Home | History | Annotate | Download | only in nist
      1 NIST/ITL StRD
      2 Dataset Name:  Thurber           (Thurber.dat)
      3 
      4 File Format:   ASCII
      5                Starting Values   (lines 41 to 47)
      6                Certified Values  (lines 41 to 52)
      7                Data              (lines 61 to 97)
      8 
      9 Procedure:     Nonlinear Least Squares Regression
     10 
     11 Description:   These data are the result of a NIST study involving
     12                semiconductor electron mobility.  The response 
     13                variable is a measure of electron mobility, and the 
     14                predictor variable is the natural log of the density.
     15 
     16 
     17 Reference:     Thurber, R., NIST (197?).  
     18                Semiconductor electron mobility modeling.
     19 
     20 
     21 
     22 
     23 
     24 
     25 Data:          1 Response Variable  (y = electron mobility)
     26                1 Predictor Variable (x = log[density])
     27                37 Observations
     28                Higher Level of Difficulty
     29                Observed Data
     30 
     31 Model:         Rational Class (cubic/cubic)
     32                7 Parameters (b1 to b7)
     33 
     34                y = (b1 + b2*x + b3*x**2 + b4*x**3) / 
     35                    (1 + b5*x + b6*x**2 + b7*x**3)  +  e
     36 
     37 
     38           Starting Values                  Certified Values
     39 
     40         Start 1     Start 2           Parameter     Standard Deviation
     41   b1 =   1000        1300          1.2881396800E+03  4.6647963344E+00
     42   b2 =   1000        1500          1.4910792535E+03  3.9571156086E+01
     43   b3 =    400         500          5.8323836877E+02  2.8698696102E+01
     44   b4 =     40          75          7.5416644291E+01  5.5675370270E+00
     45   b5 =      0.7         1          9.6629502864E-01  3.1333340687E-02
     46   b6 =      0.3         0.4        3.9797285797E-01  1.4984928198E-02
     47   b7 =      0.03        0.05       4.9727297349E-02  6.5842344623E-03
     48 
     49 Residual Sum of Squares:                    5.6427082397E+03
     50 Residual Standard Deviation:                1.3714600784E+01
     51 Degrees of Freedom:                                30
     52 Number of Observations:                            37
     53 
     54 
     55 
     56 
     57 
     58 
     59 
     60 Data:   y             x
     61       80.574E0      -3.067E0
     62       84.248E0      -2.981E0
     63       87.264E0      -2.921E0
     64       87.195E0      -2.912E0
     65       89.076E0      -2.840E0
     66       89.608E0      -2.797E0
     67       89.868E0      -2.702E0
     68       90.101E0      -2.699E0
     69       92.405E0      -2.633E0
     70       95.854E0      -2.481E0
     71      100.696E0      -2.363E0
     72      101.060E0      -2.322E0
     73      401.672E0      -1.501E0
     74      390.724E0      -1.460E0
     75      567.534E0      -1.274E0
     76      635.316E0      -1.212E0
     77      733.054E0      -1.100E0
     78      759.087E0      -1.046E0
     79      894.206E0      -0.915E0
     80      990.785E0      -0.714E0
     81     1090.109E0      -0.566E0
     82     1080.914E0      -0.545E0
     83     1122.643E0      -0.400E0
     84     1178.351E0      -0.309E0
     85     1260.531E0      -0.109E0
     86     1273.514E0      -0.103E0
     87     1288.339E0       0.010E0
     88     1327.543E0       0.119E0
     89     1353.863E0       0.377E0
     90     1414.509E0       0.790E0
     91     1425.208E0       0.963E0
     92     1421.384E0       1.006E0
     93     1442.962E0       1.115E0
     94     1464.350E0       1.572E0
     95     1468.705E0       1.841E0
     96     1447.894E0       2.047E0
     97     1457.628E0       2.200E0
     98