Home | History | Annotate | Download | only in fdlibm
      1 
      2 /* @(#)e_acosh.c 1.3 95/01/18 */
      3 /*
      4  * ====================================================
      5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      6  *
      7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
      8  * Permission to use, copy, modify, and distribute this
      9  * software is freely granted, provided that this notice
     10  * is preserved.
     11  * ====================================================
     12  *
     13  */
     14 
     15 /* __ieee754_acosh(x)
     16  * Method :
     17  *	Based on
     18  *		acosh(x) = log [ x + ieee_sqrt(x*x-1) ]
     19  *	we have
     20  *		acosh(x) := ieee_log(x)+ln2,	if x is large; else
     21  *		acosh(x) := ieee_log(2x-1/(ieee_sqrt(x*x-1)+x)) if x>2; else
     22  *		acosh(x) := ieee_log1p(t+ieee_sqrt(2.0*t+t*t)); where t=x-1.
     23  *
     24  * Special cases:
     25  *	acosh(x) is NaN with signal if x<1.
     26  *	acosh(NaN) is NaN without signal.
     27  */
     28 
     29 #include "fdlibm.h"
     30 
     31 #ifdef __STDC__
     32 static const double
     33 #else
     34 static double
     35 #endif
     36 one	= 1.0,
     37 ln2	= 6.93147180559945286227e-01;  /* 0x3FE62E42, 0xFEFA39EF */
     38 
     39 #ifdef __STDC__
     40 	double __ieee754_acosh(double x)
     41 #else
     42 	double __ieee754_acosh(x)
     43 	double x;
     44 #endif
     45 {
     46 	double t;
     47 	int hx;
     48 	hx = __HI(x);
     49 	if(hx<0x3ff00000) {		/* x < 1 */
     50 	    return (x-x)/(x-x);
     51 	} else if(hx >=0x41b00000) {	/* x > 2**28 */
     52 	    if(hx >=0x7ff00000) {	/* x is inf of NaN */
     53 	        return x+x;
     54 	    } else
     55 		return __ieee754_log(x)+ln2;	/* acosh(huge)=ieee_log(2x) */
     56 	} else if(((hx-0x3ff00000)|__LO(x))==0) {
     57 	    return 0.0;			/* acosh(1) = 0 */
     58 	} else if (hx > 0x40000000) {	/* 2**28 > x > 2 */
     59 	    t=x*x;
     60 	    return __ieee754_log(2.0*x-one/(x+ieee_sqrt(t-one)));
     61 	} else {			/* 1<x<2 */
     62 	    t = x-one;
     63 	    return ieee_log1p(t+ieee_sqrt(2.0*t+t*t));
     64 	}
     65 }
     66