Home | History | Annotate | Download | only in gptfdisk
      1 /* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
      2    data. */
      3 
      4 /* By Rod Smith, initial coding January to February, 2009 */
      5 
      6 /* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed
      7   under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
      8 
      9 #define __STDC_LIMIT_MACROS
     10 #define __STDC_CONSTANT_MACROS
     11 
     12 #include <stdio.h>
     13 #include <stdlib.h>
     14 #include <stdint.h>
     15 #include <fcntl.h>
     16 #include <string.h>
     17 #include <math.h>
     18 #include <time.h>
     19 #include <sys/stat.h>
     20 #include <errno.h>
     21 #include <iostream>
     22 #include <algorithm>
     23 #include "crc32.h"
     24 #include "gpt.h"
     25 #include "bsd.h"
     26 #include "support.h"
     27 #include "parttypes.h"
     28 #include "attributes.h"
     29 #include "diskio.h"
     30 
     31 using namespace std;
     32 
     33 #ifdef __FreeBSD__
     34 #define log2(x) (log(x) / M_LN2)
     35 #endif // __FreeBSD__
     36 
     37 #ifdef _MSC_VER
     38 #define log2(x) (log((double) x) / log(2.0))
     39 #endif // Microsoft Visual C++
     40 
     41 #ifdef EFI
     42 // in UEFI mode MMX registers are not yet available so using the
     43 // x86_64 ABI to move "double" values around is not an option.
     44 #ifdef log2
     45 #undef log2
     46 #endif
     47 #define log2(x) log2_32( x )
     48 static inline uint32_t log2_32(uint32_t v) {
     49    int r = -1;
     50    while (v >= 1) {
     51       r++;
     52       v >>= 1;
     53    }
     54    return r;
     55 }
     56 #endif
     57 
     58 /****************************************
     59  *                                      *
     60  * GPTData class and related structures *
     61  *                                      *
     62  ****************************************/
     63 
     64 // Default constructor
     65 GPTData::GPTData(void) {
     66    blockSize = SECTOR_SIZE; // set a default
     67    diskSize = 0;
     68    partitions = NULL;
     69    state = gpt_valid;
     70    device = "";
     71    justLooking = 0;
     72    mainCrcOk = 0;
     73    secondCrcOk = 0;
     74    mainPartsCrcOk = 0;
     75    secondPartsCrcOk = 0;
     76    apmFound = 0;
     77    bsdFound = 0;
     78    sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
     79    beQuiet = 0;
     80    whichWasUsed = use_new;
     81    mainHeader.numParts = 0;
     82    numParts = 0;
     83    SetGPTSize(NUM_GPT_ENTRIES);
     84    // Initialize CRC functions...
     85    chksum_crc32gentab();
     86 } // GPTData default constructor
     87 
     88 // The following constructor loads GPT data from a device file
     89 GPTData::GPTData(string filename) {
     90    blockSize = SECTOR_SIZE; // set a default
     91    diskSize = 0;
     92    partitions = NULL;
     93    state = gpt_invalid;
     94    device = "";
     95    justLooking = 0;
     96    mainCrcOk = 0;
     97    secondCrcOk = 0;
     98    mainPartsCrcOk = 0;
     99    secondPartsCrcOk = 0;
    100    apmFound = 0;
    101    bsdFound = 0;
    102    sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
    103    beQuiet = 0;
    104    whichWasUsed = use_new;
    105    mainHeader.numParts = 0;
    106    numParts = 0;
    107    // Initialize CRC functions...
    108    chksum_crc32gentab();
    109    if (!LoadPartitions(filename))
    110       exit(2);
    111 } // GPTData(string filename) constructor
    112 
    113 // Destructor
    114 GPTData::~GPTData(void) {
    115    delete[] partitions;
    116 } // GPTData destructor
    117 
    118 // Assignment operator
    119 GPTData & GPTData::operator=(const GPTData & orig) {
    120    uint32_t i;
    121 
    122    mainHeader = orig.mainHeader;
    123    numParts = orig.numParts;
    124    secondHeader = orig.secondHeader;
    125    protectiveMBR = orig.protectiveMBR;
    126    device = orig.device;
    127    blockSize = orig.blockSize;
    128    diskSize = orig.diskSize;
    129    state = orig.state;
    130    justLooking = orig.justLooking;
    131    mainCrcOk = orig.mainCrcOk;
    132    secondCrcOk = orig.secondCrcOk;
    133    mainPartsCrcOk = orig.mainPartsCrcOk;
    134    secondPartsCrcOk = orig.secondPartsCrcOk;
    135    apmFound = orig.apmFound;
    136    bsdFound = orig.bsdFound;
    137    sectorAlignment = orig.sectorAlignment;
    138    beQuiet = orig.beQuiet;
    139    whichWasUsed = orig.whichWasUsed;
    140 
    141    myDisk.OpenForRead(orig.myDisk.GetName());
    142 
    143    delete[] partitions;
    144    partitions = new GPTPart [numParts];
    145    if (partitions == NULL) {
    146       cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
    147            << "Terminating!\n";
    148       exit(1);
    149    } // if
    150    for (i = 0; i < numParts; i++) {
    151       partitions[i] = orig.partitions[i];
    152    } // for
    153 
    154    return *this;
    155 } // GPTData::operator=()
    156 
    157 /*********************************************************************
    158  *                                                                   *
    159  * Begin functions that verify data, or that adjust the verification *
    160  * information (compute CRCs, rebuild headers)                       *
    161  *                                                                   *
    162  *********************************************************************/
    163 
    164 // Perform detailed verification, reporting on any problems found, but
    165 // do *NOT* recover from these problems. Returns the total number of
    166 // problems identified.
    167 int GPTData::Verify(void) {
    168    int problems = 0, alignProbs = 0;
    169    uint32_t i, numSegments;
    170    uint64_t totalFree, largestSegment;
    171 
    172    // First, check for CRC errors in the GPT data....
    173    if (!mainCrcOk) {
    174       problems++;
    175       cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
    176            << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
    177            << "header ('b' on the recovery & transformation menu). This report may be a false\n"
    178            << "alarm if you've already corrected other problems.\n";
    179    } // if
    180    if (!mainPartsCrcOk) {
    181       problems++;
    182       cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
    183            << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
    184            << "transformation menu). This report may be a false alarm if you've already\n"
    185            << "corrected other problems.\n";
    186    } // if
    187    if (!secondCrcOk) {
    188       problems++;
    189       cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
    190            << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
    191            << "header ('d' on the recovery & transformation menu). This report may be a false\n"
    192            << "alarm if you've already corrected other problems.\n";
    193    } // if
    194    if (!secondPartsCrcOk) {
    195       problems++;
    196       cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
    197            << "be corrupt. This program will automatically create a new backup partition\n"
    198            << "table when you save your partitions.\n";
    199    } // if
    200 
    201    // Now check that the main and backup headers both point to themselves....
    202    if (mainHeader.currentLBA != 1) {
    203       problems++;
    204       cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
    205            << "is being automatically corrected, but it may be a symptom of more serious\n"
    206            << "problems. Think carefully before saving changes with 'w' or using this disk.\n";
    207       mainHeader.currentLBA = 1;
    208    } // if
    209    if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
    210       problems++;
    211       cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
    212            << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
    213            << "option on the experts' menu to adjust the secondary header's and partition\n"
    214            << "table's locations.\n";
    215    } // if
    216 
    217    // Now check that critical main and backup GPT entries match each other
    218    if (mainHeader.currentLBA != secondHeader.backupLBA) {
    219       problems++;
    220       cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
    221            << ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
    222            << secondHeader.backupLBA << ").\n";
    223    } // if
    224    if (mainHeader.backupLBA != secondHeader.currentLBA) {
    225       problems++;
    226       cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
    227            << ") doesn't\nmatch the backup GPT header's current LBA pointer ("
    228            << secondHeader.currentLBA << ").\n"
    229            << "The 'e' option on the experts' menu may fix this problem.\n";
    230    } // if
    231    if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
    232       problems++;
    233       cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
    234            << ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
    235            << secondHeader.firstUsableLBA << ")\n";
    236    } // if
    237    if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
    238       problems++;
    239       cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
    240            << ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
    241            << secondHeader.lastUsableLBA << ")\n"
    242            << "The 'e' option on the experts' menu can probably fix this problem.\n";
    243    } // if
    244    if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
    245       problems++;
    246       cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
    247            << ") doesn't\nmatch the backup GPT header's disk GUID ("
    248            << secondHeader.diskGUID << ")\n"
    249            << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
    250            << "select one or the other header.\n";
    251    } // if
    252    if (mainHeader.numParts != secondHeader.numParts) {
    253       problems++;
    254       cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
    255            << ") doesn't\nmatch the backup GPT header's number of partitions ("
    256            << secondHeader.numParts << ")\n"
    257            << "Resizing the partition table ('s' on the experts' menu) may help.\n";
    258    } // if
    259    if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
    260       problems++;
    261       cout << "\nProblem: main GPT header's size of partition entries ("
    262            << mainHeader.sizeOfPartitionEntries << ") doesn't\n"
    263            << "match the backup GPT header's size of partition entries ("
    264            << secondHeader.sizeOfPartitionEntries << ")\n"
    265            << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
    266            << "select one or the other header.\n";
    267    } // if
    268 
    269    // Now check for a few other miscellaneous problems...
    270    // Check that the disk size will hold the data...
    271    if (mainHeader.backupLBA >= diskSize) {
    272       problems++;
    273       cout << "\nProblem: Disk is too small to hold all the data!\n"
    274            << "(Disk size is " << diskSize << " sectors, needs to be "
    275            << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
    276            << "The 'e' option on the experts' menu may fix this problem.\n";
    277    } // if
    278 
    279    if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
    280       problems++;
    281       cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
    282            << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
    283            << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
    284            << "The 'e' option on the experts' menu will probably fix this problem\n";
    285    }
    286 
    287    // Check for overlapping partitions....
    288    problems += FindOverlaps();
    289 
    290    // Check for insane partitions (start after end, hugely big, etc.)
    291    problems += FindInsanePartitions();
    292 
    293    // Check for mismatched MBR and GPT partitions...
    294    problems += FindHybridMismatches();
    295 
    296    // Check for MBR-specific problems....
    297    problems += VerifyMBR();
    298 
    299    // Check for a 0xEE protective partition that's marked as active....
    300    if (protectiveMBR.IsEEActive()) {
    301       cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
    302            << "technically a violation of the GPT specification, and can cause some EFIs to\n"
    303            << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
    304            << "computers. You can clear this flag by creating a fresh protective MBR using\n"
    305            << "the 'n' option on the experts' menu.\n";
    306    }
    307 
    308    // Verify that partitions don't run into GPT data areas....
    309    problems += CheckGPTSize();
    310 
    311    if (!protectiveMBR.DoTheyFit()) {
    312       cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
    313            << "fresh protective or hybrid MBR is recommended.\n";
    314       problems++;
    315    }
    316 
    317    // Check that partitions are aligned on proper boundaries (for WD Advanced
    318    // Format and similar disks)....
    319    for (i = 0; i < numParts; i++) {
    320       if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % sectorAlignment) != 0) {
    321          cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
    322               << sectorAlignment << "-sector boundary. This may\nresult "
    323               << "in degraded performance on some modern (2009 and later) hard disks.\n";
    324          alignProbs++;
    325       } // if
    326    } // for
    327    if (alignProbs > 0)
    328       cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
    329       << "for information on disk alignment.\n";
    330 
    331    // Now compute available space, but only if no problems found, since
    332    // problems could affect the results
    333    if (problems == 0) {
    334       totalFree = FindFreeBlocks(&numSegments, &largestSegment);
    335       cout << "\nNo problems found. " << totalFree << " free sectors ("
    336            << BytesToIeee(totalFree, blockSize) << ") available in "
    337            << numSegments << "\nsegments, the largest of which is "
    338            << largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
    339            << ") in size.\n";
    340    } else {
    341       cout << "\nIdentified " << problems << " problems!\n";
    342    } // if/else
    343 
    344    return (problems);
    345 } // GPTData::Verify()
    346 
    347 // Checks to see if the GPT tables overrun existing partitions; if they
    348 // do, issues a warning but takes no action. Returns number of problems
    349 // detected (0 if OK, 1 to 2 if problems).
    350 int GPTData::CheckGPTSize(void) {
    351    uint64_t overlap, firstUsedBlock, lastUsedBlock;
    352    uint32_t i;
    353    int numProbs = 0;
    354 
    355    // first, locate the first & last used blocks
    356    firstUsedBlock = UINT64_MAX;
    357    lastUsedBlock = 0;
    358    for (i = 0; i < numParts; i++) {
    359       if (partitions[i].IsUsed()) {
    360          if (partitions[i].GetFirstLBA() < firstUsedBlock)
    361             firstUsedBlock = partitions[i].GetFirstLBA();
    362          if (partitions[i].GetLastLBA() > lastUsedBlock) {
    363             lastUsedBlock = partitions[i].GetLastLBA();
    364          } // if
    365       } // if
    366    } // for
    367 
    368    // If the disk size is 0 (the default), then it means that various
    369    // variables aren't yet set, so the below tests will be useless;
    370    // therefore we should skip everything
    371    if (diskSize != 0) {
    372       if (mainHeader.firstUsableLBA > firstUsedBlock) {
    373          overlap = mainHeader.firstUsableLBA - firstUsedBlock;
    374          cout << "Warning! Main partition table overlaps the first partition by "
    375               << overlap << " blocks!\n";
    376          if (firstUsedBlock > 2) {
    377             cout << "Try reducing the partition table size by " << overlap * 4
    378                  << " entries.\n(Use the 's' item on the experts' menu.)\n";
    379          } else {
    380             cout << "You will need to delete this partition or resize it in another utility.\n";
    381          } // if/else
    382          numProbs++;
    383       } // Problem at start of disk
    384       if (mainHeader.lastUsableLBA < lastUsedBlock) {
    385          overlap = lastUsedBlock - mainHeader.lastUsableLBA;
    386          cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
    387               << overlap << " blocks!\n";
    388          if (lastUsedBlock > (diskSize - 2)) {
    389             cout << "You will need to delete this partition or resize it in another utility.\n";
    390          } else {
    391             cout << "Try reducing the partition table size by " << overlap * 4
    392                  << " entries.\n(Use the 's' item on the experts' menu.)\n";
    393          } // if/else
    394          numProbs++;
    395       } // Problem at end of disk
    396    } // if (diskSize != 0)
    397    return numProbs;
    398 } // GPTData::CheckGPTSize()
    399 
    400 // Check the validity of the GPT header. Returns 1 if the main header
    401 // is valid, 2 if the backup header is valid, 3 if both are valid, and
    402 // 0 if neither is valid. Note that this function checks the GPT signature,
    403 // revision value, and CRCs in both headers.
    404 int GPTData::CheckHeaderValidity(void) {
    405    int valid = 3;
    406 
    407    cout.setf(ios::uppercase);
    408    cout.fill('0');
    409 
    410    // Note: failed GPT signature checks produce no error message because
    411    // a message is displayed in the ReversePartitionBytes() function
    412    if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
    413       valid -= 1;
    414    } else if ((mainHeader.revision != 0x00010000) && valid) {
    415       valid -= 1;
    416       cout << "Unsupported GPT version in main header; read 0x";
    417       cout.width(8);
    418       cout << hex << mainHeader.revision << ", should be\n0x";
    419       cout.width(8);
    420       cout << UINT32_C(0x00010000) << dec << "\n";
    421    } // if/else/if
    422 
    423    if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
    424       valid -= 2;
    425    } else if ((secondHeader.revision != 0x00010000) && valid) {
    426       valid -= 2;
    427       cout << "Unsupported GPT version in backup header; read 0x";
    428       cout.width(8);
    429       cout << hex << secondHeader.revision << ", should be\n0x";
    430       cout.width(8);
    431       cout << UINT32_C(0x00010000) << dec << "\n";
    432    } // if/else/if
    433 
    434    // Check for an Apple disk signature
    435    if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
    436         (mainHeader.signature << 32) == APM_SIGNATURE2) {
    437       apmFound = 1; // Will display warning message later
    438    } // if
    439    cout.fill(' ');
    440 
    441    return valid;
    442 } // GPTData::CheckHeaderValidity()
    443 
    444 // Check the header CRC to see if it's OK...
    445 // Note: Must be called with header in platform-ordered byte order.
    446 // Returns 1 if header's computed CRC matches the stored value, 0 if the
    447 // computed and stored values don't match
    448 int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
    449    uint32_t oldCRC, newCRC, hSize;
    450    uint8_t *temp;
    451 
    452    // Back up old header CRC and then blank it, since it must be 0 for
    453    // computation to be valid
    454    oldCRC = header->headerCRC;
    455    header->headerCRC = UINT32_C(0);
    456 
    457    hSize = header->headerSize;
    458 
    459    if (IsLittleEndian() == 0)
    460       ReverseHeaderBytes(header);
    461 
    462    if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
    463       if (warn) {
    464          cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
    465          cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
    466       } // if
    467       hSize = HEADER_SIZE;
    468    } else if ((hSize > sizeof(GPTHeader)) && warn) {
    469       cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
    470       cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
    471            << "which may result in a CRC false alarm.\n";
    472    } // if/elseif
    473    temp = new uint8_t[hSize];
    474    if (temp != NULL) {
    475       memset(temp, 0, hSize);
    476       if (hSize < sizeof(GPTHeader))
    477          memcpy(temp, header, hSize);
    478       else
    479          memcpy(temp, header, sizeof(GPTHeader));
    480 
    481       newCRC = chksum_crc32((unsigned char*) temp, hSize);
    482       delete[] temp;
    483    } else {
    484       cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
    485       exit(1);
    486    }
    487    if (IsLittleEndian() == 0)
    488       ReverseHeaderBytes(header);
    489    header->headerCRC = oldCRC;
    490    return (oldCRC == newCRC);
    491 } // GPTData::CheckHeaderCRC()
    492 
    493 // Recompute all the CRCs. Must be called before saving if any changes have
    494 // been made. Must be called on platform-ordered data (this function reverses
    495 // byte order and then undoes that reversal.)
    496 void GPTData::RecomputeCRCs(void) {
    497    uint32_t crc, hSize;
    498    int littleEndian = 1;
    499 
    500    // If the header size is bigger than the GPT header data structure, reset it;
    501    // otherwise, set both header sizes to whatever the main one is....
    502    if (mainHeader.headerSize > sizeof(GPTHeader))
    503       hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
    504    else
    505       hSize = secondHeader.headerSize = mainHeader.headerSize;
    506 
    507    if ((littleEndian = IsLittleEndian()) == 0) {
    508       ReversePartitionBytes();
    509       ReverseHeaderBytes(&mainHeader);
    510       ReverseHeaderBytes(&secondHeader);
    511    } // if
    512 
    513    // Compute CRC of partition tables & store in main and secondary headers
    514    crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
    515    mainHeader.partitionEntriesCRC = crc;
    516    secondHeader.partitionEntriesCRC = crc;
    517    if (littleEndian == 0) {
    518       ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
    519       ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
    520    } // if
    521 
    522    // Zero out GPT headers' own CRCs (required for correct computation)
    523    mainHeader.headerCRC = 0;
    524    secondHeader.headerCRC = 0;
    525 
    526    crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
    527    if (littleEndian == 0)
    528       ReverseBytes(&crc, 4);
    529    mainHeader.headerCRC = crc;
    530    crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
    531    if (littleEndian == 0)
    532       ReverseBytes(&crc, 4);
    533    secondHeader.headerCRC = crc;
    534 
    535    if (littleEndian == 0) {
    536       ReverseHeaderBytes(&mainHeader);
    537       ReverseHeaderBytes(&secondHeader);
    538       ReversePartitionBytes();
    539    } // if
    540 } // GPTData::RecomputeCRCs()
    541 
    542 // Rebuild the main GPT header, using the secondary header as a model.
    543 // Typically called when the main header has been found to be corrupt.
    544 void GPTData::RebuildMainHeader(void) {
    545    mainHeader.signature = GPT_SIGNATURE;
    546    mainHeader.revision = secondHeader.revision;
    547    mainHeader.headerSize = secondHeader.headerSize;
    548    mainHeader.headerCRC = UINT32_C(0);
    549    mainHeader.reserved = secondHeader.reserved;
    550    mainHeader.currentLBA = secondHeader.backupLBA;
    551    mainHeader.backupLBA = secondHeader.currentLBA;
    552    mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
    553    mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
    554    mainHeader.diskGUID = secondHeader.diskGUID;
    555    mainHeader.partitionEntriesLBA = UINT64_C(2);
    556    mainHeader.numParts = secondHeader.numParts;
    557    mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
    558    mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
    559    memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
    560    mainCrcOk = secondCrcOk;
    561    SetGPTSize(mainHeader.numParts, 0);
    562 } // GPTData::RebuildMainHeader()
    563 
    564 // Rebuild the secondary GPT header, using the main header as a model.
    565 void GPTData::RebuildSecondHeader(void) {
    566    secondHeader.signature = GPT_SIGNATURE;
    567    secondHeader.revision = mainHeader.revision;
    568    secondHeader.headerSize = mainHeader.headerSize;
    569    secondHeader.headerCRC = UINT32_C(0);
    570    secondHeader.reserved = mainHeader.reserved;
    571    secondHeader.currentLBA = mainHeader.backupLBA;
    572    secondHeader.backupLBA = mainHeader.currentLBA;
    573    secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
    574    secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
    575    secondHeader.diskGUID = mainHeader.diskGUID;
    576    secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
    577    secondHeader.numParts = mainHeader.numParts;
    578    secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
    579    secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
    580    memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
    581    secondCrcOk = mainCrcOk;
    582    SetGPTSize(secondHeader.numParts, 0);
    583 } // GPTData::RebuildSecondHeader()
    584 
    585 // Search for hybrid MBR entries that have no corresponding GPT partition.
    586 // Returns number of such mismatches found
    587 int GPTData::FindHybridMismatches(void) {
    588    int i, found, numFound = 0;
    589    uint32_t j;
    590    uint64_t mbrFirst, mbrLast;
    591 
    592    for (i = 0; i < 4; i++) {
    593       if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
    594          j = 0;
    595          found = 0;
    596          mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
    597          mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
    598          do {
    599             if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
    600                 (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
    601                found = 1;
    602             j++;
    603          } while ((!found) && (j < numParts));
    604          if (!found) {
    605             numFound++;
    606             cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
    607                  << i + 1 << ", of type 0x";
    608             cout.fill('0');
    609             cout.setf(ios::uppercase);
    610             cout.width(2);
    611             cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
    612                  << "has no corresponding GPT partition! You may continue, but this condition\n"
    613                  << "might cause data loss in the future!\a\n" << dec;
    614             cout.fill(' ');
    615          } // if
    616       } // if
    617    } // for
    618    return numFound;
    619 } // GPTData::FindHybridMismatches
    620 
    621 // Find overlapping partitions and warn user about them. Returns number of
    622 // overlapping partitions.
    623 // Returns number of overlapping segments found.
    624 int GPTData::FindOverlaps(void) {
    625    int problems = 0;
    626    uint32_t i, j;
    627 
    628    for (i = 1; i < numParts; i++) {
    629       for (j = 0; j < i; j++) {
    630          if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
    631              (partitions[i].DoTheyOverlap(partitions[j]))) {
    632             problems++;
    633             cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
    634             cout << "  Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
    635                  << " to " << partitions[i].GetLastLBA() << "\n";
    636             cout << "  Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
    637                  << " to " << partitions[j].GetLastLBA() << "\n";
    638          } // if
    639       } // for j...
    640    } // for i...
    641    return problems;
    642 } // GPTData::FindOverlaps()
    643 
    644 // Find partitions that are insane -- they start after they end or are too
    645 // big for the disk. (The latter should duplicate detection of overlaps
    646 // with GPT backup data structures, but better to err on the side of
    647 // redundant tests than to miss something....)
    648 // Returns number of problems found.
    649 int GPTData::FindInsanePartitions(void) {
    650    uint32_t i;
    651    int problems = 0;
    652 
    653    for (i = 0; i < numParts; i++) {
    654       if (partitions[i].IsUsed()) {
    655          if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
    656             problems++;
    657             cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
    658          } // if
    659          if (partitions[i].GetLastLBA() >= diskSize) {
    660             problems++;
    661          cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
    662          } // if
    663       } // if
    664    } // for
    665    return problems;
    666 } // GPTData::FindInsanePartitions(void)
    667 
    668 
    669 /******************************************************************
    670  *                                                                *
    671  * Begin functions that load data from disk or save data to disk. *
    672  *                                                                *
    673  ******************************************************************/
    674 
    675 // Change the filename associated with the GPT. Used for duplicating
    676 // the partition table to a new disk and saving backups.
    677 // Returns 1 on success, 0 on failure.
    678 int GPTData::SetDisk(const string & deviceFilename) {
    679    int err, allOK = 1;
    680 
    681    device = deviceFilename;
    682    if (allOK && myDisk.OpenForRead(deviceFilename)) {
    683       // store disk information....
    684       diskSize = myDisk.DiskSize(&err);
    685       blockSize = (uint32_t) myDisk.GetBlockSize();
    686    } // if
    687    protectiveMBR.SetDisk(&myDisk);
    688    protectiveMBR.SetDiskSize(diskSize);
    689    protectiveMBR.SetBlockSize(blockSize);
    690    return allOK;
    691 } // GPTData::SetDisk()
    692 
    693 // Scan for partition data. This function loads the MBR data (regular MBR or
    694 // protective MBR) and loads BSD disklabel data (which is probably invalid).
    695 // It also looks for APM data, forces a load of GPT data, and summarizes
    696 // the results.
    697 void GPTData::PartitionScan(void) {
    698    BSDData bsdDisklabel;
    699 
    700    // Read the MBR & check for BSD disklabel
    701    protectiveMBR.ReadMBRData(&myDisk);
    702    bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
    703 
    704    // Load the GPT data, whether or not it's valid
    705    ForceLoadGPTData();
    706 
    707    // Some tools create a 0xEE partition that's too big. If this is detected,
    708    // normalize it....
    709    if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
    710       if (!beQuiet) {
    711          cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
    712       } // if
    713       protectiveMBR.MakeProtectiveMBR();
    714    } // if
    715 
    716    if (!beQuiet) {
    717       cout << "Partition table scan:\n";
    718       protectiveMBR.ShowState();
    719       bsdDisklabel.ShowState();
    720       ShowAPMState(); // Show whether there's an Apple Partition Map present
    721       ShowGPTState(); // Show GPT status
    722       cout << "\n";
    723    } // if
    724 
    725    if (apmFound) {
    726       cout << "\n*******************************************************************\n"
    727            << "This disk appears to contain an Apple-format (APM) partition table!\n";
    728       if (!justLooking) {
    729          cout << "It will be destroyed if you continue!\n";
    730       } // if
    731       cout << "*******************************************************************\n\n\a";
    732    } // if
    733 } // GPTData::PartitionScan()
    734 
    735 // Read GPT data from a disk.
    736 int GPTData::LoadPartitions(const string & deviceFilename) {
    737    BSDData bsdDisklabel;
    738    int err, allOK = 1;
    739    MBRValidity mbrState;
    740 
    741    if (myDisk.OpenForRead(deviceFilename)) {
    742       err = myDisk.OpenForWrite(deviceFilename);
    743       if ((err == 0) && (!justLooking)) {
    744          cout << "\aNOTE: Write test failed with error number " << errno
    745               << ". It will be impossible to save\nchanges to this disk's partition table!\n";
    746 #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
    747          cout << "You may be able to enable writes by exiting this program, typing\n"
    748               << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
    749               << "program.\n";
    750 #endif
    751          cout << "\n";
    752       } // if
    753       myDisk.Close(); // Close and re-open read-only in case of bugs
    754    } else allOK = 0; // if
    755 
    756    if (allOK && myDisk.OpenForRead(deviceFilename)) {
    757       // store disk information....
    758       diskSize = myDisk.DiskSize(&err);
    759       blockSize = (uint32_t) myDisk.GetBlockSize();
    760       device = deviceFilename;
    761       PartitionScan(); // Check for partition types, load GPT, & print summary
    762 
    763       whichWasUsed = UseWhichPartitions();
    764       switch (whichWasUsed) {
    765          case use_mbr:
    766             XFormPartitions();
    767             break;
    768          case use_bsd:
    769             bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
    770 //            bsdDisklabel.DisplayBSDData();
    771             ClearGPTData();
    772             protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
    773             XFormDisklabel(&bsdDisklabel);
    774             break;
    775          case use_gpt:
    776             mbrState = protectiveMBR.GetValidity();
    777             if ((mbrState == invalid) || (mbrState == mbr))
    778                protectiveMBR.MakeProtectiveMBR();
    779             break;
    780          case use_new:
    781             ClearGPTData();
    782             protectiveMBR.MakeProtectiveMBR();
    783             break;
    784          case use_abort:
    785             allOK = 0;
    786             cerr << "Invalid partition data!\n";
    787             break;
    788       } // switch
    789 
    790       if (allOK)
    791          CheckGPTSize();
    792       myDisk.Close();
    793       ComputeAlignment();
    794    } else {
    795       allOK = 0;
    796    } // if/else
    797    return (allOK);
    798 } // GPTData::LoadPartitions()
    799 
    800 // Loads the GPT, as much as possible. Returns 1 if this seems to have
    801 // succeeded, 0 if there are obvious problems....
    802 int GPTData::ForceLoadGPTData(void) {
    803    int allOK, validHeaders, loadedTable = 1;
    804 
    805    allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
    806 
    807    if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
    808       allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
    809    } else {
    810       allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
    811       if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
    812          cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
    813               << "secondary header from the last sector of the disk! You should use 'v' to\n"
    814               << "verify disk integrity, and perhaps options on the experts' menu to repair\n"
    815               << "the disk.\n";
    816    } // if/else
    817    if (!allOK)
    818       state = gpt_invalid;
    819 
    820    // Return valid headers code: 0 = both headers bad; 1 = main header
    821    // good, backup bad; 2 = backup header good, main header bad;
    822    // 3 = both headers good. Note these codes refer to valid GPT
    823    // signatures, version numbers, and CRCs.
    824    validHeaders = CheckHeaderValidity();
    825 
    826    // Read partitions (from primary array)
    827    if (validHeaders > 0) { // if at least one header is OK....
    828       // GPT appears to be valid....
    829       state = gpt_valid;
    830 
    831       // We're calling the GPT valid, but there's a possibility that one
    832       // of the two headers is corrupt. If so, use the one that seems to
    833       // be in better shape to regenerate the bad one
    834       if (validHeaders == 1) { // valid main header, invalid backup header
    835          cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
    836               << "backup header from main header.\n\n";
    837          RebuildSecondHeader();
    838          state = gpt_corrupt;
    839          secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
    840       } else if (validHeaders == 2) { // valid backup header, invalid main header
    841          cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
    842               << "from backup!\n\n";
    843          RebuildMainHeader();
    844          state = gpt_corrupt;
    845          mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
    846       } // if/else/if
    847 
    848       // Figure out which partition table to load....
    849       // Load the main partition table, since either its header's CRC is OK or the
    850       // backup header's CRC is not OK....
    851       if (mainCrcOk || !secondCrcOk) {
    852          if (LoadMainTable() == 0)
    853             allOK = 0;
    854       } else { // bad main header CRC and backup header CRC is OK
    855          state = gpt_corrupt;
    856          if (LoadSecondTableAsMain()) {
    857             loadedTable = 2;
    858             cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
    859          } else { // backup table bad, bad main header CRC, but try main table in desperation....
    860             if (LoadMainTable() == 0) {
    861                allOK = 0;
    862                loadedTable = 0;
    863                cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
    864             } // if
    865          } // if/else (LoadSecondTableAsMain())
    866       } // if/else (load partition table)
    867 
    868       if (loadedTable == 1)
    869          secondPartsCrcOk = CheckTable(&secondHeader);
    870       else if (loadedTable == 2)
    871          mainPartsCrcOk = CheckTable(&mainHeader);
    872       else
    873          mainPartsCrcOk = secondPartsCrcOk = 0;
    874 
    875       // Problem with main partition table; if backup is OK, use it instead....
    876       if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
    877          state = gpt_corrupt;
    878          allOK = allOK && LoadSecondTableAsMain();
    879          mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
    880          cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
    881               << "partition table\ninstead of main partition table!\n\n";
    882       } // if */
    883 
    884       // Check for valid CRCs and warn if there are problems
    885       if ((mainCrcOk == 0) || (secondCrcOk == 0) || (mainPartsCrcOk == 0) ||
    886            (secondPartsCrcOk == 0)) {
    887          cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n\n";
    888          state = gpt_corrupt;
    889       } // if
    890    } else {
    891       state = gpt_invalid;
    892    } // if/else
    893    return allOK;
    894 } // GPTData::ForceLoadGPTData()
    895 
    896 // Loads the partition table pointed to by the main GPT header. The
    897 // main GPT header in memory MUST be valid for this call to do anything
    898 // sensible!
    899 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
    900 int GPTData::LoadMainTable(void) {
    901    return LoadPartitionTable(mainHeader, myDisk);
    902 } // GPTData::LoadMainTable()
    903 
    904 // Load the second (backup) partition table as the primary partition
    905 // table. Used in repair functions, and when starting up if the main
    906 // partition table is damaged.
    907 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
    908 int GPTData::LoadSecondTableAsMain(void) {
    909    return LoadPartitionTable(secondHeader, myDisk);
    910 } // GPTData::LoadSecondTableAsMain()
    911 
    912 // Load a single GPT header (main or backup) from the specified disk device and
    913 // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
    914 // value appropriately.
    915 // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
    916 // failure.
    917 int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
    918    int allOK = 1;
    919    GPTHeader tempHeader;
    920 
    921    disk.Seek(sector);
    922    if (disk.Read(&tempHeader, 512) != 512) {
    923       cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
    924       allOK = 0;
    925    } // if
    926 
    927    // Reverse byte order, if necessary
    928    if (IsLittleEndian() == 0) {
    929       ReverseHeaderBytes(&tempHeader);
    930    } // if
    931    *crcOk = CheckHeaderCRC(&tempHeader);
    932 
    933    if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
    934       allOK = SetGPTSize(tempHeader.numParts, 0);
    935    }
    936 
    937    *header = tempHeader;
    938    return allOK;
    939 } // GPTData::LoadHeader
    940 
    941 // Load a partition table (either main or secondary) from the specified disk,
    942 // using header as a reference for what to load. If sector != 0 (the default
    943 // is 0), loads from the specified sector; otherwise loads from the sector
    944 // indicated in header.
    945 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
    946 int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
    947    uint32_t sizeOfParts, newCRC;
    948    int retval;
    949 
    950    if (disk.OpenForRead()) {
    951       if (sector == 0) {
    952          retval = disk.Seek(header.partitionEntriesLBA);
    953       } else {
    954          retval = disk.Seek(sector);
    955       } // if/else
    956       if (retval == 1)
    957          retval = SetGPTSize(header.numParts, 0);
    958       if (retval == 1) {
    959          sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
    960          if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
    961             cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
    962             retval = 0;
    963          } // if
    964          newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
    965          mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
    966          if (IsLittleEndian() == 0)
    967             ReversePartitionBytes();
    968          if (!mainPartsCrcOk) {
    969             cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
    970          } // if
    971       } else {
    972          cerr << "Error! Couldn't seek to partition table!\n";
    973       } // if/else
    974    } else {
    975       cerr << "Error! Couldn't open device " << device
    976            << " when reading partition table!\n";
    977       retval = 0;
    978    } // if/else
    979    return retval;
    980 } // GPTData::LoadPartitionsTable()
    981 
    982 // Check the partition table pointed to by header, but don't keep it
    983 // around.
    984 // Returns 1 if the CRC is OK & this table matches the one already in memory,
    985 // 0 if not or if there was a read error.
    986 int GPTData::CheckTable(struct GPTHeader *header) {
    987    uint32_t sizeOfParts, newCRC;
    988    GPTPart *partsToCheck;
    989    GPTHeader *otherHeader;
    990    int allOK = 0;
    991 
    992    // Load partition table into temporary storage to check
    993    // its CRC and store the results, then discard this temporary
    994    // storage, since we don't use it in any but recovery operations
    995    if (myDisk.Seek(header->partitionEntriesLBA)) {
    996       partsToCheck = new GPTPart[header->numParts];
    997       sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
    998       if (partsToCheck == NULL) {
    999          cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
   1000          exit(1);
   1001       } // if
   1002       if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
   1003          cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
   1004       } else {
   1005          newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
   1006          allOK = (newCRC == header->partitionEntriesCRC);
   1007          if (header == &mainHeader)
   1008             otherHeader = &secondHeader;
   1009          else
   1010             otherHeader = &mainHeader;
   1011          if (newCRC != otherHeader->partitionEntriesCRC) {
   1012             cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
   1013                  << "on the recovery & transformation menu to examine the two tables.\n\n";
   1014             allOK = 0;
   1015          } // if
   1016       } // if/else
   1017       delete[] partsToCheck;
   1018    } // if
   1019    return allOK;
   1020 } // GPTData::CheckTable()
   1021 
   1022 // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
   1023 // header later on the disk without asking for permission, if necessary, and
   1024 // doesn't confirm the operation before writing. If quiet==0, asks permission
   1025 // before moving the second header and asks for final confirmation of any
   1026 // write.
   1027 // Returns 1 on successful write, 0 if there was a problem.
   1028 int GPTData::SaveGPTData(int quiet) {
   1029    int allOK = 1, syncIt = 1;
   1030    char answer;
   1031 
   1032    // First do some final sanity checks....
   1033 
   1034    // This test should only fail on read-only disks....
   1035    if (justLooking) {
   1036       cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
   1037       allOK = 0;
   1038    } // if
   1039 
   1040    // Check that disk is really big enough to handle the second header...
   1041    if (mainHeader.backupLBA >= diskSize) {
   1042       cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
   1043            << "header, but other problems may occur!\n";
   1044       MoveSecondHeaderToEnd();
   1045    } // if
   1046 
   1047    // Is there enough space to hold the GPT headers and partition tables,
   1048    // given the partition sizes?
   1049    if (CheckGPTSize() > 0) {
   1050       allOK = 0;
   1051    } // if
   1052 
   1053    // Check that second header is properly placed. Warn and ask if this should
   1054    // be corrected if the test fails....
   1055    if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
   1056       if (quiet == 0) {
   1057          cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
   1058               << "correct this problem? ";
   1059          if (GetYN() == 'Y') {
   1060             MoveSecondHeaderToEnd();
   1061             cout << "Have moved second header and partition table to correct location.\n";
   1062          } else {
   1063             cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
   1064          } // if correction requested
   1065       } else { // Go ahead and do correction automatically
   1066          MoveSecondHeaderToEnd();
   1067       } // if/else quiet
   1068    } // if
   1069 
   1070    if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
   1071       if (quiet == 0) {
   1072          cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
   1073               << "this problem? ";
   1074          if (GetYN() == 'Y') {
   1075             MoveSecondHeaderToEnd();
   1076             cout << "Have adjusted the second header and last usable sector value.\n";
   1077          } else {
   1078             cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
   1079          } // if correction requested
   1080       } else { // go ahead and do correction automatically
   1081          MoveSecondHeaderToEnd();
   1082       } // if/else quiet
   1083    } // if
   1084 
   1085    // Check for overlapping or insane partitions....
   1086    if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
   1087       allOK = 0;
   1088       cerr << "Aborting write operation!\n";
   1089    } // if
   1090 
   1091    // Check that protective MBR fits, and warn if it doesn't....
   1092    if (!protectiveMBR.DoTheyFit()) {
   1093       cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
   1094            << "fresh protective or hybrid MBR is recommended.\n";
   1095    }
   1096 
   1097    // Check for mismatched MBR and GPT data, but let it pass if found
   1098    // (function displays warning message)
   1099    FindHybridMismatches();
   1100 
   1101    RecomputeCRCs();
   1102 
   1103    if ((allOK) && (!quiet)) {
   1104       cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
   1105            << "PARTITIONS!!\n\nDo you want to proceed? ";
   1106       answer = GetYN();
   1107       if (answer == 'Y') {
   1108          cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
   1109       } else {
   1110          allOK = 0;
   1111       } // if/else
   1112    } // if
   1113 
   1114    // Do it!
   1115    if (allOK) {
   1116       if (myDisk.OpenForWrite()) {
   1117          // As per UEFI specs, write the secondary table and GPT first....
   1118          allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
   1119          if (!allOK) {
   1120             cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
   1121                  << "menu will resolve this problem.\n";
   1122             syncIt = 0;
   1123          } // if
   1124 
   1125          // Now write the secondary GPT header...
   1126          allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
   1127 
   1128          // Now write the main partition tables...
   1129          allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
   1130 
   1131          // Now write the main GPT header...
   1132          allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
   1133 
   1134          // To top it off, write the protective MBR...
   1135          allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
   1136 
   1137          // re-read the partition table
   1138          // Note: Done even if some write operations failed, but not if all of them failed.
   1139          // Done this way because I've received one problem report from a user one whose
   1140          // system the MBR write failed but everything else was OK (on a GPT disk under
   1141          // Windows), and the failure to sync therefore caused Windows to restore the
   1142          // original partition table from its cache. OTOH, such restoration might be
   1143          // desirable if the error occurs later; but that seems unlikely unless the initial
   1144          // write fails....
   1145          if (syncIt)
   1146             myDisk.DiskSync();
   1147 
   1148          if (allOK) { // writes completed OK
   1149             cout << "The operation has completed successfully.\n";
   1150          } else {
   1151             cerr << "Warning! An error was reported when writing the partition table! This error\n"
   1152                  << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
   1153          } // if/else
   1154 
   1155          myDisk.Close();
   1156       } else {
   1157          cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
   1158               << errno << "! Aborting write!\n";
   1159          allOK = 0;
   1160       } // if/else
   1161    } else {
   1162       cout << "Aborting write of new partition table.\n";
   1163    } // if
   1164 
   1165    return (allOK);
   1166 } // GPTData::SaveGPTData()
   1167 
   1168 // Save GPT data to a backup file. This function does much less error
   1169 // checking than SaveGPTData(). It can therefore preserve many types of
   1170 // corruption for later analysis; however, it preserves only the MBR,
   1171 // the main GPT header, the backup GPT header, and the main partition
   1172 // table; it discards the backup partition table, since it should be
   1173 // identical to the main partition table on healthy disks.
   1174 int GPTData::SaveGPTBackup(const string & filename) {
   1175    int allOK = 1;
   1176    DiskIO backupFile;
   1177 
   1178    if (backupFile.OpenForWrite(filename)) {
   1179       // Recomputing the CRCs is likely to alter them, which could be bad
   1180       // if the intent is to save a potentially bad GPT for later analysis;
   1181       // but if we don't do this, we get bogus errors when we load the
   1182       // backup. I'm favoring misses over false alarms....
   1183       RecomputeCRCs();
   1184 
   1185       protectiveMBR.WriteMBRData(&backupFile);
   1186       protectiveMBR.SetDisk(&myDisk);
   1187 
   1188       if (allOK) {
   1189          // MBR write closed disk, so re-open and seek to end....
   1190          backupFile.OpenForWrite();
   1191          allOK = SaveHeader(&mainHeader, backupFile, 1);
   1192       } // if (allOK)
   1193 
   1194       if (allOK)
   1195          allOK = SaveHeader(&secondHeader, backupFile, 2);
   1196 
   1197       if (allOK)
   1198          allOK = SavePartitionTable(backupFile, 3);
   1199 
   1200       if (allOK) { // writes completed OK
   1201          cout << "The operation has completed successfully.\n";
   1202       } else {
   1203          cerr << "Warning! An error was reported when writing the backup file.\n"
   1204               << "It may not be usable!\n";
   1205       } // if/else
   1206       backupFile.Close();
   1207    } else {
   1208       cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
   1209       allOK = 0;
   1210    } // if/else
   1211    return allOK;
   1212 } // GPTData::SaveGPTBackup()
   1213 
   1214 // Write a GPT header (main or backup) to the specified sector. Used by both
   1215 // the SaveGPTData() and SaveGPTBackup() functions.
   1216 // Should be passed an architecture-appropriate header (DO NOT call
   1217 // ReverseHeaderBytes() on the header before calling this function)
   1218 // Returns 1 on success, 0 on failure
   1219 int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
   1220    int littleEndian, allOK = 1;
   1221 
   1222    littleEndian = IsLittleEndian();
   1223    if (!littleEndian)
   1224       ReverseHeaderBytes(header);
   1225    if (disk.Seek(sector)) {
   1226       if (disk.Write(header, 512) == -1)
   1227          allOK = 0;
   1228    } else allOK = 0; // if (disk.Seek()...)
   1229    if (!littleEndian)
   1230       ReverseHeaderBytes(header);
   1231    return allOK;
   1232 } // GPTData::SaveHeader()
   1233 
   1234 // Save the partitions to the specified sector. Used by both the SaveGPTData()
   1235 // and SaveGPTBackup() functions.
   1236 // Should be passed an architecture-appropriate header (DO NOT call
   1237 // ReverseHeaderBytes() on the header before calling this function)
   1238 // Returns 1 on success, 0 on failure
   1239 int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
   1240    int littleEndian, allOK = 1;
   1241 
   1242    littleEndian = IsLittleEndian();
   1243    if (disk.Seek(sector)) {
   1244       if (!littleEndian)
   1245          ReversePartitionBytes();
   1246       if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
   1247          allOK = 0;
   1248       if (!littleEndian)
   1249          ReversePartitionBytes();
   1250    } else allOK = 0; // if (myDisk.Seek()...)
   1251    return allOK;
   1252 } // GPTData::SavePartitionTable()
   1253 
   1254 // Load GPT data from a backup file created by SaveGPTBackup(). This function
   1255 // does minimal error checking. It returns 1 if it completed successfully,
   1256 // 0 if there was a problem. In the latter case, it creates a new empty
   1257 // set of partitions.
   1258 int GPTData::LoadGPTBackup(const string & filename) {
   1259    int allOK = 1, val, err;
   1260    int shortBackup = 0;
   1261    DiskIO backupFile;
   1262 
   1263    if (backupFile.OpenForRead(filename)) {
   1264       // Let the MBRData class load the saved MBR...
   1265       protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
   1266       protectiveMBR.SetDisk(&myDisk);
   1267 
   1268       LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
   1269 
   1270       // Check backup file size and rebuild second header if file is right
   1271       // size to be direct dd copy of MBR, main header, and main partition
   1272       // table; if other size, treat it like a GPT fdisk-generated backup
   1273       // file
   1274       shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
   1275                      (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
   1276       if (shortBackup) {
   1277          RebuildSecondHeader();
   1278          secondCrcOk = mainCrcOk;
   1279       } else {
   1280          LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
   1281       } // if/else
   1282 
   1283       // Return valid headers code: 0 = both headers bad; 1 = main header
   1284       // good, backup bad; 2 = backup header good, main header bad;
   1285       // 3 = both headers good. Note these codes refer to valid GPT
   1286       // signatures and version numbers; more subtle problems will elude
   1287       // this check!
   1288       if ((val = CheckHeaderValidity()) > 0) {
   1289          if (val == 2) { // only backup header seems to be good
   1290             SetGPTSize(secondHeader.numParts, 0);
   1291          } else { // main header is OK
   1292             SetGPTSize(mainHeader.numParts, 0);
   1293          } // if/else
   1294 
   1295          if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
   1296             cout << "Warning! Current disk size doesn't match that of the backup!\n"
   1297                  << "Adjusting sizes to match, but subsequent problems are possible!\n";
   1298             MoveSecondHeaderToEnd();
   1299          } // if
   1300 
   1301          if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
   1302             cerr << "Warning! Read error " << errno
   1303                  << " loading partition table; strange behavior now likely!\n";
   1304       } else {
   1305          allOK = 0;
   1306       } // if/else
   1307       // Something went badly wrong, so blank out partitions
   1308       if (allOK == 0) {
   1309          cerr << "Improper backup file! Clearing all partition data!\n";
   1310          ClearGPTData();
   1311          protectiveMBR.MakeProtectiveMBR();
   1312       } // if
   1313    } else {
   1314       allOK = 0;
   1315       cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
   1316    } // if/else
   1317 
   1318    return allOK;
   1319 } // GPTData::LoadGPTBackup()
   1320 
   1321 int GPTData::SaveMBR(void) {
   1322    return protectiveMBR.WriteMBRData(&myDisk);
   1323 } // GPTData::SaveMBR()
   1324 
   1325 // This function destroys the on-disk GPT structures, but NOT the on-disk
   1326 // MBR.
   1327 // Returns 1 if the operation succeeds, 0 if not.
   1328 int GPTData::DestroyGPT(void) {
   1329    int sum, tableSize, allOK = 1;
   1330    uint8_t blankSector[512];
   1331    uint8_t* emptyTable;
   1332 
   1333    memset(blankSector, 0, sizeof(blankSector));
   1334    ClearGPTData();
   1335 
   1336    if (myDisk.OpenForWrite()) {
   1337       if (!myDisk.Seek(mainHeader.currentLBA))
   1338          allOK = 0;
   1339       if (myDisk.Write(blankSector, 512) != 512) { // blank it out
   1340          cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
   1341          allOK = 0;
   1342       } // if
   1343       if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
   1344          allOK = 0;
   1345       tableSize = numParts * mainHeader.sizeOfPartitionEntries;
   1346       emptyTable = new uint8_t[tableSize];
   1347       if (emptyTable == NULL) {
   1348          cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
   1349          exit(1);
   1350       } // if
   1351       memset(emptyTable, 0, tableSize);
   1352       if (allOK) {
   1353          sum = myDisk.Write(emptyTable, tableSize);
   1354          if (sum != tableSize) {
   1355             cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
   1356             allOK = 0;
   1357          } // if write failed
   1358       } // if
   1359       if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
   1360          allOK = 0;
   1361       if (allOK) {
   1362          sum = myDisk.Write(emptyTable, tableSize);
   1363          if (sum != tableSize) {
   1364             cerr << "Warning! GPT backup partition table not overwritten! Error is "
   1365                  << errno << "\n";
   1366             allOK = 0;
   1367          } // if wrong size written
   1368       } // if
   1369       if (!myDisk.Seek(secondHeader.currentLBA))
   1370          allOK = 0;
   1371       if (allOK) {
   1372          if (myDisk.Write(blankSector, 512) != 512) { // blank it out
   1373             cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
   1374             allOK = 0;
   1375          } // if
   1376       } // if
   1377       myDisk.DiskSync();
   1378       myDisk.Close();
   1379       cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
   1380            << "other utilities.\n";
   1381       delete[] emptyTable;
   1382    } else {
   1383       cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
   1384    } // if/else (fd != -1)
   1385    return (allOK);
   1386 } // GPTDataTextUI::DestroyGPT()
   1387 
   1388 // Wipe MBR data from the disk (zero it out completely)
   1389 // Returns 1 on success, 0 on failure.
   1390 int GPTData::DestroyMBR(void) {
   1391    int allOK;
   1392    uint8_t blankSector[512];
   1393 
   1394    memset(blankSector, 0, sizeof(blankSector));
   1395 
   1396    allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
   1397 
   1398    if (!allOK)
   1399       cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
   1400    return allOK;
   1401 } // GPTData::DestroyMBR(void)
   1402 
   1403 // Tell user whether Apple Partition Map (APM) was discovered....
   1404 void GPTData::ShowAPMState(void) {
   1405    if (apmFound)
   1406       cout << "  APM: present\n";
   1407    else
   1408       cout << "  APM: not present\n";
   1409 } // GPTData::ShowAPMState()
   1410 
   1411 // Tell user about the state of the GPT data....
   1412 void GPTData::ShowGPTState(void) {
   1413    switch (state) {
   1414       case gpt_invalid:
   1415          cout << "  GPT: not present\n";
   1416          break;
   1417       case gpt_valid:
   1418          cout << "  GPT: present\n";
   1419          break;
   1420       case gpt_corrupt:
   1421          cout << "  GPT: damaged\n";
   1422          break;
   1423       default:
   1424          cout << "\a  GPT: unknown -- bug!\n";
   1425          break;
   1426    } // switch
   1427 } // GPTData::ShowGPTState()
   1428 
   1429 // Display the basic GPT data
   1430 void GPTData::DisplayGPTData(void) {
   1431    uint32_t i;
   1432    uint64_t temp, totalFree;
   1433 
   1434    cout << "Disk " << device << ": " << diskSize << " sectors, "
   1435         << BytesToIeee(diskSize, blockSize) << "\n";
   1436    cout << "Logical sector size: " << blockSize << " bytes\n";
   1437    cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
   1438    cout << "Partition table holds up to " << numParts << " entries\n";
   1439    cout << "First usable sector is " << mainHeader.firstUsableLBA
   1440         << ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
   1441    totalFree = FindFreeBlocks(&i, &temp);
   1442    cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
   1443    cout << "Total free space is " << totalFree << " sectors ("
   1444         << BytesToIeee(totalFree, blockSize) << ")\n";
   1445    cout << "\nNumber  Start (sector)    End (sector)  Size       Code  Name\n";
   1446    for (i = 0; i < numParts; i++) {
   1447       partitions[i].ShowSummary(i, blockSize);
   1448    } // for
   1449 } // GPTData::DisplayGPTData()
   1450 
   1451 // Show detailed information on the specified partition
   1452 void GPTData::ShowPartDetails(uint32_t partNum) {
   1453    if ((partNum < numParts) && !IsFreePartNum(partNum)) {
   1454       partitions[partNum].ShowDetails(blockSize);
   1455    } else {
   1456       cout << "Partition #" << partNum + 1 << " does not exist.\n";
   1457    } // if
   1458 } // GPTData::ShowPartDetails()
   1459 
   1460 /**************************************************************************
   1461  *                                                                        *
   1462  * Partition table transformation functions (MBR or BSD disklabel to GPT) *
   1463  * (some of these functions may require user interaction)                 *
   1464  *                                                                        *
   1465  **************************************************************************/
   1466 
   1467 // Examines the MBR & GPT data to determine which set of data to use: the
   1468 // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
   1469 // a new set of partitions (use_new). A return value of use_abort indicates
   1470 // that this function couldn't determine what to do. Overriding functions
   1471 // in derived classes may ask users questions in such cases.
   1472 WhichToUse GPTData::UseWhichPartitions(void) {
   1473    WhichToUse which = use_new;
   1474    MBRValidity mbrState;
   1475 
   1476    mbrState = protectiveMBR.GetValidity();
   1477 
   1478    if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
   1479       cout << "\n***************************************************************\n"
   1480            << "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
   1481            << "in memory. ";
   1482       if (!justLooking) {
   1483          cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
   1484               << "typing 'q' if you don't want to convert your MBR partitions\n"
   1485               << "to GPT format!";
   1486       } // if
   1487       cout << "\n***************************************************************\n\n";
   1488       which = use_mbr;
   1489    } // if
   1490 
   1491    if ((state == gpt_invalid) && bsdFound) {
   1492       cout << "\n**********************************************************************\n"
   1493            << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
   1494            << "to GPT format.";
   1495       if ((!justLooking) && (!beQuiet)) {
   1496       cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
   1497            << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
   1498            << "want to convert your BSD partitions to GPT format!";
   1499       } // if
   1500       cout << "\n**********************************************************************\n\n";
   1501       which = use_bsd;
   1502    } // if
   1503 
   1504    if ((state == gpt_valid) && (mbrState == gpt)) {
   1505       which = use_gpt;
   1506       if (!beQuiet)
   1507          cout << "Found valid GPT with protective MBR; using GPT.\n";
   1508    } // if
   1509    if ((state == gpt_valid) && (mbrState == hybrid)) {
   1510       which = use_gpt;
   1511       if (!beQuiet)
   1512          cout << "Found valid GPT with hybrid MBR; using GPT.\n";
   1513    } // if
   1514    if ((state == gpt_valid) && (mbrState == invalid)) {
   1515       cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
   1516            << "protective MBR on save.\n";
   1517       which = use_gpt;
   1518    } // if
   1519    if ((state == gpt_valid) && (mbrState == mbr)) {
   1520       which = use_abort;
   1521    } // if
   1522 
   1523    if (state == gpt_corrupt) {
   1524       if (mbrState == gpt) {
   1525          cout << "\a\a****************************************************************************\n"
   1526               << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
   1527               << "verification and recovery are STRONGLY recommended.\n"
   1528               << "****************************************************************************\n";
   1529          which = use_gpt;
   1530       } else {
   1531          which = use_abort;
   1532       } // if/else MBR says disk is GPT
   1533    } // if GPT corrupt
   1534 
   1535    if (which == use_new)
   1536       cout << "Creating new GPT entries.\n";
   1537 
   1538    return which;
   1539 } // UseWhichPartitions()
   1540 
   1541 // Convert MBR partition table into GPT form.
   1542 void GPTData::XFormPartitions(void) {
   1543    int i, numToConvert;
   1544    uint8_t origType;
   1545 
   1546    // Clear out old data & prepare basics....
   1547    ClearGPTData();
   1548 
   1549    // Convert the smaller of the # of GPT or MBR partitions
   1550    if (numParts > MAX_MBR_PARTS)
   1551       numToConvert = MAX_MBR_PARTS;
   1552    else
   1553       numToConvert = numParts;
   1554 
   1555    for (i = 0; i < numToConvert; i++) {
   1556       origType = protectiveMBR.GetType(i);
   1557       // don't waste CPU time trying to convert extended, hybrid protective, or
   1558       // null (non-existent) partitions
   1559       if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
   1560           (origType != 0x00) && (origType != 0xEE))
   1561          partitions[i] = protectiveMBR.AsGPT(i);
   1562    } // for
   1563 
   1564    // Convert MBR into protective MBR
   1565    protectiveMBR.MakeProtectiveMBR();
   1566 
   1567    // Record that all original CRCs were OK so as not to raise flags
   1568    // when doing a disk verification
   1569    mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
   1570 } // GPTData::XFormPartitions()
   1571 
   1572 // Transforms BSD disklabel on the specified partition (numbered from 0).
   1573 // If an invalid partition number is given, the program does nothing.
   1574 // Returns the number of new partitions created.
   1575 int GPTData::XFormDisklabel(uint32_t partNum) {
   1576    uint32_t low, high;
   1577    int goOn = 1, numDone = 0;
   1578    BSDData disklabel;
   1579 
   1580    if (GetPartRange(&low, &high) == 0) {
   1581       goOn = 0;
   1582       cout << "No partitions!\n";
   1583    } // if
   1584    if (partNum > high) {
   1585       goOn = 0;
   1586       cout << "Specified partition is invalid!\n";
   1587    } // if
   1588 
   1589    // If all is OK, read the disklabel and convert it.
   1590    if (goOn) {
   1591       goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
   1592                                    partitions[partNum].GetLastLBA());
   1593       if ((goOn) && (disklabel.IsDisklabel())) {
   1594          numDone = XFormDisklabel(&disklabel);
   1595          if (numDone == 1)
   1596             cout << "Converted 1 BSD partition.\n";
   1597          else
   1598             cout << "Converted " << numDone << " BSD partitions.\n";
   1599       } else {
   1600          cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
   1601       } // if/else
   1602    } // if
   1603    if (numDone > 0) { // converted partitions; delete carrier
   1604       partitions[partNum].BlankPartition();
   1605    } // if
   1606    return numDone;
   1607 } // GPTData::XFormDisklabel(uint32_t i)
   1608 
   1609 // Transform the partitions on an already-loaded BSD disklabel...
   1610 int GPTData::XFormDisklabel(BSDData* disklabel) {
   1611    int i, partNum = 0, numDone = 0;
   1612 
   1613    if (disklabel->IsDisklabel()) {
   1614       for (i = 0; i < disklabel->GetNumParts(); i++) {
   1615          partNum = FindFirstFreePart();
   1616          if (partNum >= 0) {
   1617             partitions[partNum] = disklabel->AsGPT(i);
   1618             if (partitions[partNum].IsUsed())
   1619                numDone++;
   1620          } // if
   1621       } // for
   1622       if (partNum == -1)
   1623          cerr << "Warning! Too many partitions to convert!\n";
   1624    } // if
   1625 
   1626    // Record that all original CRCs were OK so as not to raise flags
   1627    // when doing a disk verification
   1628    mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
   1629 
   1630    return numDone;
   1631 } // GPTData::XFormDisklabel(BSDData* disklabel)
   1632 
   1633 // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
   1634 // partition has the active/bootable flag UNset and uses the GPT fdisk
   1635 // type code divided by 0x0100 as the MBR type code.
   1636 // Returns 1 if operation was 100% successful, 0 if there were ANY
   1637 // problems.
   1638 int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
   1639    int allOK = 1;
   1640 
   1641    if ((mbrPart < 0) || (mbrPart > 3)) {
   1642       cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
   1643       allOK = 0;
   1644    } // if
   1645    if (gptPart >= numParts) {
   1646       cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
   1647       allOK = 0;
   1648    } // if
   1649    if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
   1650       cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
   1651       allOK = 0;
   1652    } // if
   1653    if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
   1654        (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
   1655       if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
   1656          cout << "Caution: Partition end point past 32-bit pointer boundary;"
   1657               << " some OSes may\nreact strangely.\n";
   1658       } // if
   1659       protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
   1660                              (uint32_t) partitions[gptPart].GetLengthLBA(),
   1661                              partitions[gptPart].GetHexType() / 256, 0);
   1662    } else { // partition out of range
   1663       if (allOK) // Display only if "else" triggered by out-of-bounds condition
   1664          cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
   1665               << "partitions, or is\n too big; omitting it.\n";
   1666       allOK = 0;
   1667    } // if/else
   1668    return allOK;
   1669 } // GPTData::OnePartToMBR()
   1670 
   1671 
   1672 /**********************************************************************
   1673  *                                                                    *
   1674  * Functions that adjust GPT data structures WITHOUT user interaction *
   1675  * (they may display information for the user's benefit, though)      *
   1676  *                                                                    *
   1677  **********************************************************************/
   1678 
   1679 // Resizes GPT to specified number of entries. Creates a new table if
   1680 // necessary, copies data if it already exists. If fillGPTSectors is 1
   1681 // (the default), rounds numEntries to fill all the sectors necessary to
   1682 // hold the GPT.
   1683 // Returns 1 if all goes well, 0 if an error is encountered.
   1684 int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
   1685    GPTPart* newParts;
   1686    uint32_t i, high, copyNum, entriesPerSector;
   1687    int allOK = 1;
   1688 
   1689    // First, adjust numEntries upward, if necessary, to get a number
   1690    // that fills the allocated sectors
   1691    entriesPerSector = blockSize / GPT_SIZE;
   1692    if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
   1693       cout << "Adjusting GPT size from " << numEntries << " to ";
   1694       numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
   1695       cout << numEntries << " to fill the sector\n";
   1696    } // if
   1697 
   1698    // Do the work only if the # of partitions is changing. Along with being
   1699    // efficient, this prevents mucking with the location of the secondary
   1700    // partition table, which causes problems when loading data from a RAID
   1701    // array that's been expanded because this function is called when loading
   1702    // data.
   1703    if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
   1704       newParts = new GPTPart [numEntries];
   1705       if (newParts != NULL) {
   1706          if (partitions != NULL) { // existing partitions; copy them over
   1707             GetPartRange(&i, &high);
   1708             if (numEntries < (high + 1)) { // Highest entry too high for new #
   1709                cout << "The highest-numbered partition is " << high + 1
   1710                     << ", which is greater than the requested\n"
   1711                     << "partition table size of " << numEntries
   1712                     << "; cannot resize. Perhaps sorting will help.\n";
   1713                allOK = 0;
   1714                delete[] newParts;
   1715             } else { // go ahead with copy
   1716                if (numEntries < numParts)
   1717                   copyNum = numEntries;
   1718                else
   1719                   copyNum = numParts;
   1720                for (i = 0; i < copyNum; i++) {
   1721                   newParts[i] = partitions[i];
   1722                } // for
   1723                delete[] partitions;
   1724                partitions = newParts;
   1725             } // if
   1726          } else { // No existing partition table; just create it
   1727             partitions = newParts;
   1728          } // if/else existing partitions
   1729          numParts = numEntries;
   1730          mainHeader.firstUsableLBA = ((numEntries * GPT_SIZE) / blockSize) + (((numEntries * GPT_SIZE) % blockSize) != 0) + 2 ;
   1731          secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
   1732          MoveSecondHeaderToEnd();
   1733          if (diskSize > 0)
   1734             CheckGPTSize();
   1735       } else { // Bad memory allocation
   1736          cerr << "Error allocating memory for partition table! Size is unchanged!\n";
   1737          allOK = 0;
   1738       } // if/else
   1739    } // if/else
   1740    mainHeader.numParts = numParts;
   1741    secondHeader.numParts = numParts;
   1742    return (allOK);
   1743 } // GPTData::SetGPTSize()
   1744 
   1745 // Blank the partition array
   1746 void GPTData::BlankPartitions(void) {
   1747    uint32_t i;
   1748 
   1749    for (i = 0; i < numParts; i++) {
   1750       partitions[i].BlankPartition();
   1751    } // for
   1752 } // GPTData::BlankPartitions()
   1753 
   1754 // Delete a partition by number. Returns 1 if successful,
   1755 // 0 if there was a problem. Returns 1 if partition was in
   1756 // range, 0 if it was out of range.
   1757 int GPTData::DeletePartition(uint32_t partNum) {
   1758    uint64_t startSector, length;
   1759    uint32_t low, high, numUsedParts, retval = 1;;
   1760 
   1761    numUsedParts = GetPartRange(&low, &high);
   1762    if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
   1763       // In case there's a protective MBR, look for & delete matching
   1764       // MBR partition....
   1765       startSector = partitions[partNum].GetFirstLBA();
   1766       length = partitions[partNum].GetLengthLBA();
   1767       protectiveMBR.DeleteByLocation(startSector, length);
   1768 
   1769       // Now delete the GPT partition
   1770       partitions[partNum].BlankPartition();
   1771    } else {
   1772       cerr << "Partition number " << partNum + 1 << " out of range!\n";
   1773       retval = 0;
   1774    } // if/else
   1775    return retval;
   1776 } // GPTData::DeletePartition(uint32_t partNum)
   1777 
   1778 // Non-interactively create a partition.
   1779 // Returns 1 if the operation was successful, 0 if a problem was discovered.
   1780 uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
   1781    int retval = 1; // assume there'll be no problems
   1782    uint64_t origSector = startSector;
   1783 
   1784    if (IsFreePartNum(partNum)) {
   1785       if (Align(&startSector)) {
   1786          cout << "Information: Moved requested sector from " << origSector << " to "
   1787               << startSector << " in\norder to align on " << sectorAlignment
   1788               << "-sector boundaries.\n";
   1789       } // if
   1790       if (IsFree(startSector) && (startSector <= endSector)) {
   1791          if (FindLastInFree(startSector) >= endSector) {
   1792             partitions[partNum].SetFirstLBA(startSector);
   1793             partitions[partNum].SetLastLBA(endSector);
   1794             partitions[partNum].SetType(DEFAULT_GPT_TYPE);
   1795             partitions[partNum].RandomizeUniqueGUID();
   1796          } else retval = 0; // if free space until endSector
   1797       } else retval = 0; // if startSector is free
   1798    } else retval = 0; // if legal partition number
   1799    return retval;
   1800 } // GPTData::CreatePartition(partNum, startSector, endSector)
   1801 
   1802 // Sort the GPT entries, eliminating gaps and making for a logical
   1803 // ordering.
   1804 void GPTData::SortGPT(void) {
   1805    if (numParts > 0)
   1806       sort(partitions, partitions + numParts);
   1807 } // GPTData::SortGPT()
   1808 
   1809 // Swap the contents of two partitions.
   1810 // Returns 1 if successful, 0 if either partition is out of range
   1811 // (that is, not a legal number; either or both can be empty).
   1812 // Note that if partNum1 = partNum2 and this number is in range,
   1813 // it will be considered successful.
   1814 int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
   1815    GPTPart temp;
   1816    int allOK = 1;
   1817 
   1818    if ((partNum1 < numParts) && (partNum2 < numParts)) {
   1819       if (partNum1 != partNum2) {
   1820          temp = partitions[partNum1];
   1821          partitions[partNum1] = partitions[partNum2];
   1822          partitions[partNum2] = temp;
   1823       } // if
   1824    } else allOK = 0; // partition numbers are valid
   1825    return allOK;
   1826 } // GPTData::SwapPartitions()
   1827 
   1828 // Set up data structures for entirely new set of partitions on the
   1829 // specified device. Returns 1 if OK, 0 if there were problems.
   1830 // Note that this function does NOT clear the protectiveMBR data
   1831 // structure, since it may hold the original MBR partitions if the
   1832 // program was launched on an MBR disk, and those may need to be
   1833 // converted to GPT format.
   1834 int GPTData::ClearGPTData(void) {
   1835    int goOn = 1, i;
   1836 
   1837    // Set up the partition table....
   1838    delete[] partitions;
   1839    partitions = NULL;
   1840    SetGPTSize(NUM_GPT_ENTRIES);
   1841 
   1842    // Now initialize a bunch of stuff that's static....
   1843    mainHeader.signature = GPT_SIGNATURE;
   1844    mainHeader.revision = 0x00010000;
   1845    mainHeader.headerSize = HEADER_SIZE;
   1846    mainHeader.reserved = 0;
   1847    mainHeader.currentLBA = UINT64_C(1);
   1848    mainHeader.partitionEntriesLBA = (uint64_t) 2;
   1849    mainHeader.sizeOfPartitionEntries = GPT_SIZE;
   1850    for (i = 0; i < GPT_RESERVED; i++) {
   1851       mainHeader.reserved2[i] = '\0';
   1852    } // for
   1853    if (blockSize > 0)
   1854       sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
   1855    else
   1856       sectorAlignment = DEFAULT_ALIGNMENT;
   1857 
   1858    // Now some semi-static items (computed based on end of disk)
   1859    mainHeader.backupLBA = diskSize - UINT64_C(1);
   1860    mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
   1861 
   1862    // Set a unique GUID for the disk, based on random numbers
   1863    mainHeader.diskGUID.Randomize();
   1864 
   1865    // Copy main header to backup header
   1866    RebuildSecondHeader();
   1867 
   1868    // Blank out the partitions array....
   1869    BlankPartitions();
   1870 
   1871    // Flag all CRCs as being OK....
   1872    mainCrcOk = 1;
   1873    secondCrcOk = 1;
   1874    mainPartsCrcOk = 1;
   1875    secondPartsCrcOk = 1;
   1876 
   1877    return (goOn);
   1878 } // GPTData::ClearGPTData()
   1879 
   1880 // Set the location of the second GPT header data to the end of the disk.
   1881 // If the disk size has actually changed, this also adjusts the protective
   1882 // entry in the MBR, since it's probably no longer correct.
   1883 // Used internally and called by the 'e' option on the recovery &
   1884 // transformation menu, to help users of RAID arrays who add disk space
   1885 // to their arrays or to adjust data structures in restore operations
   1886 // involving unequal-sized disks.
   1887 void GPTData::MoveSecondHeaderToEnd() {
   1888    mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
   1889    if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
   1890       if (protectiveMBR.GetValidity() == hybrid) {
   1891          protectiveMBR.OptimizeEESize();
   1892          RecomputeCHS();
   1893       } // if
   1894       if (protectiveMBR.GetValidity() == gpt)
   1895          MakeProtectiveMBR();
   1896    } // if
   1897    mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
   1898    secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
   1899 } // GPTData::FixSecondHeaderLocation()
   1900 
   1901 // Sets the partition's name to the specified UnicodeString without
   1902 // user interaction.
   1903 // Returns 1 on success, 0 on failure (invalid partition number).
   1904 int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
   1905    int retval = 1;
   1906 
   1907    if (IsUsedPartNum(partNum))
   1908       partitions[partNum].SetName(theName);
   1909    else
   1910       retval = 0;
   1911 
   1912    return retval;
   1913 } // GPTData::SetName
   1914 
   1915 // Set the disk GUID to the specified value. Note that the header CRCs must
   1916 // be recomputed after calling this function.
   1917 void GPTData::SetDiskGUID(GUIDData newGUID) {
   1918    mainHeader.diskGUID = newGUID;
   1919    secondHeader.diskGUID = newGUID;
   1920 } // SetDiskGUID()
   1921 
   1922 // Set the unique GUID of the specified partition. Returns 1 on
   1923 // successful completion, 0 if there were problems (invalid
   1924 // partition number).
   1925 int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
   1926    int retval = 0;
   1927 
   1928    if (pn < numParts) {
   1929       if (partitions[pn].IsUsed()) {
   1930          partitions[pn].SetUniqueGUID(theGUID);
   1931          retval = 1;
   1932       } // if
   1933    } // if
   1934    return retval;
   1935 } // GPTData::SetPartitionGUID()
   1936 
   1937 // Set new random GUIDs for the disk and all partitions. Intended to be used
   1938 // after disk cloning or similar operations that don't randomize the GUIDs.
   1939 void GPTData::RandomizeGUIDs(void) {
   1940    uint32_t i;
   1941 
   1942    mainHeader.diskGUID.Randomize();
   1943    secondHeader.diskGUID = mainHeader.diskGUID;
   1944    for (i = 0; i < numParts; i++)
   1945       if (partitions[i].IsUsed())
   1946          partitions[i].RandomizeUniqueGUID();
   1947 } // GPTData::RandomizeGUIDs()
   1948 
   1949 // Change partition type code non-interactively. Returns 1 if
   1950 // successful, 0 if not....
   1951 int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
   1952    int retval = 1;
   1953 
   1954    if (!IsFreePartNum(partNum)) {
   1955       partitions[partNum].SetType(theGUID);
   1956    } else retval = 0;
   1957    return retval;
   1958 } // GPTData::ChangePartType()
   1959 
   1960 // Recompute the CHS values of all the MBR partitions. Used to reset
   1961 // CHS values that some BIOSes require, despite the fact that the
   1962 // resulting CHS values violate the GPT standard.
   1963 void GPTData::RecomputeCHS(void) {
   1964    int i;
   1965 
   1966    for (i = 0; i < 4; i++)
   1967       protectiveMBR.RecomputeCHS(i);
   1968 } // GPTData::RecomputeCHS()
   1969 
   1970 // Adjust sector number so that it falls on a sector boundary that's a
   1971 // multiple of sectorAlignment. This is done to improve the performance
   1972 // of Western Digital Advanced Format disks and disks with similar
   1973 // technology from other companies, which use 4096-byte sectors
   1974 // internally although they translate to 512-byte sectors for the
   1975 // benefit of the OS. If partitions aren't properly aligned on these
   1976 // disks, some filesystem data structures can span multiple physical
   1977 // sectors, degrading performance. This function should be called
   1978 // only on the FIRST sector of the partition, not the last!
   1979 // This function returns 1 if the alignment was altered, 0 if it
   1980 // was unchanged.
   1981 int GPTData::Align(uint64_t* sector) {
   1982    int retval = 0, sectorOK = 0;
   1983    uint64_t earlier, later, testSector;
   1984 
   1985    if ((*sector % sectorAlignment) != 0) {
   1986       earlier = (*sector / sectorAlignment) * sectorAlignment;
   1987       later = earlier + (uint64_t) sectorAlignment;
   1988 
   1989       // Check to see that every sector between the earlier one and the
   1990       // requested one is clear, and that it's not too early....
   1991       if (earlier >= mainHeader.firstUsableLBA) {
   1992          sectorOK = 1;
   1993          testSector = earlier;
   1994          do {
   1995             sectorOK = IsFree(testSector++);
   1996          } while ((sectorOK == 1) && (testSector < *sector));
   1997          if (sectorOK == 1) {
   1998             *sector = earlier;
   1999             retval = 1;
   2000          } // if
   2001       } // if firstUsableLBA check
   2002 
   2003       // If couldn't move the sector earlier, try to move it later instead....
   2004       if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
   2005          sectorOK = 1;
   2006          testSector = later;
   2007          do {
   2008             sectorOK = IsFree(testSector--);
   2009          } while ((sectorOK == 1) && (testSector > *sector));
   2010          if (sectorOK == 1) {
   2011             *sector = later;
   2012             retval = 1;
   2013          } // if
   2014       } // if
   2015    } // if
   2016    return retval;
   2017 } // GPTData::Align()
   2018 
   2019 /********************************************************
   2020  *                                                      *
   2021  * Functions that return data about GPT data structures *
   2022  * (most of these are inline in gpt.h)                  *
   2023  *                                                      *
   2024  ********************************************************/
   2025 
   2026 // Find the low and high used partition numbers (numbered from 0).
   2027 // Return value is the number of partitions found. Note that the
   2028 // *low and *high values are both set to 0 when no partitions
   2029 // are found, as well as when a single partition in the first
   2030 // position exists. Thus, the return value is the only way to
   2031 // tell when no partitions exist.
   2032 int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
   2033    uint32_t i;
   2034    int numFound = 0;
   2035 
   2036    *low = numParts + 1; // code for "not found"
   2037    *high = 0;
   2038    for (i = 0; i < numParts; i++) {
   2039       if (partitions[i].IsUsed()) { // it exists
   2040          *high = i; // since we're counting up, set the high value
   2041          // Set the low value only if it's not yet found...
   2042          if (*low == (numParts + 1)) *low = i;
   2043             numFound++;
   2044       } // if
   2045    } // for
   2046 
   2047    // Above will leave *low pointing to its "not found" value if no partitions
   2048    // are defined, so reset to 0 if this is the case....
   2049    if (*low == (numParts + 1))
   2050       *low = 0;
   2051    return numFound;
   2052 } // GPTData::GetPartRange()
   2053 
   2054 // Returns the value of the first free partition, or -1 if none is
   2055 // unused.
   2056 int GPTData::FindFirstFreePart(void) {
   2057    int i = 0;
   2058 
   2059    if (partitions != NULL) {
   2060       while ((i < (int) numParts) && (partitions[i].IsUsed()))
   2061          i++;
   2062       if (i >= (int) numParts)
   2063          i = -1;
   2064    } else i = -1;
   2065    return i;
   2066 } // GPTData::FindFirstFreePart()
   2067 
   2068 // Returns the number of defined partitions.
   2069 uint32_t GPTData::CountParts(void) {
   2070    uint32_t i, counted = 0;
   2071 
   2072    for (i = 0; i < numParts; i++) {
   2073       if (partitions[i].IsUsed())
   2074          counted++;
   2075    } // for
   2076    return counted;
   2077 } // GPTData::CountParts()
   2078 
   2079 /****************************************************
   2080  *                                                  *
   2081  * Functions that return data about disk free space *
   2082  *                                                  *
   2083  ****************************************************/
   2084 
   2085 // Find the first available block after the starting point; returns 0 if
   2086 // there are no available blocks left
   2087 uint64_t GPTData::FindFirstAvailable(uint64_t start) {
   2088    uint64_t first;
   2089    uint32_t i;
   2090    int firstMoved = 0;
   2091 
   2092    // Begin from the specified starting point or from the first usable
   2093    // LBA, whichever is greater...
   2094    if (start < mainHeader.firstUsableLBA)
   2095       first = mainHeader.firstUsableLBA;
   2096    else
   2097       first = start;
   2098 
   2099    // ...now search through all partitions; if first is within an
   2100    // existing partition, move it to the next sector after that
   2101    // partition and repeat. If first was moved, set firstMoved
   2102    // flag; repeat until firstMoved is not set, so as to catch
   2103    // cases where partitions are out of sequential order....
   2104    do {
   2105       firstMoved = 0;
   2106       for (i = 0; i < numParts; i++) {
   2107          if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
   2108              (first <= partitions[i].GetLastLBA())) { // in existing part.
   2109             first = partitions[i].GetLastLBA() + 1;
   2110             firstMoved = 1;
   2111          } // if
   2112       } // for
   2113    } while (firstMoved == 1);
   2114    if (first > mainHeader.lastUsableLBA)
   2115       first = 0;
   2116    return (first);
   2117 } // GPTData::FindFirstAvailable()
   2118 
   2119 // Finds the first available sector in the largest block of unallocated
   2120 // space on the disk. Returns 0 if there are no available blocks left
   2121 uint64_t GPTData::FindFirstInLargest(void) {
   2122    uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
   2123 
   2124    start = 0;
   2125    do {
   2126       firstBlock = FindFirstAvailable(start);
   2127       if (firstBlock != UINT32_C(0)) { // something's free...
   2128          lastBlock = FindLastInFree(firstBlock);
   2129          segmentSize = lastBlock - firstBlock + UINT32_C(1);
   2130          if (segmentSize > selectedSize) {
   2131             selectedSize = segmentSize;
   2132             selectedSegment = firstBlock;
   2133          } // if
   2134          start = lastBlock + 1;
   2135       } // if
   2136    } while (firstBlock != 0);
   2137    return selectedSegment;
   2138 } // GPTData::FindFirstInLargest()
   2139 
   2140 // Find the last available block on the disk.
   2141 // Returns 0 if there are no available sectors
   2142 uint64_t GPTData::FindLastAvailable(void) {
   2143    uint64_t last;
   2144    uint32_t i;
   2145    int lastMoved = 0;
   2146 
   2147    // Start by assuming the last usable LBA is available....
   2148    last = mainHeader.lastUsableLBA;
   2149 
   2150    // ...now, similar to algorithm in FindFirstAvailable(), search
   2151    // through all partitions, moving last when it's in an existing
   2152    // partition. Set the lastMoved flag so we repeat to catch cases
   2153    // where partitions are out of logical order.
   2154    do {
   2155       lastMoved = 0;
   2156       for (i = 0; i < numParts; i++) {
   2157          if ((last >= partitions[i].GetFirstLBA()) &&
   2158              (last <= partitions[i].GetLastLBA())) { // in existing part.
   2159             last = partitions[i].GetFirstLBA() - 1;
   2160             lastMoved = 1;
   2161          } // if
   2162       } // for
   2163    } while (lastMoved == 1);
   2164    if (last < mainHeader.firstUsableLBA)
   2165       last = 0;
   2166    return (last);
   2167 } // GPTData::FindLastAvailable()
   2168 
   2169 // Find the last available block in the free space pointed to by start.
   2170 uint64_t GPTData::FindLastInFree(uint64_t start) {
   2171    uint64_t nearestStart;
   2172    uint32_t i;
   2173 
   2174    nearestStart = mainHeader.lastUsableLBA;
   2175    for (i = 0; i < numParts; i++) {
   2176       if ((nearestStart > partitions[i].GetFirstLBA()) &&
   2177           (partitions[i].GetFirstLBA() > start)) {
   2178          nearestStart = partitions[i].GetFirstLBA() - 1;
   2179       } // if
   2180    } // for
   2181    return (nearestStart);
   2182 } // GPTData::FindLastInFree()
   2183 
   2184 // Finds the total number of free blocks, the number of segments in which
   2185 // they reside, and the size of the largest of those segments
   2186 uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
   2187    uint64_t start = UINT64_C(0); // starting point for each search
   2188    uint64_t totalFound = UINT64_C(0); // running total
   2189    uint64_t firstBlock; // first block in a segment
   2190    uint64_t lastBlock; // last block in a segment
   2191    uint64_t segmentSize; // size of segment in blocks
   2192    uint32_t num = 0;
   2193 
   2194    *largestSegment = UINT64_C(0);
   2195    if (diskSize > 0) {
   2196       do {
   2197          firstBlock = FindFirstAvailable(start);
   2198          if (firstBlock != UINT64_C(0)) { // something's free...
   2199             lastBlock = FindLastInFree(firstBlock);
   2200             segmentSize = lastBlock - firstBlock + UINT64_C(1);
   2201             if (segmentSize > *largestSegment) {
   2202                *largestSegment = segmentSize;
   2203             } // if
   2204             totalFound += segmentSize;
   2205             num++;
   2206             start = lastBlock + 1;
   2207          } // if
   2208       } while (firstBlock != 0);
   2209    } // if
   2210    *numSegments = num;
   2211    return totalFound;
   2212 } // GPTData::FindFreeBlocks()
   2213 
   2214 // Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
   2215 // If it's allocated, return the partition number to which it's allocated
   2216 // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
   2217 // returned in partNum if the sector is in use by basic GPT data structures.)
   2218 int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
   2219    int isFree = 1;
   2220    uint32_t i;
   2221 
   2222    for (i = 0; i < numParts; i++) {
   2223       if ((sector >= partitions[i].GetFirstLBA()) &&
   2224            (sector <= partitions[i].GetLastLBA())) {
   2225          isFree = 0;
   2226          if (partNum != NULL)
   2227             *partNum = i;
   2228       } // if
   2229    } // for
   2230    if ((sector < mainHeader.firstUsableLBA) ||
   2231         (sector > mainHeader.lastUsableLBA)) {
   2232       isFree = 0;
   2233       if (partNum != NULL)
   2234          *partNum = UINT32_MAX;
   2235    } // if
   2236    return (isFree);
   2237 } // GPTData::IsFree()
   2238 
   2239 // Returns 1 if partNum is unused AND if it's a legal value.
   2240 int GPTData::IsFreePartNum(uint32_t partNum) {
   2241    return ((partNum < numParts) && (partitions != NULL) &&
   2242            (!partitions[partNum].IsUsed()));
   2243 } // GPTData::IsFreePartNum()
   2244 
   2245 // Returns 1 if partNum is in use.
   2246 int GPTData::IsUsedPartNum(uint32_t partNum) {
   2247    return ((partNum < numParts) && (partitions != NULL) &&
   2248            (partitions[partNum].IsUsed()));
   2249 } // GPTData::IsUsedPartNum()
   2250 
   2251 /***********************************************************
   2252  *                                                         *
   2253  * Change how functions work or return information on them *
   2254  *                                                         *
   2255  ***********************************************************/
   2256 
   2257 // Set partition alignment value; partitions will begin on multiples of
   2258 // the specified value
   2259 void GPTData::SetAlignment(uint32_t n) {
   2260    if (n > 0)
   2261       sectorAlignment = n;
   2262    else
   2263       cerr << "Attempt to set partition alignment to 0!\n";
   2264 } // GPTData::SetAlignment()
   2265 
   2266 // Compute sector alignment based on the current partitions (if any). Each
   2267 // partition's starting LBA is examined, and if it's divisible by a power-of-2
   2268 // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
   2269 // sector size), but not by the previously-located alignment value, then the
   2270 // alignment value is adjusted down. If the computed alignment is less than 8
   2271 // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
   2272 // is a safety measure for Advanced Format drives. If no partitions are
   2273 // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
   2274 // adjustment of that based on the current sector size). The result is that new
   2275 // drives are aligned to 2048-sector multiples but the program won't complain
   2276 // about other alignments on existing disks unless a smaller-than-8 alignment
   2277 // is used on big disks (as safety for Advanced Format drives).
   2278 // Returns the computed alignment value.
   2279 uint32_t GPTData::ComputeAlignment(void) {
   2280    uint32_t i = 0, found, exponent = 31;
   2281    uint32_t align = DEFAULT_ALIGNMENT;
   2282 
   2283    if (blockSize > 0)
   2284       align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
   2285    exponent = (uint32_t) log2(align);
   2286    for (i = 0; i < numParts; i++) {
   2287       if (partitions[i].IsUsed()) {
   2288          found = 0;
   2289          while (!found) {
   2290             align = UINT64_C(1) << exponent;
   2291             if ((partitions[i].GetFirstLBA() % align) == 0) {
   2292                found = 1;
   2293             } else {
   2294                exponent--;
   2295             } // if/else
   2296          } // while
   2297       } // if
   2298    } // for
   2299    if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
   2300       align = MIN_AF_ALIGNMENT;
   2301    sectorAlignment = align;
   2302    return align;
   2303 } // GPTData::ComputeAlignment()
   2304 
   2305 /********************************
   2306  *                              *
   2307  * Endianness support functions *
   2308  *                              *
   2309  ********************************/
   2310 
   2311 void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
   2312    ReverseBytes(&header->signature, 8);
   2313    ReverseBytes(&header->revision, 4);
   2314    ReverseBytes(&header->headerSize, 4);
   2315    ReverseBytes(&header->headerCRC, 4);
   2316    ReverseBytes(&header->reserved, 4);
   2317    ReverseBytes(&header->currentLBA, 8);
   2318    ReverseBytes(&header->backupLBA, 8);
   2319    ReverseBytes(&header->firstUsableLBA, 8);
   2320    ReverseBytes(&header->lastUsableLBA, 8);
   2321    ReverseBytes(&header->partitionEntriesLBA, 8);
   2322    ReverseBytes(&header->numParts, 4);
   2323    ReverseBytes(&header->sizeOfPartitionEntries, 4);
   2324    ReverseBytes(&header->partitionEntriesCRC, 4);
   2325    ReverseBytes(header->reserved2, GPT_RESERVED);
   2326 } // GPTData::ReverseHeaderBytes()
   2327 
   2328 // Reverse byte order for all partitions.
   2329 void GPTData::ReversePartitionBytes() {
   2330    uint32_t i;
   2331 
   2332    for (i = 0; i < numParts; i++) {
   2333       partitions[i].ReversePartBytes();
   2334    } // for
   2335 } // GPTData::ReversePartitionBytes()
   2336 
   2337 // Validate partition number
   2338 bool GPTData::ValidPartNum (const uint32_t partNum) {
   2339    if (partNum >= numParts) {
   2340       cerr << "Partition number out of range: " << partNum << "\n";
   2341       return false;
   2342    } // if
   2343    return true;
   2344 } // GPTData::ValidPartNum
   2345 
   2346 // Return a single partition for inspection (not modification!) by other
   2347 // functions.
   2348 const GPTPart & GPTData::operator[](uint32_t partNum) const {
   2349    if (partNum >= numParts) {
   2350       cerr << "Partition number out of range (" << partNum << " requested, but only "
   2351            << numParts << " available)\n";
   2352       exit(1);
   2353    } // if
   2354    if (partitions == NULL) {
   2355       cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
   2356       exit(1);
   2357    } // if
   2358    return partitions[partNum];
   2359 } // operator[]
   2360 
   2361 // Return (not for modification!) the disk's GUID value
   2362 const GUIDData & GPTData::GetDiskGUID(void) const {
   2363    return mainHeader.diskGUID;
   2364 } // GPTData::GetDiskGUID()
   2365 
   2366 // Manage attributes for a partition, based on commands passed to this function.
   2367 // (Function is non-interactive.)
   2368 // Returns 1 if a modification command succeeded, 0 if the command should not have
   2369 // modified data, and -1 if a modification command failed.
   2370 int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
   2371    int retval = 0;
   2372    Attributes theAttr;
   2373 
   2374    if (partNum >= (int) numParts) {
   2375       cerr << "Invalid partition number (" << partNum + 1 << ")\n";
   2376       retval = -1;
   2377    } else {
   2378       if (command == "show") {
   2379          ShowAttributes(partNum);
   2380       } else if (command == "get") {
   2381          GetAttribute(partNum, bits);
   2382       } else {
   2383          theAttr = partitions[partNum].GetAttributes();
   2384          if (theAttr.OperateOnAttributes(partNum, command, bits)) {
   2385             partitions[partNum].SetAttributes(theAttr.GetAttributes());
   2386             retval = 1;
   2387          } else {
   2388             retval = -1;
   2389          } // if/else
   2390       } // if/elseif/else
   2391    } // if/else invalid partition #
   2392 
   2393    return retval;
   2394 } // GPTData::ManageAttributes()
   2395 
   2396 // Show all attributes for a specified partition....
   2397 void GPTData::ShowAttributes(const uint32_t partNum) {
   2398    if ((partNum < numParts) && partitions[partNum].IsUsed())
   2399       partitions[partNum].ShowAttributes(partNum);
   2400 } // GPTData::ShowAttributes
   2401 
   2402 // Show whether a single attribute bit is set (terse output)...
   2403 void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
   2404    if (partNum < numParts)
   2405       partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
   2406 } // GPTData::GetAttribute
   2407 
   2408 
   2409 /******************************************
   2410  *                                        *
   2411  * Additional non-class support functions *
   2412  *                                        *
   2413  ******************************************/
   2414 
   2415 // Check to be sure that data type sizes are correct. The basic types (uint*_t) should
   2416 // never fail these tests, but the struct types may fail depending on compile options.
   2417 // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
   2418 // sizes.
   2419 int SizesOK(void) {
   2420    int allOK = 1;
   2421 
   2422    if (sizeof(uint8_t) != 1) {
   2423       cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
   2424       allOK = 0;
   2425    } // if
   2426    if (sizeof(uint16_t) != 2) {
   2427       cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
   2428       allOK = 0;
   2429    } // if
   2430    if (sizeof(uint32_t) != 4) {
   2431       cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
   2432       allOK = 0;
   2433    } // if
   2434    if (sizeof(uint64_t) != 8) {
   2435       cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
   2436       allOK = 0;
   2437    } // if
   2438    if (sizeof(struct MBRRecord) != 16) {
   2439       cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
   2440       allOK = 0;
   2441    } // if
   2442    if (sizeof(struct TempMBR) != 512) {
   2443       cerr << "TempMBR is " <<  sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
   2444       allOK = 0;
   2445    } // if
   2446    if (sizeof(struct GPTHeader) != 512) {
   2447       cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
   2448       allOK = 0;
   2449    } // if
   2450    if (sizeof(GPTPart) != 128) {
   2451       cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
   2452       allOK = 0;
   2453    } // if
   2454    if (sizeof(GUIDData) != 16) {
   2455       cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
   2456       allOK = 0;
   2457    } // if
   2458    if (sizeof(PartType) != 16) {
   2459       cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
   2460       allOK = 0;
   2461    } // if
   2462    return (allOK);
   2463 } // SizesOK()
   2464 
   2465