Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <Eigen/Array>
     12 #include <Eigen/QR>
     13 
     14 template<typename Derived1, typename Derived2>
     15 bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = precision<typename Derived1::RealScalar>())
     16 {
     17   return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon
     18                           * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
     19 }
     20 
     21 template<typename MatrixType> void product(const MatrixType& m)
     22 {
     23   /* this test covers the following files:
     24      Identity.h Product.h
     25   */
     26 
     27   typedef typename MatrixType::Scalar Scalar;
     28   typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint;
     29   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
     30   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
     31   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
     32   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
     33   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
     34                          MatrixType::Options^RowMajor> OtherMajorMatrixType;
     35 
     36   int rows = m.rows();
     37   int cols = m.cols();
     38 
     39   // this test relies a lot on Random.h, and there's not much more that we can do
     40   // to test it, hence I consider that we will have tested Random.h
     41   MatrixType m1 = MatrixType::Random(rows, cols),
     42              m2 = MatrixType::Random(rows, cols),
     43              m3(rows, cols);
     44   RowSquareMatrixType
     45              identity = RowSquareMatrixType::Identity(rows, rows),
     46              square = RowSquareMatrixType::Random(rows, rows),
     47              res = RowSquareMatrixType::Random(rows, rows);
     48   ColSquareMatrixType
     49              square2 = ColSquareMatrixType::Random(cols, cols),
     50              res2 = ColSquareMatrixType::Random(cols, cols);
     51   RowVectorType v1 = RowVectorType::Random(rows);
     52   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
     53   OtherMajorMatrixType tm1 = m1;
     54 
     55   Scalar s1 = ei_random<Scalar>();
     56 
     57   int r = ei_random<int>(0, rows-1),
     58       c = ei_random<int>(0, cols-1);
     59 
     60   // begin testing Product.h: only associativity for now
     61   // (we use Transpose.h but this doesn't count as a test for it)
     62 
     63   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
     64   m3 = m1;
     65   m3 *= m1.transpose() * m2;
     66   VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));
     67   VERIFY_IS_APPROX(m3,                      m1.lazy() * (m1.transpose()*m2));
     68 
     69   // continue testing Product.h: distributivity
     70   VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2);
     71   VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2);
     72 
     73   // continue testing Product.h: compatibility with ScalarMultiple.h
     74   VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1);
     75   VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1));
     76 
     77   // again, test operator() to check const-qualification
     78   s1 += (square.lazy() * m1)(r,c);
     79 
     80   // test Product.h together with Identity.h
     81   VERIFY_IS_APPROX(v1,                      identity*v1);
     82   VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity);
     83   // again, test operator() to check const-qualification
     84   VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
     85 
     86   if (rows!=cols)
     87      VERIFY_RAISES_ASSERT(m3 = m1*m1);
     88 
     89   // test the previous tests were not screwed up because operator* returns 0
     90   // (we use the more accurate default epsilon)
     91   if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
     92   {
     93     VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
     94   }
     95 
     96   // test optimized operator+= path
     97   res = square;
     98   res += (m1 * m2.transpose()).lazy();
     99   VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
    100   if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
    101   {
    102     VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
    103   }
    104   vcres = vc2;
    105   vcres += (m1.transpose() * v1).lazy();
    106   VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
    107   tm1 = m1;
    108   VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
    109   VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
    110 
    111   // test submatrix and matrix/vector product
    112   for (int i=0; i<rows; ++i)
    113     res.row(i) = m1.row(i) * m2.transpose();
    114   VERIFY_IS_APPROX(res, m1 * m2.transpose());
    115   // the other way round:
    116   for (int i=0; i<rows; ++i)
    117     res.col(i) = m1 * m2.transpose().col(i);
    118   VERIFY_IS_APPROX(res, m1 * m2.transpose());
    119 
    120   res2 = square2;
    121   res2 += (m1.transpose() * m2).lazy();
    122   VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
    123 
    124   if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
    125   {
    126     VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
    127   }
    128 }
    129 
    130