Home | History | Annotate | Download | only in common
      1 /*
      2  * written by Colin Plumb in 1993, no copyright is claimed.
      3  * This code is in the public domain; do with it what you wish.
      4  *
      5  * Equivalent code is available from RSA Data Security, Inc.
      6  * This code has been tested against that, and is equivalent,
      7  * except that you don't need to include two pages of legalese
      8  * with every copy.
      9  *
     10  * To compute the message digest of a chunk of bytes, declare an
     11  * MD5Context structure, pass it to MD5Init, call MD5Update as
     12  * needed on buffers full of bytes, and then call MD5Final, which
     13  * will fill a supplied 16-byte array with the digest.
     14  */
     15 
     16 #include <string.h>
     17 
     18 #include "common/md5.h"
     19 
     20 namespace google_breakpad {
     21 
     22 #ifndef WORDS_BIGENDIAN
     23 #define byteReverse(buf, len)   /* Nothing */
     24 #else
     25 /*
     26  * Note: this code is harmless on little-endian machines.
     27  */
     28 static void byteReverse(unsigned char *buf, unsigned longs)
     29 {
     30   u32 t;
     31   do {
     32     t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
     33       ((unsigned) buf[1] << 8 | buf[0]);
     34     *(u32 *) buf = t;
     35     buf += 4;
     36   } while (--longs);
     37 }
     38 #endif
     39 
     40 static void MD5Transform(u32 buf[4], u32 const in[16]);
     41 
     42 /*
     43  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
     44  * initialization constants.
     45  */
     46 void MD5Init(struct MD5Context *ctx)
     47 {
     48   ctx->buf[0] = 0x67452301;
     49   ctx->buf[1] = 0xefcdab89;
     50   ctx->buf[2] = 0x98badcfe;
     51   ctx->buf[3] = 0x10325476;
     52 
     53   ctx->bits[0] = 0;
     54   ctx->bits[1] = 0;
     55 }
     56 
     57 /*
     58  * Update context to reflect the concatenation of another buffer full
     59  * of bytes.
     60  */
     61 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, size_t len)
     62 {
     63   u32 t;
     64 
     65   /* Update bitcount */
     66 
     67   t = ctx->bits[0];
     68   if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
     69     ctx->bits[1]++;         /* Carry from low to high */
     70   ctx->bits[1] += len >> 29;
     71 
     72   t = (t >> 3) & 0x3f;        /* Bytes already in shsInfo->data */
     73 
     74   /* Handle any leading odd-sized chunks */
     75 
     76   if (t) {
     77     unsigned char *p = (unsigned char *) ctx->in + t;
     78 
     79     t = 64 - t;
     80     if (len < t) {
     81       memcpy(p, buf, len);
     82       return;
     83     }
     84     memcpy(p, buf, t);
     85     byteReverse(ctx->in, 16);
     86     MD5Transform(ctx->buf, (u32 *) ctx->in);
     87     buf += t;
     88     len -= t;
     89   }
     90   /* Process data in 64-byte chunks */
     91 
     92   while (len >= 64) {
     93     memcpy(ctx->in, buf, 64);
     94     byteReverse(ctx->in, 16);
     95     MD5Transform(ctx->buf, (u32 *) ctx->in);
     96     buf += 64;
     97     len -= 64;
     98   }
     99 
    100   /* Handle any remaining bytes of data. */
    101 
    102   memcpy(ctx->in, buf, len);
    103 }
    104 
    105 /*
    106  * Final wrapup - pad to 64-byte boundary with the bit pattern
    107  * 1 0* (64-bit count of bits processed, MSB-first)
    108  */
    109 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
    110 {
    111   unsigned count;
    112   unsigned char *p;
    113 
    114   /* Compute number of bytes mod 64 */
    115   count = (ctx->bits[0] >> 3) & 0x3F;
    116 
    117   /* Set the first char of padding to 0x80.  This is safe since there is
    118      always at least one byte free */
    119   p = ctx->in + count;
    120   *p++ = 0x80;
    121 
    122   /* Bytes of padding needed to make 64 bytes */
    123   count = 64 - 1 - count;
    124 
    125   /* Pad out to 56 mod 64 */
    126   if (count < 8) {
    127     /* Two lots of padding:  Pad the first block to 64 bytes */
    128     memset(p, 0, count);
    129     byteReverse(ctx->in, 16);
    130     MD5Transform(ctx->buf, (u32 *) ctx->in);
    131 
    132     /* Now fill the next block with 56 bytes */
    133     memset(ctx->in, 0, 56);
    134   } else {
    135     /* Pad block to 56 bytes */
    136     memset(p, 0, count - 8);
    137   }
    138   byteReverse(ctx->in, 14);
    139 
    140   /* Append length in bits and transform */
    141   ((u32 *) ctx->in)[14] = ctx->bits[0];
    142   ((u32 *) ctx->in)[15] = ctx->bits[1];
    143 
    144   MD5Transform(ctx->buf, (u32 *) ctx->in);
    145   byteReverse((unsigned char *) ctx->buf, 4);
    146   memcpy(digest, ctx->buf, 16);
    147   memset(ctx, 0, sizeof(*ctx));        /* In case it's sensitive */
    148 }
    149 
    150 /* The four core functions - F1 is optimized somewhat */
    151 
    152 /* #define F1(x, y, z) (x & y | ~x & z) */
    153 #define F1(x, y, z) (z ^ (x & (y ^ z)))
    154 #define F2(x, y, z) F1(z, x, y)
    155 #define F3(x, y, z) (x ^ y ^ z)
    156 #define F4(x, y, z) (y ^ (x | ~z))
    157 
    158 /* This is the central step in the MD5 algorithm. */
    159 #define MD5STEP(f, w, x, y, z, data, s) \
    160   ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
    161 
    162 /*
    163  * The core of the MD5 algorithm, this alters an existing MD5 hash to
    164  * reflect the addition of 16 longwords of new data.  MD5Update blocks
    165  * the data and converts bytes into longwords for this routine.
    166  */
    167 static void MD5Transform(u32 buf[4], u32 const in[16])
    168 {
    169   u32 a, b, c, d;
    170 
    171   a = buf[0];
    172   b = buf[1];
    173   c = buf[2];
    174   d = buf[3];
    175 
    176   MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    177   MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    178   MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    179   MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    180   MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    181   MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    182   MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    183   MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    184   MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    185   MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    186   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    187   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    188   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    189   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    190   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    191   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
    192 
    193   MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    194   MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    195   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    196   MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    197   MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    198   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    199   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    200   MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    201   MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    202   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    203   MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    204   MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    205   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    206   MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    207   MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    208   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    209 
    210   MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    211   MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    212   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    213   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    214   MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    215   MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    216   MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    217   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    218   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    219   MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    220   MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    221   MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    222   MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    223   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    224   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    225   MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
    226 
    227   MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    228   MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    229   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    230   MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    231   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    232   MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    233   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    234   MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    235   MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    236   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    237   MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    238   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    239   MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    240   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    241   MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    242   MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
    243 
    244   buf[0] += a;
    245   buf[1] += b;
    246   buf[2] += c;
    247   buf[3] += d;
    248 }
    249 
    250 }  // namespace google_breakpad
    251 
    252