Home | History | Annotate | Download | only in nonstiff
      1 /*
      2  * Licensed to the Apache Software Foundation (ASF) under one or more
      3  * contributor license agreements.  See the NOTICE file distributed with
      4  * this work for additional information regarding copyright ownership.
      5  * The ASF licenses this file to You under the Apache License, Version 2.0
      6  * (the "License"); you may not use this file except in compliance with
      7  * the License.  You may obtain a copy of the License at
      8  *
      9  *      http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 
     18 package org.apache.commons.math.ode.nonstiff;
     19 
     20 import java.util.Arrays;
     21 
     22 import org.apache.commons.math.linear.Array2DRowRealMatrix;
     23 import org.apache.commons.math.linear.RealMatrixPreservingVisitor;
     24 import org.apache.commons.math.ode.DerivativeException;
     25 import org.apache.commons.math.ode.FirstOrderDifferentialEquations;
     26 import org.apache.commons.math.ode.IntegratorException;
     27 import org.apache.commons.math.ode.sampling.NordsieckStepInterpolator;
     28 import org.apache.commons.math.ode.sampling.StepHandler;
     29 import org.apache.commons.math.util.FastMath;
     30 
     31 
     32 /**
     33  * This class implements implicit Adams-Moulton integrators for Ordinary
     34  * Differential Equations.
     35  *
     36  * <p>Adams-Moulton methods (in fact due to Adams alone) are implicit
     37  * multistep ODE solvers. This implementation is a variation of the classical
     38  * one: it uses adaptive stepsize to implement error control, whereas
     39  * classical implementations are fixed step size. The value of state vector
     40  * at step n+1 is a simple combination of the value at step n and of the
     41  * derivatives at steps n+1, n, n-1 ... Since y'<sub>n+1</sub> is needed to
     42  * compute y<sub>n+1</sub>,another method must be used to compute a first
     43  * estimate of y<sub>n+1</sub>, then compute y'<sub>n+1</sub>, then compute
     44  * a final estimate of y<sub>n+1</sub> using the following formulas. Depending
     45  * on the number k of previous steps one wants to use for computing the next
     46  * value, different formulas are available for the final estimate:</p>
     47  * <ul>
     48  *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n+1</sub></li>
     49  *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (y'<sub>n+1</sub>+y'<sub>n</sub>)/2</li>
     50  *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (5y'<sub>n+1</sub>+8y'<sub>n</sub>-y'<sub>n-1</sub>)/12</li>
     51  *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (9y'<sub>n+1</sub>+19y'<sub>n</sub>-5y'<sub>n-1</sub>+y'<sub>n-2</sub>)/24</li>
     52  *   <li>...</li>
     53  * </ul>
     54  *
     55  * <p>A k-steps Adams-Moulton method is of order k+1.</p>
     56  *
     57  * <h3>Implementation details</h3>
     58  *
     59  * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
     60  * <pre>
     61  * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
     62  * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
     63  * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
     64  * ...
     65  * s<sub>k</sub>(n) = h<sup>k</sup>/k! y(k)<sub>n</sub> for k<sup>th</sup> derivative
     66  * </pre></p>
     67  *
     68  * <p>The definitions above use the classical representation with several previous first
     69  * derivatives. Lets define
     70  * <pre>
     71  *   q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
     72  * </pre>
     73  * (we omit the k index in the notation for clarity). With these definitions,
     74  * Adams-Moulton methods can be written:
     75  * <ul>
     76  *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1)</li>
     77  *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 1/2 s<sub>1</sub>(n+1) + [ 1/2 ] q<sub>n+1</sub></li>
     78  *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 5/12 s<sub>1</sub>(n+1) + [ 8/12 -1/12 ] q<sub>n+1</sub></li>
     79  *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 9/24 s<sub>1</sub>(n+1) + [ 19/24 -5/24 1/24 ] q<sub>n+1</sub></li>
     80  *   <li>...</li>
     81  * </ul></p>
     82  *
     83  * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
     84  * s<sub>1</sub>(n+1) and q<sub>n+1</sub>), our implementation uses the Nordsieck vector with
     85  * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
     86  * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
     87  * <pre>
     88  * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
     89  * </pre>
     90  * (here again we omit the k index in the notation for clarity)
     91  * </p>
     92  *
     93  * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
     94  * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
     95  * for degree k polynomials.
     96  * <pre>
     97  * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j</sub> j (-i)<sup>j-1</sup> s<sub>j</sub>(n)
     98  * </pre>
     99  * The previous formula can be used with several values for i to compute the transform between
    100  * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
    101  * and q<sub>n</sub> resulting from the Taylor series formulas above is:
    102  * <pre>
    103  * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
    104  * </pre>
    105  * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
    106  * with the j (-i)<sup>j-1</sup> terms:
    107  * <pre>
    108  *        [  -2   3   -4    5  ... ]
    109  *        [  -4  12  -32   80  ... ]
    110  *   P =  [  -6  27 -108  405  ... ]
    111  *        [  -8  48 -256 1280  ... ]
    112  *        [          ...           ]
    113  * </pre></p>
    114  *
    115  * <p>Using the Nordsieck vector has several advantages:
    116  * <ul>
    117  *   <li>it greatly simplifies step interpolation as the interpolator mainly applies
    118  *   Taylor series formulas,</li>
    119  *   <li>it simplifies step changes that occur when discrete events that truncate
    120  *   the step are triggered,</li>
    121  *   <li>it allows to extend the methods in order to support adaptive stepsize.</li>
    122  * </ul></p>
    123  *
    124  * <p>The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step
    125  * n as follows:
    126  * <ul>
    127  *   <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
    128  *   <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
    129  *   <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
    130  * </ul>
    131  * where A is a rows shifting matrix (the lower left part is an identity matrix):
    132  * <pre>
    133  *        [ 0 0   ...  0 0 | 0 ]
    134  *        [ ---------------+---]
    135  *        [ 1 0   ...  0 0 | 0 ]
    136  *    A = [ 0 1   ...  0 0 | 0 ]
    137  *        [       ...      | 0 ]
    138  *        [ 0 0   ...  1 0 | 0 ]
    139  *        [ 0 0   ...  0 1 | 0 ]
    140  * </pre>
    141  * From this predicted vector, the corrected vector is computed as follows:
    142  * <ul>
    143  *   <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub></li>
    144  *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
    145  *   <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
    146  * </ul>
    147  * where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
    148  * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
    149  * represent the corrected states.</p>
    150  *
    151  * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
    152  * they only depend on k and therefore are precomputed once for all.</p>
    153  *
    154  * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 fvr. 2011) $
    155  * @since 2.0
    156  */
    157 public class AdamsMoultonIntegrator extends AdamsIntegrator {
    158 
    159     /** Integrator method name. */
    160     private static final String METHOD_NAME = "Adams-Moulton";
    161 
    162     /**
    163      * Build an Adams-Moulton integrator with the given order and error control parameters.
    164      * @param nSteps number of steps of the method excluding the one being computed
    165      * @param minStep minimal step (must be positive even for backward
    166      * integration), the last step can be smaller than this
    167      * @param maxStep maximal step (must be positive even for backward
    168      * integration)
    169      * @param scalAbsoluteTolerance allowed absolute error
    170      * @param scalRelativeTolerance allowed relative error
    171      * @exception IllegalArgumentException if order is 1 or less
    172      */
    173     public AdamsMoultonIntegrator(final int nSteps,
    174                                   final double minStep, final double maxStep,
    175                                   final double scalAbsoluteTolerance,
    176                                   final double scalRelativeTolerance)
    177         throws IllegalArgumentException {
    178         super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
    179               scalAbsoluteTolerance, scalRelativeTolerance);
    180     }
    181 
    182     /**
    183      * Build an Adams-Moulton integrator with the given order and error control parameters.
    184      * @param nSteps number of steps of the method excluding the one being computed
    185      * @param minStep minimal step (must be positive even for backward
    186      * integration), the last step can be smaller than this
    187      * @param maxStep maximal step (must be positive even for backward
    188      * integration)
    189      * @param vecAbsoluteTolerance allowed absolute error
    190      * @param vecRelativeTolerance allowed relative error
    191      * @exception IllegalArgumentException if order is 1 or less
    192      */
    193     public AdamsMoultonIntegrator(final int nSteps,
    194                                   final double minStep, final double maxStep,
    195                                   final double[] vecAbsoluteTolerance,
    196                                   final double[] vecRelativeTolerance)
    197         throws IllegalArgumentException {
    198         super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
    199               vecAbsoluteTolerance, vecRelativeTolerance);
    200     }
    201 
    202 
    203     /** {@inheritDoc} */
    204     @Override
    205     public double integrate(final FirstOrderDifferentialEquations equations,
    206                             final double t0, final double[] y0,
    207                             final double t, final double[] y)
    208         throws DerivativeException, IntegratorException {
    209 
    210         final int n = y0.length;
    211         sanityChecks(equations, t0, y0, t, y);
    212         setEquations(equations);
    213         resetEvaluations();
    214         final boolean forward = t > t0;
    215 
    216         // initialize working arrays
    217         if (y != y0) {
    218             System.arraycopy(y0, 0, y, 0, n);
    219         }
    220         final double[] yDot = new double[y0.length];
    221         final double[] yTmp = new double[y0.length];
    222         final double[] predictedScaled = new double[y0.length];
    223         Array2DRowRealMatrix nordsieckTmp = null;
    224 
    225         // set up two interpolators sharing the integrator arrays
    226         final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator();
    227         interpolator.reinitialize(y, forward);
    228 
    229         // set up integration control objects
    230         for (StepHandler handler : stepHandlers) {
    231             handler.reset();
    232         }
    233         setStateInitialized(false);
    234 
    235         // compute the initial Nordsieck vector using the configured starter integrator
    236         start(t0, y, t);
    237         interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
    238         interpolator.storeTime(stepStart);
    239 
    240         double hNew = stepSize;
    241         interpolator.rescale(hNew);
    242 
    243         isLastStep = false;
    244         do {
    245 
    246             double error = 10;
    247             while (error >= 1.0) {
    248 
    249                 stepSize = hNew;
    250 
    251                 // predict a first estimate of the state at step end (P in the PECE sequence)
    252                 final double stepEnd = stepStart + stepSize;
    253                 interpolator.setInterpolatedTime(stepEnd);
    254                 System.arraycopy(interpolator.getInterpolatedState(), 0, yTmp, 0, y0.length);
    255 
    256                 // evaluate a first estimate of the derivative (first E in the PECE sequence)
    257                 computeDerivatives(stepEnd, yTmp, yDot);
    258 
    259                 // update Nordsieck vector
    260                 for (int j = 0; j < y0.length; ++j) {
    261                     predictedScaled[j] = stepSize * yDot[j];
    262                 }
    263                 nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
    264                 updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);
    265 
    266                 // apply correction (C in the PECE sequence)
    267                 error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp));
    268 
    269                 if (error >= 1.0) {
    270                     // reject the step and attempt to reduce error by stepsize control
    271                     final double factor = computeStepGrowShrinkFactor(error);
    272                     hNew = filterStep(stepSize * factor, forward, false);
    273                     interpolator.rescale(hNew);
    274                 }
    275             }
    276 
    277             // evaluate a final estimate of the derivative (second E in the PECE sequence)
    278             final double stepEnd = stepStart + stepSize;
    279             computeDerivatives(stepEnd, yTmp, yDot);
    280 
    281             // update Nordsieck vector
    282             final double[] correctedScaled = new double[y0.length];
    283             for (int j = 0; j < y0.length; ++j) {
    284                 correctedScaled[j] = stepSize * yDot[j];
    285             }
    286             updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, nordsieckTmp);
    287 
    288             // discrete events handling
    289             System.arraycopy(yTmp, 0, y, 0, n);
    290             interpolator.reinitialize(stepEnd, stepSize, correctedScaled, nordsieckTmp);
    291             interpolator.storeTime(stepStart);
    292             interpolator.shift();
    293             interpolator.storeTime(stepEnd);
    294             stepStart = acceptStep(interpolator, y, yDot, t);
    295             scaled    = correctedScaled;
    296             nordsieck = nordsieckTmp;
    297 
    298             if (!isLastStep) {
    299 
    300                 // prepare next step
    301                 interpolator.storeTime(stepStart);
    302 
    303                 if (resetOccurred) {
    304                     // some events handler has triggered changes that
    305                     // invalidate the derivatives, we need to restart from scratch
    306                     start(stepStart, y, t);
    307                     interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
    308 
    309                 }
    310 
    311                 // stepsize control for next step
    312                 final double  factor     = computeStepGrowShrinkFactor(error);
    313                 final double  scaledH    = stepSize * factor;
    314                 final double  nextT      = stepStart + scaledH;
    315                 final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
    316                 hNew = filterStep(scaledH, forward, nextIsLast);
    317 
    318                 final double  filteredNextT      = stepStart + hNew;
    319                 final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
    320                 if (filteredNextIsLast) {
    321                     hNew = t - stepStart;
    322                 }
    323 
    324                 interpolator.rescale(hNew);
    325             }
    326 
    327         } while (!isLastStep);
    328 
    329         final double stopTime  = stepStart;
    330         stepStart = Double.NaN;
    331         stepSize  = Double.NaN;
    332         return stopTime;
    333 
    334     }
    335 
    336     /** Corrector for current state in Adams-Moulton method.
    337      * <p>
    338      * This visitor implements the Taylor series formula:
    339      * <pre>
    340      * Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub>
    341      * </pre>
    342      * </p>
    343      */
    344     private class Corrector implements RealMatrixPreservingVisitor {
    345 
    346         /** Previous state. */
    347         private final double[] previous;
    348 
    349         /** Current scaled first derivative. */
    350         private final double[] scaled;
    351 
    352         /** Current state before correction. */
    353         private final double[] before;
    354 
    355         /** Current state after correction. */
    356         private final double[] after;
    357 
    358         /** Simple constructor.
    359          * @param previous previous state
    360          * @param scaled current scaled first derivative
    361          * @param state state to correct (will be overwritten after visit)
    362          */
    363         public Corrector(final double[] previous, final double[] scaled, final double[] state) {
    364             this.previous = previous;
    365             this.scaled   = scaled;
    366             this.after    = state;
    367             this.before   = state.clone();
    368         }
    369 
    370         /** {@inheritDoc} */
    371         public void start(int rows, int columns,
    372                           int startRow, int endRow, int startColumn, int endColumn) {
    373             Arrays.fill(after, 0.0);
    374         }
    375 
    376         /** {@inheritDoc} */
    377         public void visit(int row, int column, double value) {
    378             if ((row & 0x1) == 0) {
    379                 after[column] -= value;
    380             } else {
    381                 after[column] += value;
    382             }
    383         }
    384 
    385         /**
    386          * End visiting the Nordsieck vector.
    387          * <p>The correction is used to control stepsize. So its amplitude is
    388          * considered to be an error, which must be normalized according to
    389          * error control settings. If the normalized value is greater than 1,
    390          * the correction was too large and the step must be rejected.</p>
    391          * @return the normalized correction, if greater than 1, the step
    392          * must be rejected
    393          */
    394         public double end() {
    395 
    396             double error = 0;
    397             for (int i = 0; i < after.length; ++i) {
    398                 after[i] += previous[i] + scaled[i];
    399                 if (i < mainSetDimension) {
    400                     final double yScale = FastMath.max(FastMath.abs(previous[i]), FastMath.abs(after[i]));
    401                     final double tol = (vecAbsoluteTolerance == null) ?
    402                                        (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
    403                                        (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale);
    404                     final double ratio  = (after[i] - before[i]) / tol;
    405                     error += ratio * ratio;
    406                 }
    407             }
    408 
    409             return FastMath.sqrt(error / mainSetDimension);
    410 
    411         }
    412     }
    413 
    414 }
    415