
   3648   growth_limit_ = capacity_;
   3649   ScopedObjectAccess soa(Thread::Current());
   3650   for (const auto& space : continuous_spaces_) {
   3651     if (space->IsMallocSpace()) {
   3652       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   3653       malloc_space->ClearGrowthLimit();
   3654       malloc_space->SetFootprintLimit(malloc_space->Capacity());
   3655     }
   3656   }
   3657   // This space isn't added for performance reasons.
   3658   if (main_space_backup_.get() != nullptr) {
   3659     main_space_backup_->ClearGrowthLimit();
   3660     main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
   3661   }
   3662 }
   3663 
   3664 void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
   3665   ScopedObjectAccess soa(self);
   3666   ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
   3667   jvalue args[1];
   3668   args[0].l = arg.get();
   3669   InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
   3670   // Restore object in case it gets moved.
   3671   *object = soa.Decode<mirror::Object*>(arg.get());
   3672 }
   3673 
   3674 void Heap::RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj) {
   3675   StackHandleScope<1> hs(self);
   3676   HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   3677   RequestConcurrentGC(self, force_full);
   3678 }
   3679 
   3680 class Heap::ConcurrentGCTask : public HeapTask {
   3681  public:
   3682   ConcurrentGCTask(uint64_t target_time, bool force_full)
   3683       : HeapTask(target_time), force_full_(force_full) { }
   3684   virtual void Run(Thread* self) OVERRIDE {
   3685     gc::Heap* heap = Runtime::Current()->GetHeap();
   3686     heap->ConcurrentGC(self, force_full_);
   3687     heap->ClearConcurrentGCRequest();
   3688   }
   3689 
   3690  private:
   3691   const bool force_full_;  // If true, force full (or partial) collection.
   3692 };
   3693 
   3694 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
   3695   Runtime* runtime = Runtime::Current();
   3696   return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
   3697       !self->IsHandlingStackOverflow();
   3698 }
   3699 
   3700 void Heap::ClearConcurrentGCRequest() {
   3701   concurrent_gc_pending_.StoreRelaxed(false);
   3702 }
   3703 
   3704 void Heap::RequestConcurrentGC(Thread* self, bool force_full) {
   3705   if (CanAddHeapTask(self) &&
   3706       concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
   3707     task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(),  // Start straight away.
   3708                                                         force_full));
   3709   }
   3710 }
   3711 
   3712 void Heap::ConcurrentGC(Thread* self, bool force_full) {
   3713   if (!Runtime::Current()->IsShuttingDown(self)) {
   3714     // Wait for any GCs currently running to finish.
   3715     if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
   3716       // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
   3717       // instead. E.g. can't do partial, so do full instead.
   3718       collector::GcType next_gc_type = next_gc_type_;
   3719       // If forcing full and next gc type is sticky, override with a non-sticky type.
   3720       if (force_full && next_gc_type == collector::kGcTypeSticky) {
   3721         next_gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
   3722       }
   3723       if (CollectGarbageInternal(next_gc_type, kGcCauseBackground, false) ==
   3724           collector::kGcTypeNone) {
   3725         for (collector::GcType gc_type : gc_plan_) {
   3726           // Attempt to run the collector, if we succeed, we are done.
   3727           if (gc_type > next_gc_type &&
   3728               CollectGarbageInternal(gc_type, kGcCauseBackground, false) !=
   3729                   collector::kGcTypeNone) {
   3730             break;
   3731           }
   3732         }
   3733       }
   3734     }
   3735   }
   3736 }
   3737 
   3738 class Heap::CollectorTransitionTask : public HeapTask {
   3739  public:
   3740   explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
   3741 
   3742   virtual void Run(Thread* self) OVERRIDE {
   3743     gc::Heap* heap = Runtime::Current()->GetHeap();
   3744     heap->DoPendingCollectorTransition();
   3745     heap->ClearPendingCollectorTransition(self);
   3746   }
   3747 };
   3748 
   3749 void Heap::ClearPendingCollectorTransition(Thread* self) {
   3750   MutexLock mu(self, *pending_task_lock_);
   3751   pending_collector_transition_ = nullptr;
   3752 }
   3753 
   3754 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
   3755   Thread* self = Thread::Current();
   3756   desired_collector_type_ = desired_collector_type;
   3757   if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
   3758     return;
   3759   }
   3760   CollectorTransitionTask* added_task = nullptr;
   3761   const uint64_t target_time = NanoTime() + delta_time;
   3762   {
   3763     MutexLock mu(self, *pending_task_lock_);
   3764     // If we have an existing collector transition, update the targe time to be the new target.
   3765     if (pending_collector_transition_ != nullptr) {
   3766       task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
   3767       return;
   3768     }
   3769     added_task = new CollectorTransitionTask(target_time);
   3770     pending_collector_transition_ = added_task;
   3771   }
   3772   task_processor_->AddTask(self, added_task);
   3773 }
   3774 
   3775 class Heap::HeapTrimTask : public HeapTask {
   3776  public:
   3777   explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
   3778   virtual void Run(Thread* self) OVERRIDE {
   3779     gc::Heap* heap = Runtime::Current()->GetHeap();
   3780     heap->Trim(self);
   3781     heap->ClearPendingTrim(self);
   3782   }
   3783 };
   3784 
   3785 void Heap::ClearPendingTrim(Thread* self) {
   3786   MutexLock mu(self, *pending_task_lock_);
   3787   pending_heap_trim_ = nullptr;
   3788 }
   3789 
   3790 void Heap::RequestTrim(Thread* self) {
   3791   if (!CanAddHeapTask(self)) {
   3792     return;
   3793   }
   3794   // GC completed and now we must decide whether to request a heap trim (advising pages back to the
   3795   // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
   3796   // a space it will hold its lock and can become a cause of jank.
   3797   // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
   3798   // forking.
   3799 
   3800   // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
   3801   // because that only marks object heads, so a large array looks like lots of empty space. We
   3802   // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
   3803   // to utilization (which is probably inversely proportional to how much benefit we can expect).
   3804   // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
   3805   // not how much use we're making of those pages.
   3806   HeapTrimTask* added_task = nullptr;
   3807   {
   3808     MutexLock mu(self, *pending_task_lock_);
   3809     if (pending_heap_trim_ != nullptr) {
   3810       // Already have a heap trim request in task processor, ignore this request.
   3811       return;
   3812     }
   3813     added_task = new HeapTrimTask(kHeapTrimWait);
   3814     pending_heap_trim_ = added_task;
   3815   }
   3816   task_processor_->AddTask(self, added_task);
   3817 }
   3818 
   3819 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
   3820   if (rosalloc_space_ != nullptr) {
   3821     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
   3822     if (freed_bytes_revoke > 0U) {
   3823       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
   3824       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
   3825     }
   3826   }
   3827   if (bump_pointer_space_ != nullptr) {
   3828     CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
   3829   }
   3830   if (region_space_ != nullptr) {
   3831     CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
   3832   }
   3833 }
   3834 
   3835 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
   3836   if (rosalloc_space_ != nullptr) {
   3837     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
   3838     if (freed_bytes_revoke > 0U) {
   3839       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
   3840       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
   3841     }
   3842   }
   3843 }
   3844 
   3845 void Heap::RevokeAllThreadLocalBuffers() {
   3846   if (rosalloc_space_ != nullptr) {
   3847     size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
   3848     if (freed_bytes_revoke > 0U) {
   3849       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
   3850       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
   3851     }
   3852   }
   3853   if (bump_pointer_space_ != nullptr) {
   3854     CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
   3855   }
   3856   if (region_space_ != nullptr) {
   3857     CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
   3858   }
   3859 }
   3860 
   3861 bool Heap::IsGCRequestPending() const {
   3862   return concurrent_gc_pending_.LoadRelaxed();
   3863 }
   3864 
   3865 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
   3866   env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
   3867                             WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
   3868                             static_cast<jlong>(timeout));
   3869 }
   3870 
   3871 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
   3872   Thread* self = ThreadForEnv(env);
   3873   {
   3874     MutexLock mu(self, native_histogram_lock_);
   3875     native_allocation_histogram_.AddValue(bytes);
   3876   }
   3877   if (native_need_to_run_finalization_) {
   3878     RunFinalization(env, kNativeAllocationFinalizeTimeout);
   3879     UpdateMaxNativeFootprint();
   3880     native_need_to_run_finalization_ = false;
   3881   }
   3882   // Total number of native bytes allocated.
   3883   size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
   3884   new_native_bytes_allocated += bytes;
   3885   if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
   3886     collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
   3887         collector::kGcTypeFull;
   3888 
   3889     // The second watermark is higher than the gc watermark. If you hit this it means you are
   3890     // allocating native objects faster than the GC can keep up with.
   3891     if (new_native_bytes_allocated > growth_limit_) {
   3892       if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
   3893         // Just finished a GC, attempt to run finalizers.
   3894         RunFinalization(env, kNativeAllocationFinalizeTimeout);
   3895         CHECK(!env->ExceptionCheck());
   3896         // Native bytes allocated may be updated by finalization, refresh it.
   3897         new_native_bytes_allocated = native_bytes_allocated_.LoadRelaxed();
   3898       }
   3899       // If we still are over the watermark, attempt a GC for alloc and run finalizers.
   3900       if (new_native_bytes_allocated > growth_limit_) {
   3901         CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
   3902         RunFinalization(env, kNativeAllocationFinalizeTimeout);
   3903         native_need_to_run_finalization_ = false;
   3904         CHECK(!env->ExceptionCheck());
   3905       }
   3906       // We have just run finalizers, update the native watermark since it is very likely that
   3907       // finalizers released native managed allocations.
   3908       UpdateMaxNativeFootprint();
   3909     } else if (!IsGCRequestPending()) {
   3910       if (IsGcConcurrent()) {
   3911         RequestConcurrentGC(self, true);  // Request non-sticky type.
   3912       } else {
   3913         CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
   3914       }
   3915     }
   3916   }
   3917 }
   3918 
   3919 void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
   3920   size_t expected_size;
   3921   {
   3922     MutexLock mu(Thread::Current(), native_histogram_lock_);
   3923     native_free_histogram_.AddValue(bytes);
   3924   }
   3925   do {
   3926     expected_size = native_bytes_allocated_.LoadRelaxed();
   3927     if (UNLIKELY(bytes > expected_size)) {
   3928       ScopedObjectAccess soa(env);
   3929       env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
   3930                     StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
   3931                                  "registered as allocated", bytes, expected_size).c_str());
   3932       break;
   3933     }
   3934   } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
   3935                                                                expected_size - bytes));
   3936 }
   3937 
   3938 size_t Heap::GetTotalMemory() const {
   3939   return std::max(max_allowed_footprint_, GetBytesAllocated());
   3940 }
   3941 
   3942 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
   3943   DCHECK(mod_union_table != nullptr);
   3944   mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
   3945 }
   3946 
   3947 void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
   3948   CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
   3949         (c->IsVariableSize() || c->GetObjectSize() == byte_count)) << c->GetClassFlags();
   3950   CHECK_GE(byte_count, sizeof(mirror::Object));
   3951 }
   3952 
   3953 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
   3954   CHECK(remembered_set != nullptr);
   3955   space::Space* space = remembered_set->GetSpace();
   3956   CHECK(space != nullptr);
   3957   CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
   3958   remembered_sets_.Put(space, remembered_set);
   3959   CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
   3960 }
   3961 
   3962 void Heap::RemoveRememberedSet(space::Space* space) {
   3963   CHECK(space != nullptr);
   3964   auto it = remembered_sets_.find(space);
   3965   CHECK(it != remembered_sets_.end());
   3966   delete it->second;
   3967   remembered_sets_.erase(it);
   3968   CHECK(remembered_sets_.find(space) == remembered_sets_.end());
   3969 }
   3970 
   3971 void Heap::ClearMarkedObjects() {
   3972   // Clear all of the spaces' mark bitmaps.
   3973   for (const auto& space : GetContinuousSpaces()) {
   3974     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   3975     if (space->GetLiveBitmap() != mark_bitmap) {
   3976       mark_bitmap->Clear();
   3977     }
   3978   }
   3979   // Clear the marked objects in the discontinous space object sets.
   3980   for (const auto& space : GetDiscontinuousSpaces()) {
   3981     space->GetMarkBitmap()->Clear();
   3982   }
   3983 }
   3984 
   3985 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
   3986   allocation_records_.reset(records);
   3987 }
   3988 
   3989 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
   3990   if (IsAllocTrackingEnabled()) {
   3991     MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   3992     if (IsAllocTrackingEnabled()) {
   3993       GetAllocationRecords()->VisitRoots(visitor);
   3994     }
   3995   }
   3996 }
   3997 
   3998 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
   3999   if (IsAllocTrackingEnabled()) {
   4000     MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4001     if (IsAllocTrackingEnabled()) {
   4002       GetAllocationRecords()->SweepAllocationRecords(visitor);
   4003     }
   4004   }
   4005 }
   4006 
   4007 void Heap::AllowNewAllocationRecords() const {
   4008   CHECK(!kUseReadBarrier);
   4009   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4010   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
   4011   if (allocation_records != nullptr) {
   4012     allocation_records->AllowNewAllocationRecords();
   4013   }
   4014 }
   4015 
   4016 void Heap::DisallowNewAllocationRecords() const {
   4017   CHECK(!kUseReadBarrier);
   4018   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4019   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
   4020   if (allocation_records != nullptr) {
   4021     allocation_records->DisallowNewAllocationRecords();
   4022   }
   4023 }
   4024 
   4025 void Heap::BroadcastForNewAllocationRecords() const {
   4026   CHECK(kUseReadBarrier);
   4027   // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
   4028   // be set to false while some threads are waiting for system weak access in
   4029   // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
   4030   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4031   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
   4032   if (allocation_records != nullptr) {
   4033     allocation_records->BroadcastForNewAllocationRecords();
   4034   }
   4035 }
   4036 
   4037 // Based on debug malloc logic from libc/bionic/debug_stacktrace.cpp.
   4038 class StackCrawlState {
   4039  public:
   4040   StackCrawlState(uintptr_t* frames, size_t max_depth, size_t skip_count)
   4041       : frames_(frames), frame_count_(0), max_depth_(max_depth), skip_count_(skip_count) {
   4042   }
   4043   size_t GetFrameCount() const {
   4044     return frame_count_;
   4045   }
   4046   static _Unwind_Reason_Code Callback(_Unwind_Context* context, void* arg) {
   4047     auto* const state = reinterpret_cast<StackCrawlState*>(arg);
   4048     const uintptr_t ip = _Unwind_GetIP(context);
   4049     // The first stack frame is get_backtrace itself. Skip it.
   4050     if (ip != 0 && state->skip_count_ > 0) {
   4051       --state->skip_count_;
   4052       return _URC_NO_REASON;
   4053     }
   4054     // ip may be off for ARM but it shouldn't matter since we only use it for hashing.
   4055     state->frames_[state->frame_count_] = ip;
   4056     state->frame_count_++;
   4057     return state->frame_count_ >= state->max_depth_ ? _URC_END_OF_STACK : _URC_NO_REASON;
   4058   }
   4059 
   4060  private:
   4061   uintptr_t* const frames_;
   4062   size_t frame_count_;
   4063   const size_t max_depth_;
   4064   size_t skip_count_;
   4065 };
   4066 
   4067 static size_t get_backtrace(uintptr_t* frames, size_t max_depth) {
   4068   StackCrawlState state(frames, max_depth, 0u);
   4069   _Unwind_Backtrace(&StackCrawlState::Callback, &state);
   4070   return state.GetFrameCount();
   4071 }
   4072 
   4073 void Heap::CheckGcStressMode(Thread* self, mirror::Object** obj) {
   4074   auto* const runtime = Runtime::Current();
   4075   if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() &&
   4076       !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) {
   4077     // Check if we should GC.
   4078     bool new_backtrace = false;
   4079     {
   4080       static constexpr size_t kMaxFrames = 16u;
   4081       uintptr_t backtrace[kMaxFrames];
   4082       const size_t frames = get_backtrace(backtrace, kMaxFrames);
   4083       uint64_t hash = 0;
   4084       for (size_t i = 0; i < frames; ++i) {
   4085         hash = hash * 2654435761 + backtrace[i];
   4086         hash += (hash >> 13) ^ (hash << 6);
   4087       }
   4088       MutexLock mu(self, *backtrace_lock_);
   4089       new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
   4090       if (new_backtrace) {
   4091         seen_backtraces_.insert(hash);
   4092       }
   4093     }
   4094     if (new_backtrace) {
   4095       StackHandleScope<1> hs(self);
   4096       auto h = hs.NewHandleWrapper(obj);
   4097       CollectGarbage(false);
   4098       unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
   4099     } else {
   4100       seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
   4101     }
   4102   }
   4103 }
   4104 
   4105 void Heap::DisableGCForShutdown() {
   4106   Thread* const self = Thread::Current();
   4107   CHECK(Runtime::Current()->IsShuttingDown(self));
   4108   MutexLock mu(self, *gc_complete_lock_);
   4109   gc_disabled_for_shutdown_ = true;
   4110 }
   4111 
   4112 bool Heap::ObjectIsInBootImageSpace(mirror::Object* obj) const {
   4113   for (gc::space::ImageSpace* space : boot_image_spaces_) {
   4114     if (space->HasAddress(obj)) {
   4115       return true;
   4116     }
   4117   }
   4118   return false;
   4119 }
   4120 
   4121 bool Heap::IsInBootImageOatFile(const void* p) const {
   4122   for (gc::space::ImageSpace* space : boot_image_spaces_) {
   4123     if (space->GetOatFile()->Contains(p)) {
   4124       return true;
   4125     }
   4126   }
   4127   return false;
   4128 }
   4129 
   4130 void Heap::GetBootImagesSize(uint32_t* boot_image_begin,
   4131                              uint32_t* boot_image_end,
   4132                              uint32_t* boot_oat_begin,
   4133                              uint32_t* boot_oat_end) {
   4134   DCHECK(boot_image_begin != nullptr);
   4135   DCHECK(boot_image_end != nullptr);
   4136   DCHECK(boot_oat_begin != nullptr);
   4137   DCHECK(boot_oat_end != nullptr);
   4138   *boot_image_begin = 0u;
   4139   *boot_image_end = 0u;
   4140   *boot_oat_begin = 0u;
   4141   *boot_oat_end = 0u;
   4142   for (gc::space::ImageSpace* space_ : GetBootImageSpaces()) {
   4143     const uint32_t image_begin = PointerToLowMemUInt32(space_->Begin());
   4144     const uint32_t image_size = space_->GetImageHeader().GetImageSize();
   4145     if (*boot_image_begin == 0 || image_begin < *boot_image_begin) {
   4146       *boot_image_begin = image_begin;
   4147     }
   4148     *boot_image_end = std::max(*boot_image_end, image_begin + image_size);
   4149     const OatFile* boot_oat_file = space_->GetOatFile();
   4150     const uint32_t oat_begin = PointerToLowMemUInt32(boot_oat_file->Begin());
   4151     const uint32_t oat_size = boot_oat_file->Size();
   4152     if (*boot_oat_begin == 0 || oat_begin < *boot_oat_begin) {
   4153       *boot_oat_begin = oat_begin;
   4154     }
   4155     *boot_oat_end = std::max(*boot_oat_end, oat_begin + oat_size);
   4156   }
   4157 }
   4158 
   4159 }  // namespace gc
   4160 }  // namespace art
   4161