Home | History | Annotate | Download | only in linear
      1 /*
      2  * Licensed to the Apache Software Foundation (ASF) under one or more
      3  * contributor license agreements.  See the NOTICE file distributed with
      4  * this work for additional information regarding copyright ownership.
      5  * The ASF licenses this file to You under the Apache License, Version 2.0
      6  * (the "License"); you may not use this file except in compliance with
      7  * the License.  You may obtain a copy of the License at
      8  *
      9  *      http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 
     18 package org.apache.commons.math.linear;
     19 
     20 
     21 /**
     22  * An interface to classes that implement an algorithm to calculate the
     23  * eigen decomposition of a real matrix.
     24  * <p>The eigen decomposition of matrix A is a set of two matrices:
     25  * V and D such that A = V &times; D &times; V<sup>T</sup>.
     26  * A, V and D are all m &times; m matrices.</p>
     27  * <p>This interface is similar in spirit to the <code>EigenvalueDecomposition</code>
     28  * class from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a>
     29  * library, with the following changes:</p>
     30  * <ul>
     31  *   <li>a {@link #getVT() getVt} method has been added,</li>
     32  *   <li>two {@link #getRealEigenvalue(int) getRealEigenvalue} and {@link #getImagEigenvalue(int)
     33  *   getImagEigenvalue} methods to pick up a single eigenvalue have been added,</li>
     34  *   <li>a {@link #getEigenvector(int) getEigenvector} method to pick up a single
     35  *   eigenvector has been added,</li>
     36  *   <li>a {@link #getDeterminant() getDeterminant} method has been added.</li>
     37  *   <li>a {@link #getSolver() getSolver} method has been added.</li>
     38  * </ul>
     39  * @see <a href="http://mathworld.wolfram.com/EigenDecomposition.html">MathWorld</a>
     40  * @see <a href="http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix">Wikipedia</a>
     41  * @version $Revision: 997726 $ $Date: 2010-09-16 14:39:51 +0200 (jeu. 16 sept. 2010) $
     42  * @since 2.0
     43  */
     44 public interface EigenDecomposition {
     45 
     46     /**
     47      * Returns the matrix V of the decomposition.
     48      * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
     49      * <p>The columns of V are the eigenvectors of the original matrix.</p>
     50      * <p>No assumption is made about the orientation of the system axes formed
     51      * by the columns of V (e.g. in a 3-dimension space, V can form a left-
     52      * or right-handed system).</p>
     53      * @return the V matrix
     54      */
     55     RealMatrix getV();
     56 
     57     /**
     58      * Returns the block diagonal matrix D of the decomposition.
     59      * <p>D is a block diagonal matrix.</p>
     60      * <p>Real eigenvalues are on the diagonal while complex values are on
     61      * 2x2 blocks { {real +imaginary}, {-imaginary, real} }.</p>
     62      * @return the D matrix
     63      * @see #getRealEigenvalues()
     64      * @see #getImagEigenvalues()
     65      */
     66     RealMatrix getD();
     67 
     68     /**
     69      * Returns the transpose of the matrix V of the decomposition.
     70      * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
     71      * <p>The columns of V are the eigenvectors of the original matrix.</p>
     72      * <p>No assumption is made about the orientation of the system axes formed
     73      * by the columns of V (e.g. in a 3-dimension space, V can form a left-
     74      * or right-handed system).</p>
     75      * @return the transpose of the V matrix
     76      */
     77     RealMatrix getVT();
     78 
     79     /**
     80      * Returns a copy of the real parts of the eigenvalues of the original matrix.
     81      * @return a copy of the real parts of the eigenvalues of the original matrix
     82      * @see #getD()
     83      * @see #getRealEigenvalue(int)
     84      * @see #getImagEigenvalues()
     85      */
     86     double[] getRealEigenvalues();
     87 
     88     /**
     89      * Returns the real part of the i<sup>th</sup> eigenvalue of the original matrix.
     90      * @param i index of the eigenvalue (counting from 0)
     91      * @return real part of the i<sup>th</sup> eigenvalue of the original matrix
     92      * @see #getD()
     93      * @see #getRealEigenvalues()
     94      * @see #getImagEigenvalue(int)
     95      */
     96     double getRealEigenvalue(int i);
     97 
     98     /**
     99      * Returns a copy of the imaginary parts of the eigenvalues of the original matrix.
    100      * @return a copy of the imaginary parts of the eigenvalues of the original matrix
    101      * @see #getD()
    102      * @see #getImagEigenvalue(int)
    103      * @see #getRealEigenvalues()
    104      */
    105     double[] getImagEigenvalues();
    106 
    107     /**
    108      * Returns the imaginary part of the i<sup>th</sup> eigenvalue of the original matrix.
    109      * @param i index of the eigenvalue (counting from 0)
    110      * @return imaginary part of the i<sup>th</sup> eigenvalue of the original matrix
    111      * @see #getD()
    112      * @see #getImagEigenvalues()
    113      * @see #getRealEigenvalue(int)
    114      */
    115     double getImagEigenvalue(int i);
    116 
    117     /**
    118      * Returns a copy of the i<sup>th</sup> eigenvector of the original matrix.
    119      * @param i index of the eigenvector (counting from 0)
    120      * @return copy of the i<sup>th</sup> eigenvector of the original matrix
    121      * @see #getD()
    122      */
    123     RealVector getEigenvector(int i);
    124 
    125     /**
    126      * Return the determinant of the matrix
    127      * @return determinant of the matrix
    128      */
    129     double getDeterminant();
    130 
    131     /**
    132      * Get a solver for finding the A &times; X = B solution in exact linear sense.
    133      * @return a solver
    134      */
    135     DecompositionSolver getSolver();
    136 
    137 }
    138