Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #define EIGEN_NO_STATIC_ASSERT
     11 
     12 #include "main.h"
     13 
     14 template<typename MatrixType> void basicStuff(const MatrixType& m)
     15 {
     16   typedef typename MatrixType::Index Index;
     17   typedef typename MatrixType::Scalar Scalar;
     18   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     19   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
     20 
     21   Index rows = m.rows();
     22   Index cols = m.cols();
     23 
     24   // this test relies a lot on Random.h, and there's not much more that we can do
     25   // to test it, hence I consider that we will have tested Random.h
     26   MatrixType m1 = MatrixType::Random(rows, cols),
     27              m2 = MatrixType::Random(rows, cols),
     28              m3(rows, cols),
     29              mzero = MatrixType::Zero(rows, cols),
     30              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
     31   VectorType v1 = VectorType::Random(rows),
     32              vzero = VectorType::Zero(rows);
     33   SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
     34 
     35   Scalar x = 0;
     36   while(x == Scalar(0)) x = internal::random<Scalar>();
     37 
     38   Index r = internal::random<Index>(0, rows-1),
     39         c = internal::random<Index>(0, cols-1);
     40 
     41   m1.coeffRef(r,c) = x;
     42   VERIFY_IS_APPROX(x, m1.coeff(r,c));
     43   m1(r,c) = x;
     44   VERIFY_IS_APPROX(x, m1(r,c));
     45   v1.coeffRef(r) = x;
     46   VERIFY_IS_APPROX(x, v1.coeff(r));
     47   v1(r) = x;
     48   VERIFY_IS_APPROX(x, v1(r));
     49   v1[r] = x;
     50   VERIFY_IS_APPROX(x, v1[r]);
     51 
     52   VERIFY_IS_APPROX(               v1,    v1);
     53   VERIFY_IS_NOT_APPROX(           v1,    2*v1);
     54   VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1);
     55   VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.squaredNorm());
     56   VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1);
     57   VERIFY_IS_APPROX(               vzero, v1-v1);
     58   VERIFY_IS_APPROX(               m1,    m1);
     59   VERIFY_IS_NOT_APPROX(           m1,    2*m1);
     60   VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1);
     61   VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1);
     62   VERIFY_IS_APPROX(               mzero, m1-m1);
     63 
     64   // always test operator() on each read-only expression class,
     65   // in order to check const-qualifiers.
     66   // indeed, if an expression class (here Zero) is meant to be read-only,
     67   // hence has no _write() method, the corresponding MatrixBase method (here zero())
     68   // should return a const-qualified object so that it is the const-qualified
     69   // operator() that gets called, which in turn calls _read().
     70   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
     71 
     72   // now test copying a row-vector into a (column-)vector and conversely.
     73   square.col(r) = square.row(r).eval();
     74   Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
     75   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
     76   rv = square.row(r);
     77   cv = square.col(r);
     78 
     79   VERIFY_IS_APPROX(rv, cv.transpose());
     80 
     81   if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
     82   {
     83     VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
     84   }
     85 
     86   if(cols!=1 && rows!=1)
     87   {
     88     VERIFY_RAISES_ASSERT(m1[0]);
     89     VERIFY_RAISES_ASSERT((m1+m1)[0]);
     90   }
     91 
     92   VERIFY_IS_APPROX(m3 = m1,m1);
     93   MatrixType m4;
     94   VERIFY_IS_APPROX(m4 = m1,m1);
     95 
     96   m3.real() = m1.real();
     97   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
     98   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
     99 
    100   // check == / != operators
    101   VERIFY(m1==m1);
    102   VERIFY(m1!=m2);
    103   VERIFY(!(m1==m2));
    104   VERIFY(!(m1!=m1));
    105   m1 = m2;
    106   VERIFY(m1==m2);
    107   VERIFY(!(m1!=m2));
    108 
    109   // check automatic transposition
    110   sm2.setZero();
    111   for(typename MatrixType::Index i=0;i<rows;++i)
    112     sm2.col(i) = sm1.row(i);
    113   VERIFY_IS_APPROX(sm2,sm1.transpose());
    114 
    115   sm2.setZero();
    116   for(typename MatrixType::Index i=0;i<rows;++i)
    117     sm2.col(i).noalias() = sm1.row(i);
    118   VERIFY_IS_APPROX(sm2,sm1.transpose());
    119 
    120   sm2.setZero();
    121   for(typename MatrixType::Index i=0;i<rows;++i)
    122     sm2.col(i).noalias() += sm1.row(i);
    123   VERIFY_IS_APPROX(sm2,sm1.transpose());
    124 
    125   sm2.setZero();
    126   for(typename MatrixType::Index i=0;i<rows;++i)
    127     sm2.col(i).noalias() -= sm1.row(i);
    128   VERIFY_IS_APPROX(sm2,-sm1.transpose());
    129 }
    130 
    131 template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
    132 {
    133   typedef typename MatrixType::Index Index;
    134   typedef typename MatrixType::Scalar Scalar;
    135   typedef typename NumTraits<Scalar>::Real RealScalar;
    136   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
    137 
    138   Index rows = m.rows();
    139   Index cols = m.cols();
    140 
    141   Scalar s1 = internal::random<Scalar>(),
    142          s2 = internal::random<Scalar>();
    143 
    144   VERIFY(numext::real(s1)==numext::real_ref(s1));
    145   VERIFY(numext::imag(s1)==numext::imag_ref(s1));
    146   numext::real_ref(s1) = numext::real(s2);
    147   numext::imag_ref(s1) = numext::imag(s2);
    148   VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
    149   // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
    150 
    151   RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
    152                  rm2 = RealMatrixType::Random(rows,cols);
    153   MatrixType cm(rows,cols);
    154   cm.real() = rm1;
    155   cm.imag() = rm2;
    156   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
    157   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
    158   rm1.setZero();
    159   rm2.setZero();
    160   rm1 = cm.real();
    161   rm2 = cm.imag();
    162   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
    163   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
    164   cm.real().setZero();
    165   VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
    166   VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
    167 }
    168 
    169 #ifdef EIGEN_TEST_PART_2
    170 void casting()
    171 {
    172   Matrix4f m = Matrix4f::Random(), m2;
    173   Matrix4d n = m.cast<double>();
    174   VERIFY(m.isApprox(n.cast<float>()));
    175   m2 = m.cast<float>(); // check the specialization when NewType == Type
    176   VERIFY(m.isApprox(m2));
    177 }
    178 #endif
    179 
    180 template <typename Scalar>
    181 void fixedSizeMatrixConstruction()
    182 {
    183   const Scalar raw[3] = {1,2,3};
    184   Matrix<Scalar,3,1> m(raw);
    185   Array<Scalar,3,1> a(raw);
    186   VERIFY(m(0) == 1);
    187   VERIFY(m(1) == 2);
    188   VERIFY(m(2) == 3);
    189   VERIFY(a(0) == 1);
    190   VERIFY(a(1) == 2);
    191   VERIFY(a(2) == 3);
    192 }
    193 
    194 void test_basicstuff()
    195 {
    196   for(int i = 0; i < g_repeat; i++) {
    197     CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
    198     CALL_SUBTEST_2( basicStuff(Matrix4d()) );
    199     CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    200     CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    201     CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    202     CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
    203     CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    204 
    205     CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    206     CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    207   }
    208 
    209   CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
    210   CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
    211   CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
    212 
    213   CALL_SUBTEST_2(casting());
    214 }
    215