Home | History | Annotate | Download | only in examples
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2014 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // Bounds constrained test problems from the paper
     32 //
     33 // Testing Unconstrained Optimization Software
     34 // Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom
     35 // ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981
     36 //
     37 // A subset of these problems were augmented with bounds and used for
     38 // testing bounds constrained optimization algorithms by
     39 //
     40 // A Trust Region Approach to Linearly Constrained Optimization
     41 // David M. Gay
     42 // Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105
     43 // Lecture Notes in Mathematics 1066, Springer Verlag, 1984.
     44 //
     45 // The latter paper is behind a paywall. We obtained the bounds on the
     46 // variables and the function values at the global minimums from
     47 //
     48 // http://www.mat.univie.ac.at/~neum/glopt/bounds.html
     49 //
     50 // A problem is considered solved if of the log relative error of its
     51 // objective function is at least 5.
     52 
     53 
     54 #include <cmath>
     55 #include <iostream>  // NOLINT
     56 #include "ceres/ceres.h"
     57 #include "gflags/gflags.h"
     58 #include "glog/logging.h"
     59 
     60 namespace ceres {
     61 namespace examples {
     62 
     63 const double kDoubleMax = std::numeric_limits<double>::max();
     64 
     65 #define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals)          \
     66   struct name {                                                         \
     67     static const int kNumParameters = num_parameters;                   \
     68     static const double initial_x[kNumParameters];                      \
     69     static const double lower_bounds[kNumParameters];                   \
     70     static const double upper_bounds[kNumParameters];                   \
     71     static const double constrained_optimal_cost;                       \
     72     static const double unconstrained_optimal_cost;                     \
     73     static CostFunction* Create() {                                     \
     74       return new AutoDiffCostFunction<name,                             \
     75                                       num_residuals,                    \
     76                                       num_parameters>(new name);        \
     77     }                                                                   \
     78     template <typename T>                                               \
     79     bool operator()(const T* const x, T* residual) const {
     80 
     81 #define END_MGH_PROBLEM return true; } };  // NOLINT
     82 
     83 // Rosenbrock function.
     84 BEGIN_MGH_PROBLEM(TestProblem1, 2, 2)
     85   const T x1 = x[0];
     86   const T x2 = x[1];
     87   residual[0] = T(10.0) * (x2 - x1 * x1);
     88   residual[1] = T(1.0) - x1;
     89 END_MGH_PROBLEM;
     90 
     91 const double TestProblem1::initial_x[] = {-1.2, 1.0};
     92 const double TestProblem1::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
     93 const double TestProblem1::upper_bounds[] = {kDoubleMax, kDoubleMax};
     94 const double TestProblem1::constrained_optimal_cost =
     95     std::numeric_limits<double>::quiet_NaN();
     96 const double TestProblem1::unconstrained_optimal_cost = 0.0;
     97 
     98 // Freudenstein and Roth function.
     99 BEGIN_MGH_PROBLEM(TestProblem2, 2, 2)
    100   const T x1 = x[0];
    101   const T x2 = x[1];
    102   residual[0] = T(-13.0) + x1 + ((T(5.0) - x2) * x2 - T(2.0)) * x2;
    103   residual[1] = T(-29.0) + x1 + ((x2 + T(1.0)) * x2 - T(14.0)) * x2;
    104 END_MGH_PROBLEM;
    105 
    106 const double TestProblem2::initial_x[] = {0.5, -2.0};
    107 const double TestProblem2::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
    108 const double TestProblem2::upper_bounds[] = {kDoubleMax, kDoubleMax};
    109 const double TestProblem2::constrained_optimal_cost =
    110     std::numeric_limits<double>::quiet_NaN();
    111 const double TestProblem2::unconstrained_optimal_cost = 0.0;
    112 
    113 // Powell badly scaled function.
    114 BEGIN_MGH_PROBLEM(TestProblem3, 2, 2)
    115   const T x1 = x[0];
    116   const T x2 = x[1];
    117   residual[0] = T(10000.0) * x1 * x2 - T(1.0);
    118   residual[1] = exp(-x1) + exp(-x2) - T(1.0001);
    119 END_MGH_PROBLEM;
    120 
    121 const double TestProblem3::initial_x[] = {0.0, 1.0};
    122 const double TestProblem3::lower_bounds[] = {0.0, 1.0};
    123 const double TestProblem3::upper_bounds[] = {1.0, 9.0};
    124 const double TestProblem3::constrained_optimal_cost = 0.15125900e-9;
    125 const double TestProblem3::unconstrained_optimal_cost = 0.0;
    126 
    127 // Brown badly scaled function.
    128 BEGIN_MGH_PROBLEM(TestProblem4, 2, 3)
    129   const T x1 = x[0];
    130   const T x2 = x[1];
    131   residual[0] = x1  - T(1000000.0);
    132   residual[1] = x2 - T(0.000002);
    133   residual[2] = x1 * x2 - T(2.0);
    134 END_MGH_PROBLEM;
    135 
    136 const double TestProblem4::initial_x[] = {1.0, 1.0};
    137 const double TestProblem4::lower_bounds[] = {0.0, 0.00003};
    138 const double TestProblem4::upper_bounds[] = {1000000.0, 100.0};
    139 const double TestProblem4::constrained_optimal_cost = 0.78400000e3;
    140 const double TestProblem4::unconstrained_optimal_cost = 0.0;
    141 
    142 // Beale function.
    143 BEGIN_MGH_PROBLEM(TestProblem5, 2, 3)
    144   const T x1 = x[0];
    145   const T x2 = x[1];
    146   residual[0] = T(1.5) - x1 * (T(1.0) - x2);
    147   residual[1] = T(2.25) - x1 * (T(1.0) - x2 * x2);
    148   residual[2] = T(2.625) - x1 * (T(1.0) - x2 * x2 * x2);
    149 END_MGH_PROBLEM;
    150 
    151 const double TestProblem5::initial_x[] = {1.0, 1.0};
    152 const double TestProblem5::lower_bounds[] = {0.6, 0.5};
    153 const double TestProblem5::upper_bounds[] = {10.0, 100.0};
    154 const double TestProblem5::constrained_optimal_cost = 0.0;
    155 const double TestProblem5::unconstrained_optimal_cost = 0.0;
    156 
    157 // Jennrich and Sampson function.
    158 BEGIN_MGH_PROBLEM(TestProblem6, 2, 10)
    159   const T x1 = x[0];
    160   const T x2 = x[1];
    161   for (int i = 1; i <= 10; ++i) {
    162     residual[i - 1] = T(2.0) + T(2.0 * i) -
    163         exp(T(static_cast<double>(i)) * x1) -
    164         exp(T(static_cast<double>(i) * x2));
    165   }
    166 END_MGH_PROBLEM;
    167 
    168 const double TestProblem6::initial_x[] = {1.0, 1.0};
    169 const double TestProblem6::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
    170 const double TestProblem6::upper_bounds[] = {kDoubleMax, kDoubleMax};
    171 const double TestProblem6::constrained_optimal_cost =
    172     std::numeric_limits<double>::quiet_NaN();
    173 const double TestProblem6::unconstrained_optimal_cost = 124.362;
    174 
    175 // Helical valley function.
    176 BEGIN_MGH_PROBLEM(TestProblem7, 3, 3)
    177   const T x1 = x[0];
    178   const T x2 = x[1];
    179   const T x3 = x[2];
    180   const T theta = T(0.5 / M_PI)  * atan(x2 / x1) + (x1 > 0.0 ? T(0.0) : T(0.5));
    181 
    182   residual[0] = T(10.0) * (x3 - T(10.0) * theta);
    183   residual[1] = T(10.0) * (sqrt(x1 * x1 + x2 * x2) - T(1.0));
    184   residual[2] = x3;
    185 END_MGH_PROBLEM;
    186 
    187 const double TestProblem7::initial_x[] = {-1.0, 0.0, 0.0};
    188 const double TestProblem7::lower_bounds[] = {-100.0, -1.0, -1.0};
    189 const double TestProblem7::upper_bounds[] = {0.8, 1.0, 1.0};
    190 const double TestProblem7::constrained_optimal_cost = 0.99042212;
    191 const double TestProblem7::unconstrained_optimal_cost = 0.0;
    192 
    193 // Bard function
    194 BEGIN_MGH_PROBLEM(TestProblem8, 3, 15)
    195   const T x1 = x[0];
    196   const T x2 = x[1];
    197   const T x3 = x[2];
    198 
    199   double y[] = {0.14, 0.18, 0.22, 0.25,
    200                 0.29, 0.32, 0.35, 0.39, 0.37, 0.58,
    201                 0.73, 0.96, 1.34, 2.10, 4.39};
    202 
    203   for (int i = 1; i <=15; ++i) {
    204     const T u = T(static_cast<double>(i));
    205     const T v = T(static_cast<double>(16 - i));
    206     const T w = T(static_cast<double>(std::min(i, 16 - i)));
    207     residual[i - 1] = T(y[i - 1]) - x1 + u / (v * x2 + w * x3);
    208   }
    209 END_MGH_PROBLEM;
    210 
    211 const double TestProblem8::initial_x[] = {1.0, 1.0, 1.0};
    212 const double TestProblem8::lower_bounds[] = {
    213   -kDoubleMax, -kDoubleMax, -kDoubleMax};
    214 const double TestProblem8::upper_bounds[] = {
    215   kDoubleMax, kDoubleMax, kDoubleMax};
    216 const double TestProblem8::constrained_optimal_cost =
    217     std::numeric_limits<double>::quiet_NaN();
    218 const double TestProblem8::unconstrained_optimal_cost = 8.21487e-3;
    219 
    220 // Gaussian function.
    221 BEGIN_MGH_PROBLEM(TestProblem9, 3, 15)
    222   const T x1 = x[0];
    223   const T x2 = x[1];
    224   const T x3 = x[2];
    225 
    226   const double y[] = {0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521,
    227                       0.3989,
    228                       0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009};
    229   for (int i = 0; i < 15; ++i) {
    230     const T t_i = T((8.0 - i - 1.0) / 2.0);
    231     const T y_i = T(y[i]);
    232     residual[i] = x1 * exp(-x2 * (t_i - x3) * (t_i - x3) / T(2.0)) - y_i;
    233   }
    234 END_MGH_PROBLEM;
    235 
    236 const double TestProblem9::initial_x[] = {0.4, 1.0, 0.0};
    237 const double TestProblem9::lower_bounds[] = {0.398, 1.0, -0.5};
    238 const double TestProblem9::upper_bounds[] = {4.2, 2.0, 0.1};
    239 const double TestProblem9::constrained_optimal_cost = 0.11279300e-7;
    240 const double TestProblem9::unconstrained_optimal_cost = 0.112793e-7;
    241 
    242 // Meyer function.
    243 BEGIN_MGH_PROBLEM(TestProblem10, 3, 16)
    244   const T x1 = x[0];
    245   const T x2 = x[1];
    246   const T x3 = x[2];
    247 
    248   const double y[] = {34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744,
    249                       8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872};
    250 
    251   for (int i = 0; i < 16; ++i) {
    252     T t = T(45 + 5.0 * (i + 1));
    253     residual[i] = x1 * exp(x2 / (t + x3)) - y[i];
    254   }
    255 END_MGH_PROBLEM
    256 
    257 
    258 const double TestProblem10::initial_x[] = {0.02, 4000, 250};
    259 const double TestProblem10::lower_bounds[] ={
    260   -kDoubleMax, -kDoubleMax, -kDoubleMax};
    261 const double TestProblem10::upper_bounds[] ={
    262   kDoubleMax, kDoubleMax, kDoubleMax};
    263 const double TestProblem10::constrained_optimal_cost =
    264     std::numeric_limits<double>::quiet_NaN();
    265 const double TestProblem10::unconstrained_optimal_cost = 87.9458;
    266 
    267 #undef BEGIN_MGH_PROBLEM
    268 #undef END_MGH_PROBLEM
    269 
    270 template<typename TestProblem> string ConstrainedSolve() {
    271   double x[TestProblem::kNumParameters];
    272   std::copy(TestProblem::initial_x,
    273             TestProblem::initial_x + TestProblem::kNumParameters,
    274             x);
    275 
    276   Problem problem;
    277   problem.AddResidualBlock(TestProblem::Create(), NULL, x);
    278   for (int i = 0; i < TestProblem::kNumParameters; ++i) {
    279     problem.SetParameterLowerBound(x, i, TestProblem::lower_bounds[i]);
    280     problem.SetParameterUpperBound(x, i, TestProblem::upper_bounds[i]);
    281   }
    282 
    283   Solver::Options options;
    284   options.parameter_tolerance = 1e-18;
    285   options.function_tolerance = 1e-18;
    286   options.gradient_tolerance = 1e-18;
    287   options.max_num_iterations = 1000;
    288   options.linear_solver_type = DENSE_QR;
    289   Solver::Summary summary;
    290   Solve(options, &problem, &summary);
    291 
    292   const double kMinLogRelativeError = 5.0;
    293   const double log_relative_error = -std::log10(
    294       std::abs(2.0 * summary.final_cost -
    295                TestProblem::constrained_optimal_cost) /
    296       (TestProblem::constrained_optimal_cost > 0.0
    297        ? TestProblem::constrained_optimal_cost
    298        : 1.0));
    299 
    300   return (log_relative_error >= kMinLogRelativeError
    301           ? "Success\n"
    302           : "Failure\n");
    303 }
    304 
    305 template<typename TestProblem> string UnconstrainedSolve() {
    306   double x[TestProblem::kNumParameters];
    307   std::copy(TestProblem::initial_x,
    308             TestProblem::initial_x + TestProblem::kNumParameters,
    309             x);
    310 
    311   Problem problem;
    312   problem.AddResidualBlock(TestProblem::Create(), NULL, x);
    313 
    314   Solver::Options options;
    315   options.parameter_tolerance = 1e-18;
    316   options.function_tolerance = 0.0;
    317   options.gradient_tolerance = 1e-18;
    318   options.max_num_iterations = 1000;
    319   options.linear_solver_type = DENSE_QR;
    320   Solver::Summary summary;
    321   Solve(options, &problem, &summary);
    322 
    323   const double kMinLogRelativeError = 5.0;
    324   const double log_relative_error = -std::log10(
    325       std::abs(2.0 * summary.final_cost -
    326                TestProblem::unconstrained_optimal_cost) /
    327       (TestProblem::unconstrained_optimal_cost > 0.0
    328        ? TestProblem::unconstrained_optimal_cost
    329        : 1.0));
    330 
    331   return (log_relative_error >= kMinLogRelativeError
    332           ? "Success\n"
    333           : "Failure\n");
    334 }
    335 
    336 }  // namespace examples
    337 }  // namespace ceres
    338 
    339 int main(int argc, char** argv) {
    340   google::ParseCommandLineFlags(&argc, &argv, true);
    341   google::InitGoogleLogging(argv[0]);
    342 
    343   using ceres::examples::UnconstrainedSolve;
    344   using ceres::examples::ConstrainedSolve;
    345 
    346 #define UNCONSTRAINED_SOLVE(n)                                          \
    347   std::cout << "Problem " << n << " : "                                 \
    348             << UnconstrainedSolve<ceres::examples::TestProblem##n>();
    349 
    350 #define CONSTRAINED_SOLVE(n)                                            \
    351   std::cout << "Problem " << n << " : "                                 \
    352             << ConstrainedSolve<ceres::examples::TestProblem##n>();
    353 
    354   std::cout << "Unconstrained problems\n";
    355   UNCONSTRAINED_SOLVE(1);
    356   UNCONSTRAINED_SOLVE(2);
    357   UNCONSTRAINED_SOLVE(3);
    358   UNCONSTRAINED_SOLVE(4);
    359   UNCONSTRAINED_SOLVE(5);
    360   UNCONSTRAINED_SOLVE(6);
    361   UNCONSTRAINED_SOLVE(7);
    362   UNCONSTRAINED_SOLVE(8);
    363   UNCONSTRAINED_SOLVE(9);
    364   UNCONSTRAINED_SOLVE(10);
    365 
    366   std::cout << "\nConstrained problems\n";
    367   CONSTRAINED_SOLVE(3);
    368   CONSTRAINED_SOLVE(4);
    369   CONSTRAINED_SOLVE(5);
    370   CONSTRAINED_SOLVE(7);
    371   CONSTRAINED_SOLVE(9);
    372 
    373   return 0;
    374 }
    375