Home | History | Annotate | Download | only in fortran
      1       SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
      2 *     .. Scalar Arguments ..
      3       REAL ALPHA,BETA
      4       INTEGER INCX,INCY,K,LDA,N
      5       CHARACTER UPLO
      6 *     ..
      7 *     .. Array Arguments ..
      8       REAL A(LDA,*),X(*),Y(*)
      9 *     ..
     10 *
     11 *  Purpose
     12 *  =======
     13 *
     14 *  SSBMV  performs the matrix-vector  operation
     15 *
     16 *     y := alpha*A*x + beta*y,
     17 *
     18 *  where alpha and beta are scalars, x and y are n element vectors and
     19 *  A is an n by n symmetric band matrix, with k super-diagonals.
     20 *
     21 *  Arguments
     22 *  ==========
     23 *
     24 *  UPLO   - CHARACTER*1.
     25 *           On entry, UPLO specifies whether the upper or lower
     26 *           triangular part of the band matrix A is being supplied as
     27 *           follows:
     28 *
     29 *              UPLO = 'U' or 'u'   The upper triangular part of A is
     30 *                                  being supplied.
     31 *
     32 *              UPLO = 'L' or 'l'   The lower triangular part of A is
     33 *                                  being supplied.
     34 *
     35 *           Unchanged on exit.
     36 *
     37 *  N      - INTEGER.
     38 *           On entry, N specifies the order of the matrix A.
     39 *           N must be at least zero.
     40 *           Unchanged on exit.
     41 *
     42 *  K      - INTEGER.
     43 *           On entry, K specifies the number of super-diagonals of the
     44 *           matrix A. K must satisfy  0 .le. K.
     45 *           Unchanged on exit.
     46 *
     47 *  ALPHA  - REAL            .
     48 *           On entry, ALPHA specifies the scalar alpha.
     49 *           Unchanged on exit.
     50 *
     51 *  A      - REAL             array of DIMENSION ( LDA, n ).
     52 *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
     53 *           by n part of the array A must contain the upper triangular
     54 *           band part of the symmetric matrix, supplied column by
     55 *           column, with the leading diagonal of the matrix in row
     56 *           ( k + 1 ) of the array, the first super-diagonal starting at
     57 *           position 2 in row k, and so on. The top left k by k triangle
     58 *           of the array A is not referenced.
     59 *           The following program segment will transfer the upper
     60 *           triangular part of a symmetric band matrix from conventional
     61 *           full matrix storage to band storage:
     62 *
     63 *                 DO 20, J = 1, N
     64 *                    M = K + 1 - J
     65 *                    DO 10, I = MAX( 1, J - K ), J
     66 *                       A( M + I, J ) = matrix( I, J )
     67 *              10    CONTINUE
     68 *              20 CONTINUE
     69 *
     70 *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
     71 *           by n part of the array A must contain the lower triangular
     72 *           band part of the symmetric matrix, supplied column by
     73 *           column, with the leading diagonal of the matrix in row 1 of
     74 *           the array, the first sub-diagonal starting at position 1 in
     75 *           row 2, and so on. The bottom right k by k triangle of the
     76 *           array A is not referenced.
     77 *           The following program segment will transfer the lower
     78 *           triangular part of a symmetric band matrix from conventional
     79 *           full matrix storage to band storage:
     80 *
     81 *                 DO 20, J = 1, N
     82 *                    M = 1 - J
     83 *                    DO 10, I = J, MIN( N, J + K )
     84 *                       A( M + I, J ) = matrix( I, J )
     85 *              10    CONTINUE
     86 *              20 CONTINUE
     87 *
     88 *           Unchanged on exit.
     89 *
     90 *  LDA    - INTEGER.
     91 *           On entry, LDA specifies the first dimension of A as declared
     92 *           in the calling (sub) program. LDA must be at least
     93 *           ( k + 1 ).
     94 *           Unchanged on exit.
     95 *
     96 *  X      - REAL             array of DIMENSION at least
     97 *           ( 1 + ( n - 1 )*abs( INCX ) ).
     98 *           Before entry, the incremented array X must contain the
     99 *           vector x.
    100 *           Unchanged on exit.
    101 *
    102 *  INCX   - INTEGER.
    103 *           On entry, INCX specifies the increment for the elements of
    104 *           X. INCX must not be zero.
    105 *           Unchanged on exit.
    106 *
    107 *  BETA   - REAL            .
    108 *           On entry, BETA specifies the scalar beta.
    109 *           Unchanged on exit.
    110 *
    111 *  Y      - REAL             array of DIMENSION at least
    112 *           ( 1 + ( n - 1 )*abs( INCY ) ).
    113 *           Before entry, the incremented array Y must contain the
    114 *           vector y. On exit, Y is overwritten by the updated vector y.
    115 *
    116 *  INCY   - INTEGER.
    117 *           On entry, INCY specifies the increment for the elements of
    118 *           Y. INCY must not be zero.
    119 *           Unchanged on exit.
    120 *
    121 *  Further Details
    122 *  ===============
    123 *
    124 *  Level 2 Blas routine.
    125 *
    126 *  -- Written on 22-October-1986.
    127 *     Jack Dongarra, Argonne National Lab.
    128 *     Jeremy Du Croz, Nag Central Office.
    129 *     Sven Hammarling, Nag Central Office.
    130 *     Richard Hanson, Sandia National Labs.
    131 *
    132 *  =====================================================================
    133 *
    134 *     .. Parameters ..
    135       REAL ONE,ZERO
    136       PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
    137 *     ..
    138 *     .. Local Scalars ..
    139       REAL TEMP1,TEMP2
    140       INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
    141 *     ..
    142 *     .. External Functions ..
    143       LOGICAL LSAME
    144       EXTERNAL LSAME
    145 *     ..
    146 *     .. External Subroutines ..
    147       EXTERNAL XERBLA
    148 *     ..
    149 *     .. Intrinsic Functions ..
    150       INTRINSIC MAX,MIN
    151 *     ..
    152 *
    153 *     Test the input parameters.
    154 *
    155       INFO = 0
    156       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    157           INFO = 1
    158       ELSE IF (N.LT.0) THEN
    159           INFO = 2
    160       ELSE IF (K.LT.0) THEN
    161           INFO = 3
    162       ELSE IF (LDA.LT. (K+1)) THEN
    163           INFO = 6
    164       ELSE IF (INCX.EQ.0) THEN
    165           INFO = 8
    166       ELSE IF (INCY.EQ.0) THEN
    167           INFO = 11
    168       END IF
    169       IF (INFO.NE.0) THEN
    170           CALL XERBLA('SSBMV ',INFO)
    171           RETURN
    172       END IF
    173 *
    174 *     Quick return if possible.
    175 *
    176       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
    177 *
    178 *     Set up the start points in  X  and  Y.
    179 *
    180       IF (INCX.GT.0) THEN
    181           KX = 1
    182       ELSE
    183           KX = 1 - (N-1)*INCX
    184       END IF
    185       IF (INCY.GT.0) THEN
    186           KY = 1
    187       ELSE
    188           KY = 1 - (N-1)*INCY
    189       END IF
    190 *
    191 *     Start the operations. In this version the elements of the array A
    192 *     are accessed sequentially with one pass through A.
    193 *
    194 *     First form  y := beta*y.
    195 *
    196       IF (BETA.NE.ONE) THEN
    197           IF (INCY.EQ.1) THEN
    198               IF (BETA.EQ.ZERO) THEN
    199                   DO 10 I = 1,N
    200                       Y(I) = ZERO
    201    10             CONTINUE
    202               ELSE
    203                   DO 20 I = 1,N
    204                       Y(I) = BETA*Y(I)
    205    20             CONTINUE
    206               END IF
    207           ELSE
    208               IY = KY
    209               IF (BETA.EQ.ZERO) THEN
    210                   DO 30 I = 1,N
    211                       Y(IY) = ZERO
    212                       IY = IY + INCY
    213    30             CONTINUE
    214               ELSE
    215                   DO 40 I = 1,N
    216                       Y(IY) = BETA*Y(IY)
    217                       IY = IY + INCY
    218    40             CONTINUE
    219               END IF
    220           END IF
    221       END IF
    222       IF (ALPHA.EQ.ZERO) RETURN
    223       IF (LSAME(UPLO,'U')) THEN
    224 *
    225 *        Form  y  when upper triangle of A is stored.
    226 *
    227           KPLUS1 = K + 1
    228           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
    229               DO 60 J = 1,N
    230                   TEMP1 = ALPHA*X(J)
    231                   TEMP2 = ZERO
    232                   L = KPLUS1 - J
    233                   DO 50 I = MAX(1,J-K),J - 1
    234                       Y(I) = Y(I) + TEMP1*A(L+I,J)
    235                       TEMP2 = TEMP2 + A(L+I,J)*X(I)
    236    50             CONTINUE
    237                   Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
    238    60         CONTINUE
    239           ELSE
    240               JX = KX
    241               JY = KY
    242               DO 80 J = 1,N
    243                   TEMP1 = ALPHA*X(JX)
    244                   TEMP2 = ZERO
    245                   IX = KX
    246                   IY = KY
    247                   L = KPLUS1 - J
    248                   DO 70 I = MAX(1,J-K),J - 1
    249                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
    250                       TEMP2 = TEMP2 + A(L+I,J)*X(IX)
    251                       IX = IX + INCX
    252                       IY = IY + INCY
    253    70             CONTINUE
    254                   Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
    255                   JX = JX + INCX
    256                   JY = JY + INCY
    257                   IF (J.GT.K) THEN
    258                       KX = KX + INCX
    259                       KY = KY + INCY
    260                   END IF
    261    80         CONTINUE
    262           END IF
    263       ELSE
    264 *
    265 *        Form  y  when lower triangle of A is stored.
    266 *
    267           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
    268               DO 100 J = 1,N
    269                   TEMP1 = ALPHA*X(J)
    270                   TEMP2 = ZERO
    271                   Y(J) = Y(J) + TEMP1*A(1,J)
    272                   L = 1 - J
    273                   DO 90 I = J + 1,MIN(N,J+K)
    274                       Y(I) = Y(I) + TEMP1*A(L+I,J)
    275                       TEMP2 = TEMP2 + A(L+I,J)*X(I)
    276    90             CONTINUE
    277                   Y(J) = Y(J) + ALPHA*TEMP2
    278   100         CONTINUE
    279           ELSE
    280               JX = KX
    281               JY = KY
    282               DO 120 J = 1,N
    283                   TEMP1 = ALPHA*X(JX)
    284                   TEMP2 = ZERO
    285                   Y(JY) = Y(JY) + TEMP1*A(1,J)
    286                   L = 1 - J
    287                   IX = JX
    288                   IY = JY
    289                   DO 110 I = J + 1,MIN(N,J+K)
    290                       IX = IX + INCX
    291                       IY = IY + INCY
    292                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
    293                       TEMP2 = TEMP2 + A(L+I,J)*X(IX)
    294   110             CONTINUE
    295                   Y(JY) = Y(JY) + ALPHA*TEMP2
    296                   JX = JX + INCX
    297                   JY = JY + INCY
    298   120         CONTINUE
    299           END IF
    300       END IF
    301 *
    302       RETURN
    303 *
    304 *     End of SSBMV .
    305 *
    306       END
    307