Home | History | Annotate | Download | only in IterativeLinearSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012 Dsir Nuentsa-Wakam <desire.nuentsa_wakam (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_INCOMPLETE_LUT_H
     11 #define EIGEN_INCOMPLETE_LUT_H
     12 
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 /** \internal
     19   * Compute a quick-sort split of a vector
     20   * On output, the vector row is permuted such that its elements satisfy
     21   * abs(row(i)) >= abs(row(ncut)) if i<ncut
     22   * abs(row(i)) <= abs(row(ncut)) if i>ncut
     23   * \param row The vector of values
     24   * \param ind The array of index for the elements in @p row
     25   * \param ncut  The number of largest elements to keep
     26   **/
     27 template <typename VectorV, typename VectorI, typename Index>
     28 Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
     29 {
     30   typedef typename VectorV::RealScalar RealScalar;
     31   using std::swap;
     32   using std::abs;
     33   Index mid;
     34   Index n = row.size(); /* length of the vector */
     35   Index first, last ;
     36 
     37   ncut--; /* to fit the zero-based indices */
     38   first = 0;
     39   last = n-1;
     40   if (ncut < first || ncut > last ) return 0;
     41 
     42   do {
     43     mid = first;
     44     RealScalar abskey = abs(row(mid));
     45     for (Index j = first + 1; j <= last; j++) {
     46       if ( abs(row(j)) > abskey) {
     47         ++mid;
     48         swap(row(mid), row(j));
     49         swap(ind(mid), ind(j));
     50       }
     51     }
     52     /* Interchange for the pivot element */
     53     swap(row(mid), row(first));
     54     swap(ind(mid), ind(first));
     55 
     56     if (mid > ncut) last = mid - 1;
     57     else if (mid < ncut ) first = mid + 1;
     58   } while (mid != ncut );
     59 
     60   return 0; /* mid is equal to ncut */
     61 }
     62 
     63 }// end namespace internal
     64 
     65 /** \ingroup IterativeLinearSolvers_Module
     66   * \class IncompleteLUT
     67   * \brief Incomplete LU factorization with dual-threshold strategy
     68   *
     69   * During the numerical factorization, two dropping rules are used :
     70   *  1) any element whose magnitude is less than some tolerance is dropped.
     71   *    This tolerance is obtained by multiplying the input tolerance @p droptol
     72   *    by the average magnitude of all the original elements in the current row.
     73   *  2) After the elimination of the row, only the @p fill largest elements in
     74   *    the L part and the @p fill largest elements in the U part are kept
     75   *    (in addition to the diagonal element ). Note that @p fill is computed from
     76   *    the input parameter @p fillfactor which is used the ratio to control the fill_in
     77   *    relatively to the initial number of nonzero elements.
     78   *
     79   * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
     80   * and when @p fill=n/2 with @p droptol being different to zero.
     81   *
     82   * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
     83   *              Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
     84   *
     85   * NOTE : The following implementation is derived from the ILUT implementation
     86   * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
     87   *  released under the terms of the GNU LGPL:
     88   *    http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
     89   * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
     90   * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
     91   *   http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
     92   * alternatively, on GMANE:
     93   *   http://comments.gmane.org/gmane.comp.lib.eigen/3302
     94   */
     95 template <typename _Scalar>
     96 class IncompleteLUT : internal::noncopyable
     97 {
     98     typedef _Scalar Scalar;
     99     typedef typename NumTraits<Scalar>::Real RealScalar;
    100     typedef Matrix<Scalar,Dynamic,1> Vector;
    101     typedef SparseMatrix<Scalar,RowMajor> FactorType;
    102     typedef SparseMatrix<Scalar,ColMajor> PermutType;
    103     typedef typename FactorType::Index Index;
    104 
    105   public:
    106     typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
    107 
    108     IncompleteLUT()
    109       : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
    110         m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
    111     {}
    112 
    113     template<typename MatrixType>
    114     IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
    115       : m_droptol(droptol),m_fillfactor(fillfactor),
    116         m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
    117     {
    118       eigen_assert(fillfactor != 0);
    119       compute(mat);
    120     }
    121 
    122     Index rows() const { return m_lu.rows(); }
    123 
    124     Index cols() const { return m_lu.cols(); }
    125 
    126     /** \brief Reports whether previous computation was successful.
    127       *
    128       * \returns \c Success if computation was succesful,
    129       *          \c NumericalIssue if the matrix.appears to be negative.
    130       */
    131     ComputationInfo info() const
    132     {
    133       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
    134       return m_info;
    135     }
    136 
    137     template<typename MatrixType>
    138     void analyzePattern(const MatrixType& amat);
    139 
    140     template<typename MatrixType>
    141     void factorize(const MatrixType& amat);
    142 
    143     /**
    144       * Compute an incomplete LU factorization with dual threshold on the matrix mat
    145       * No pivoting is done in this version
    146       *
    147       **/
    148     template<typename MatrixType>
    149     IncompleteLUT<Scalar>& compute(const MatrixType& amat)
    150     {
    151       analyzePattern(amat);
    152       factorize(amat);
    153       return *this;
    154     }
    155 
    156     void setDroptol(const RealScalar& droptol);
    157     void setFillfactor(int fillfactor);
    158 
    159     template<typename Rhs, typename Dest>
    160     void _solve(const Rhs& b, Dest& x) const
    161     {
    162       x = m_Pinv * b;
    163       x = m_lu.template triangularView<UnitLower>().solve(x);
    164       x = m_lu.template triangularView<Upper>().solve(x);
    165       x = m_P * x;
    166     }
    167 
    168     template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
    169      solve(const MatrixBase<Rhs>& b) const
    170     {
    171       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
    172       eigen_assert(cols()==b.rows()
    173                 && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
    174       return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
    175     }
    176 
    177 protected:
    178 
    179     /** keeps off-diagonal entries; drops diagonal entries */
    180     struct keep_diag {
    181       inline bool operator() (const Index& row, const Index& col, const Scalar&) const
    182       {
    183         return row!=col;
    184       }
    185     };
    186 
    187 protected:
    188 
    189     FactorType m_lu;
    190     RealScalar m_droptol;
    191     int m_fillfactor;
    192     bool m_analysisIsOk;
    193     bool m_factorizationIsOk;
    194     bool m_isInitialized;
    195     ComputationInfo m_info;
    196     PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // Fill-reducing permutation
    197     PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // Inverse permutation
    198 };
    199 
    200 /**
    201  * Set control parameter droptol
    202  *  \param droptol   Drop any element whose magnitude is less than this tolerance
    203  **/
    204 template<typename Scalar>
    205 void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
    206 {
    207   this->m_droptol = droptol;
    208 }
    209 
    210 /**
    211  * Set control parameter fillfactor
    212  * \param fillfactor  This is used to compute the  number @p fill_in of largest elements to keep on each row.
    213  **/
    214 template<typename Scalar>
    215 void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
    216 {
    217   this->m_fillfactor = fillfactor;
    218 }
    219 
    220 template <typename Scalar>
    221 template<typename _MatrixType>
    222 void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
    223 {
    224   // Compute the Fill-reducing permutation
    225   SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
    226   SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
    227   // Symmetrize the pattern
    228   // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
    229   //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
    230   SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
    231   AtA.prune(keep_diag());
    232   internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P);  // Then compute the AMD ordering...
    233 
    234   m_Pinv  = m_P.inverse(); // ... and the inverse permutation
    235 
    236   m_analysisIsOk = true;
    237   m_factorizationIsOk = false;
    238   m_isInitialized = false;
    239 }
    240 
    241 template <typename Scalar>
    242 template<typename _MatrixType>
    243 void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
    244 {
    245   using std::sqrt;
    246   using std::swap;
    247   using std::abs;
    248 
    249   eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
    250   Index n = amat.cols();  // Size of the matrix
    251   m_lu.resize(n,n);
    252   // Declare Working vectors and variables
    253   Vector u(n) ;     // real values of the row -- maximum size is n --
    254   VectorXi ju(n);   // column position of the values in u -- maximum size  is n
    255   VectorXi jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
    256 
    257   // Apply the fill-reducing permutation
    258   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
    259   SparseMatrix<Scalar,RowMajor, Index> mat;
    260   mat = amat.twistedBy(m_Pinv);
    261 
    262   // Initialization
    263   jr.fill(-1);
    264   ju.fill(0);
    265   u.fill(0);
    266 
    267   // number of largest elements to keep in each row:
    268   Index fill_in =   static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
    269   if (fill_in > n) fill_in = n;
    270 
    271   // number of largest nonzero elements to keep in the L and the U part of the current row:
    272   Index nnzL = fill_in/2;
    273   Index nnzU = nnzL;
    274   m_lu.reserve(n * (nnzL + nnzU + 1));
    275 
    276   // global loop over the rows of the sparse matrix
    277   for (Index ii = 0; ii < n; ii++)
    278   {
    279     // 1 - copy the lower and the upper part of the row i of mat in the working vector u
    280 
    281     Index sizeu = 1; // number of nonzero elements in the upper part of the current row
    282     Index sizel = 0; // number of nonzero elements in the lower part of the current row
    283     ju(ii)    = ii;
    284     u(ii)     = 0;
    285     jr(ii)    = ii;
    286     RealScalar rownorm = 0;
    287 
    288     typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
    289     for (; j_it; ++j_it)
    290     {
    291       Index k = j_it.index();
    292       if (k < ii)
    293       {
    294         // copy the lower part
    295         ju(sizel) = k;
    296         u(sizel) = j_it.value();
    297         jr(k) = sizel;
    298         ++sizel;
    299       }
    300       else if (k == ii)
    301       {
    302         u(ii) = j_it.value();
    303       }
    304       else
    305       {
    306         // copy the upper part
    307         Index jpos = ii + sizeu;
    308         ju(jpos) = k;
    309         u(jpos) = j_it.value();
    310         jr(k) = jpos;
    311         ++sizeu;
    312       }
    313       rownorm += numext::abs2(j_it.value());
    314     }
    315 
    316     // 2 - detect possible zero row
    317     if(rownorm==0)
    318     {
    319       m_info = NumericalIssue;
    320       return;
    321     }
    322     // Take the 2-norm of the current row as a relative tolerance
    323     rownorm = sqrt(rownorm);
    324 
    325     // 3 - eliminate the previous nonzero rows
    326     Index jj = 0;
    327     Index len = 0;
    328     while (jj < sizel)
    329     {
    330       // In order to eliminate in the correct order,
    331       // we must select first the smallest column index among  ju(jj:sizel)
    332       Index k;
    333       Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
    334       k += jj;
    335       if (minrow != ju(jj))
    336       {
    337         // swap the two locations
    338         Index j = ju(jj);
    339         swap(ju(jj), ju(k));
    340         jr(minrow) = jj;   jr(j) = k;
    341         swap(u(jj), u(k));
    342       }
    343       // Reset this location
    344       jr(minrow) = -1;
    345 
    346       // Start elimination
    347       typename FactorType::InnerIterator ki_it(m_lu, minrow);
    348       while (ki_it && ki_it.index() < minrow) ++ki_it;
    349       eigen_internal_assert(ki_it && ki_it.col()==minrow);
    350       Scalar fact = u(jj) / ki_it.value();
    351 
    352       // drop too small elements
    353       if(abs(fact) <= m_droptol)
    354       {
    355         jj++;
    356         continue;
    357       }
    358 
    359       // linear combination of the current row ii and the row minrow
    360       ++ki_it;
    361       for (; ki_it; ++ki_it)
    362       {
    363         Scalar prod = fact * ki_it.value();
    364         Index j       = ki_it.index();
    365         Index jpos    = jr(j);
    366         if (jpos == -1) // fill-in element
    367         {
    368           Index newpos;
    369           if (j >= ii) // dealing with the upper part
    370           {
    371             newpos = ii + sizeu;
    372             sizeu++;
    373             eigen_internal_assert(sizeu<=n);
    374           }
    375           else // dealing with the lower part
    376           {
    377             newpos = sizel;
    378             sizel++;
    379             eigen_internal_assert(sizel<=ii);
    380           }
    381           ju(newpos) = j;
    382           u(newpos) = -prod;
    383           jr(j) = newpos;
    384         }
    385         else
    386           u(jpos) -= prod;
    387       }
    388       // store the pivot element
    389       u(len) = fact;
    390       ju(len) = minrow;
    391       ++len;
    392 
    393       jj++;
    394     } // end of the elimination on the row ii
    395 
    396     // reset the upper part of the pointer jr to zero
    397     for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
    398 
    399     // 4 - partially sort and insert the elements in the m_lu matrix
    400 
    401     // sort the L-part of the row
    402     sizel = len;
    403     len = (std::min)(sizel, nnzL);
    404     typename Vector::SegmentReturnType ul(u.segment(0, sizel));
    405     typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
    406     internal::QuickSplit(ul, jul, len);
    407 
    408     // store the largest m_fill elements of the L part
    409     m_lu.startVec(ii);
    410     for(Index k = 0; k < len; k++)
    411       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
    412 
    413     // store the diagonal element
    414     // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
    415     if (u(ii) == Scalar(0))
    416       u(ii) = sqrt(m_droptol) * rownorm;
    417     m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
    418 
    419     // sort the U-part of the row
    420     // apply the dropping rule first
    421     len = 0;
    422     for(Index k = 1; k < sizeu; k++)
    423     {
    424       if(abs(u(ii+k)) > m_droptol * rownorm )
    425       {
    426         ++len;
    427         u(ii + len)  = u(ii + k);
    428         ju(ii + len) = ju(ii + k);
    429       }
    430     }
    431     sizeu = len + 1; // +1 to take into account the diagonal element
    432     len = (std::min)(sizeu, nnzU);
    433     typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
    434     typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
    435     internal::QuickSplit(uu, juu, len);
    436 
    437     // store the largest elements of the U part
    438     for(Index k = ii + 1; k < ii + len; k++)
    439       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
    440   }
    441 
    442   m_lu.finalize();
    443   m_lu.makeCompressed();
    444 
    445   m_factorizationIsOk = true;
    446   m_isInitialized = m_factorizationIsOk;
    447   m_info = Success;
    448 }
    449 
    450 namespace internal {
    451 
    452 template<typename _MatrixType, typename Rhs>
    453 struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
    454   : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
    455 {
    456   typedef IncompleteLUT<_MatrixType> Dec;
    457   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    458 
    459   template<typename Dest> void evalTo(Dest& dst) const
    460   {
    461     dec()._solve(rhs(),dst);
    462   }
    463 };
    464 
    465 } // end namespace internal
    466 
    467 } // end namespace Eigen
    468 
    469 #endif // EIGEN_INCOMPLETE_LUT_H
    470