Home | History | Annotate | Download | only in common
      1 /*-------------------------------------------------------------------------
      2  * drawElements Quality Program Tester Core
      3  * ----------------------------------------
      4  *
      5  * Copyright 2014 The Android Open Source Project
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Fuzzy image comparison.
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "tcuFuzzyImageCompare.hpp"
     25 #include "tcuTexture.hpp"
     26 #include "tcuTextureUtil.hpp"
     27 #include "deMath.h"
     28 #include "deRandom.hpp"
     29 
     30 #include <vector>
     31 
     32 namespace tcu
     33 {
     34 
     35 enum
     36 {
     37 	MIN_ERR_THRESHOLD	= 4 // Magic to make small differences go away
     38 };
     39 
     40 using std::vector;
     41 
     42 template<int Channel>
     43 static inline deUint8 getChannel (deUint32 color)
     44 {
     45 	return (deUint8)((color >> (Channel*8)) & 0xff);
     46 }
     47 
     48 static inline deUint8 getChannel (deUint32 color, int channel)
     49 {
     50 	return (deUint8)((color >> (channel*8)) & 0xff);
     51 }
     52 
     53 static inline deUint32 setChannel (deUint32 color, int channel, deUint8 val)
     54 {
     55 	return (color & ~(0xffu << (8*channel))) | (val << (8*channel));
     56 }
     57 
     58 static inline Vec4 toFloatVec (deUint32 color)
     59 {
     60 	return Vec4((float)getChannel<0>(color), (float)getChannel<1>(color), (float)getChannel<2>(color), (float)getChannel<3>(color));
     61 }
     62 
     63 static inline deUint8 roundToUint8Sat (float v)
     64 {
     65 	return (deUint8)de::clamp((int)(v + 0.5f), 0, 255);
     66 }
     67 
     68 static inline deUint32 toColor (Vec4 v)
     69 {
     70 	return roundToUint8Sat(v[0]) | (roundToUint8Sat(v[1]) << 8) | (roundToUint8Sat(v[2]) << 16) | (roundToUint8Sat(v[3]) << 24);
     71 }
     72 
     73 template<int NumChannels>
     74 static inline deUint32 readUnorm8 (const tcu::ConstPixelBufferAccess& src, int x, int y)
     75 {
     76 	const deUint8*	ptr	= (const deUint8*)src.getDataPtr() + src.getRowPitch()*y + x*NumChannels;
     77 	deUint32		v	= 0;
     78 
     79 	for (int c = 0; c < NumChannels; c++)
     80 		v |= ptr[c] << (c*8);
     81 
     82 	if (NumChannels < 4)
     83 		v |= 0xffu << 24;
     84 
     85 	return v;
     86 }
     87 
     88 #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
     89 template<>
     90 inline deUint32 readUnorm8<4> (const tcu::ConstPixelBufferAccess& src, int x, int y)
     91 {
     92 	return *(const deUint32*)((const deUint8*)src.getDataPtr() + src.getRowPitch()*y + x*4);
     93 }
     94 #endif
     95 
     96 template<int NumChannels>
     97 static inline void writeUnorm8 (const tcu::PixelBufferAccess& dst, int x, int y, deUint32 val)
     98 {
     99 	deUint8* ptr = (deUint8*)dst.getDataPtr() + dst.getRowPitch()*y + x*NumChannels;
    100 
    101 	for (int c = 0; c < NumChannels; c++)
    102 		ptr[c] = getChannel(val, c);
    103 }
    104 
    105 #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
    106 template<>
    107 inline void writeUnorm8<4> (const tcu::PixelBufferAccess& dst, int x, int y, deUint32 val)
    108 {
    109 	*(deUint32*)((deUint8*)dst.getDataPtr() + dst.getRowPitch()*y + x*4) = val;
    110 }
    111 #endif
    112 
    113 static inline deUint32 colorDistSquared (deUint32 pa, deUint32 pb)
    114 {
    115 	const int	r	= de::max<int>(de::abs((int)getChannel<0>(pa) - (int)getChannel<0>(pb)) - MIN_ERR_THRESHOLD, 0);
    116 	const int	g	= de::max<int>(de::abs((int)getChannel<1>(pa) - (int)getChannel<1>(pb)) - MIN_ERR_THRESHOLD, 0);
    117 	const int	b	= de::max<int>(de::abs((int)getChannel<2>(pa) - (int)getChannel<2>(pb)) - MIN_ERR_THRESHOLD, 0);
    118 	const int	a	= de::max<int>(de::abs((int)getChannel<3>(pa) - (int)getChannel<3>(pb)) - MIN_ERR_THRESHOLD, 0);
    119 
    120 	return deUint32(r*r + g*g + b*b + a*a);
    121 }
    122 
    123 template<int NumChannels>
    124 inline deUint32 bilinearSample (const ConstPixelBufferAccess& src, float u, float v)
    125 {
    126 	int w = src.getWidth();
    127 	int h = src.getHeight();
    128 
    129 	int x0 = deFloorFloatToInt32(u-0.5f);
    130 	int x1 = x0+1;
    131 	int y0 = deFloorFloatToInt32(v-0.5f);
    132 	int y1 = y0+1;
    133 
    134 	int i0 = de::clamp(x0, 0, w-1);
    135 	int i1 = de::clamp(x1, 0, w-1);
    136 	int j0 = de::clamp(y0, 0, h-1);
    137 	int j1 = de::clamp(y1, 0, h-1);
    138 
    139 	float a = deFloatFrac(u-0.5f);
    140 	float b = deFloatFrac(v-0.5f);
    141 
    142 	deUint32 p00	= readUnorm8<NumChannels>(src, i0, j0);
    143 	deUint32 p10	= readUnorm8<NumChannels>(src, i1, j0);
    144 	deUint32 p01	= readUnorm8<NumChannels>(src, i0, j1);
    145 	deUint32 p11	= readUnorm8<NumChannels>(src, i1, j1);
    146 	deUint32 dst	= 0;
    147 
    148 	// Interpolate.
    149 	for (int c = 0; c < NumChannels; c++)
    150 	{
    151 		float f = (getChannel(p00, c)*(1.0f-a)*(1.0f-b)) +
    152 				  (getChannel(p10, c)*(     a)*(1.0f-b)) +
    153 				  (getChannel(p01, c)*(1.0f-a)*(     b)) +
    154 				  (getChannel(p11, c)*(     a)*(     b));
    155 		dst = setChannel(dst, c, roundToUint8Sat(f));
    156 	}
    157 
    158 	return dst;
    159 }
    160 
    161 template<int DstChannels, int SrcChannels>
    162 static void separableConvolve (const PixelBufferAccess& dst, const ConstPixelBufferAccess& src, int shiftX, int shiftY, const std::vector<float>& kernelX, const std::vector<float>& kernelY)
    163 {
    164 	DE_ASSERT(dst.getWidth() == src.getWidth() && dst.getHeight() == src.getHeight());
    165 
    166 	TextureLevel		tmp			(dst.getFormat(), dst.getHeight(), dst.getWidth());
    167 	PixelBufferAccess	tmpAccess	= tmp.getAccess();
    168 
    169 	int kw = (int)kernelX.size();
    170 	int kh = (int)kernelY.size();
    171 
    172 	// Horizontal pass
    173 	// \note Temporary surface is written in column-wise order
    174 	for (int j = 0; j < src.getHeight(); j++)
    175 	{
    176 		for (int i = 0; i < src.getWidth(); i++)
    177 		{
    178 			Vec4 sum(0);
    179 
    180 			for (int kx = 0; kx < kw; kx++)
    181 			{
    182 				float		f = kernelX[kw-kx-1];
    183 				deUint32	p = readUnorm8<SrcChannels>(src, de::clamp(i+kx-shiftX, 0, src.getWidth()-1), j);
    184 
    185 				sum += toFloatVec(p)*f;
    186 			}
    187 
    188 			writeUnorm8<DstChannels>(tmpAccess, j, i, toColor(sum));
    189 		}
    190 	}
    191 
    192 	// Vertical pass
    193 	for (int j = 0; j < src.getHeight(); j++)
    194 	{
    195 		for (int i = 0; i < src.getWidth(); i++)
    196 		{
    197 			Vec4 sum(0.0f);
    198 
    199 			for (int ky = 0; ky < kh; ky++)
    200 			{
    201 				float		f = kernelY[kh-ky-1];
    202 				deUint32	p = readUnorm8<DstChannels>(tmpAccess, de::clamp(j+ky-shiftY, 0, tmp.getWidth()-1), i);
    203 
    204 				sum += toFloatVec(p)*f;
    205 			}
    206 
    207 			writeUnorm8<DstChannels>(dst, i, j, toColor(sum));
    208 		}
    209 	}
    210 }
    211 
    212 template<int NumChannels>
    213 static deUint32 distSquaredToNeighbor (de::Random& rnd, deUint32 pixel, const ConstPixelBufferAccess& surface, int x, int y)
    214 {
    215 	// (x, y) + (0, 0)
    216 	deUint32	minDist		= colorDistSquared(pixel, readUnorm8<NumChannels>(surface, x, y));
    217 
    218 	if (minDist == 0)
    219 		return minDist;
    220 
    221 	// Area around (x, y)
    222 	static const int s_coords[][2] =
    223 	{
    224 		{-1, -1},
    225 		{ 0, -1},
    226 		{+1, -1},
    227 		{-1,  0},
    228 		{+1,  0},
    229 		{-1, +1},
    230 		{ 0, +1},
    231 		{+1, +1}
    232 	};
    233 
    234 	for (int d = 0; d < (int)DE_LENGTH_OF_ARRAY(s_coords); d++)
    235 	{
    236 		int dx = x + s_coords[d][0];
    237 		int dy = y + s_coords[d][1];
    238 
    239 		if (!deInBounds32(dx, 0, surface.getWidth()) || !deInBounds32(dy, 0, surface.getHeight()))
    240 			continue;
    241 
    242 		minDist = de::min(minDist, colorDistSquared(pixel, readUnorm8<NumChannels>(surface, dx, dy)));
    243 		if (minDist == 0)
    244 			return minDist;
    245 	}
    246 
    247 	// Random bilinear-interpolated samples around (x, y)
    248 	for (int s = 0; s < 32; s++)
    249 	{
    250 		float dx = (float)x + rnd.getFloat()*2.0f - 0.5f;
    251 		float dy = (float)y + rnd.getFloat()*2.0f - 0.5f;
    252 
    253 		deUint32 sample = bilinearSample<NumChannels>(surface, dx, dy);
    254 
    255 		minDist = de::min(minDist, colorDistSquared(pixel, sample));
    256 		if (minDist == 0)
    257 			return minDist;
    258 	}
    259 
    260 	return minDist;
    261 }
    262 
    263 static inline float toGrayscale (const Vec4& c)
    264 {
    265 	return 0.2126f*c[0] + 0.7152f*c[1] + 0.0722f*c[2];
    266 }
    267 
    268 static bool isFormatSupported (const TextureFormat& format)
    269 {
    270 	return format.type == TextureFormat::UNORM_INT8 && (format.order == TextureFormat::RGB || format.order == TextureFormat::RGBA);
    271 }
    272 
    273 float fuzzyCompare (const FuzzyCompareParams& params, const ConstPixelBufferAccess& ref, const ConstPixelBufferAccess& cmp, const PixelBufferAccess& errorMask)
    274 {
    275 	DE_ASSERT(ref.getWidth() == cmp.getWidth() && ref.getHeight() == cmp.getHeight());
    276 	DE_ASSERT(errorMask.getWidth() == ref.getWidth() && errorMask.getHeight() == ref.getHeight());
    277 
    278 	if (!isFormatSupported(ref.getFormat()) || !isFormatSupported(cmp.getFormat()))
    279 		throw InternalError("Unsupported format in fuzzy comparison", DE_NULL, __FILE__, __LINE__);
    280 
    281 	int			width	= ref.getWidth();
    282 	int			height	= ref.getHeight();
    283 	de::Random	rnd		(667);
    284 
    285 	// Filtered
    286 	TextureLevel refFiltered(TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8), width, height);
    287 	TextureLevel cmpFiltered(TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8), width, height);
    288 
    289 	// Kernel = {0.1, 0.8, 0.1}
    290 	vector<float> kernel(3);
    291 	kernel[0] = kernel[2] = 0.1f; kernel[1]= 0.8f;
    292 	int shift = (int)(kernel.size() - 1) / 2;
    293 
    294 	switch (ref.getFormat().order)
    295 	{
    296 		case TextureFormat::RGBA:	separableConvolve<4, 4>(refFiltered, ref, shift, shift, kernel, kernel);	break;
    297 		case TextureFormat::RGB:	separableConvolve<4, 3>(refFiltered, ref, shift, shift, kernel, kernel);	break;
    298 		default:
    299 			DE_ASSERT(DE_FALSE);
    300 	}
    301 
    302 	switch (cmp.getFormat().order)
    303 	{
    304 		case TextureFormat::RGBA:	separableConvolve<4, 4>(cmpFiltered, cmp, shift, shift, kernel, kernel);	break;
    305 		case TextureFormat::RGB:	separableConvolve<4, 3>(cmpFiltered, cmp, shift, shift, kernel, kernel);	break;
    306 		default:
    307 			DE_ASSERT(DE_FALSE);
    308 	}
    309 
    310 	int			numSamples	= 0;
    311 	deUint64	distSum4	= 0ull;
    312 
    313 	// Clear error mask to green.
    314 	clear(errorMask, Vec4(0.0f, 1.0f, 0.0f, 1.0f));
    315 
    316 	ConstPixelBufferAccess refAccess = refFiltered.getAccess();
    317 	ConstPixelBufferAccess cmpAccess = cmpFiltered.getAccess();
    318 
    319 	for (int y = 1; y < height-1; y++)
    320 	{
    321 		for (int x = 1; x < width-1; x += params.maxSampleSkip > 0 ? (int)rnd.getInt(0, params.maxSampleSkip) : 1)
    322 		{
    323 			const deUint32	minDist2RefToCmp	= distSquaredToNeighbor<4>(rnd, readUnorm8<4>(refAccess, x, y), cmpAccess, x, y);
    324 			const deUint32	minDist2CmpToRef	= distSquaredToNeighbor<4>(rnd, readUnorm8<4>(cmpAccess, x, y), refAccess, x, y);
    325 			const deUint32	minDist2			= de::min(minDist2RefToCmp, minDist2CmpToRef);
    326 			const deUint64	newSum4				= distSum4 + minDist2*minDist2;
    327 
    328 			distSum4	 = (newSum4 >= distSum4) ? newSum4 : ~0ull; // In case of overflow
    329 			numSamples	+= 1;
    330 
    331 			// Build error image.
    332 			{
    333 				const int	scale	= 255-MIN_ERR_THRESHOLD;
    334 				const float	err2	= float(minDist2) / float(scale*scale);
    335 				const float	err4	= err2*err2;
    336 				const float	red		= err4 * 500.0f;
    337 				const float	luma	= toGrayscale(cmp.getPixel(x, y));
    338 				const float	rF		= 0.7f + 0.3f*luma;
    339 
    340 				errorMask.setPixel(Vec4(red*rF, (1.0f-red)*rF, 0.0f, 1.0f), x, y);
    341 			}
    342 		}
    343 	}
    344 
    345 	{
    346 		// Scale error sum based on number of samples taken
    347 		const double	pSamples	= double((width-2) * (height-2)) / double(numSamples);
    348 		const deUint64	colScale	= deUint64(255-MIN_ERR_THRESHOLD);
    349 		const deUint64	colScale4	= colScale*colScale*colScale*colScale;
    350 
    351 		return float(double(distSum4) / double(colScale4) * pSamples);
    352 	}
    353 }
    354 
    355 } // tcu
    356