Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This defines a set of argument wrappers and related factory methods that
      6 // can be used specify the refcounting and reference semantics of arguments
      7 // that are bound by the Bind() function in base/bind.h.
      8 //
      9 // It also defines a set of simple functions and utilities that people want
     10 // when using Callback<> and Bind().
     11 //
     12 //
     13 // ARGUMENT BINDING WRAPPERS
     14 //
     15 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
     16 // base::ConstRef(), and base::IgnoreResult().
     17 //
     18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
     19 // refcounting on arguments that are refcounted objects.
     20 //
     21 // Owned() transfers ownership of an object to the Callback resulting from
     22 // bind; the object will be deleted when the Callback is deleted.
     23 //
     24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
     25 // through a Callback. Logically, this signifies a destructive transfer of
     26 // the state of the argument into the target function.  Invoking
     27 // Callback::Run() twice on a Callback that was created with a Passed()
     28 // argument will CHECK() because the first invocation would have already
     29 // transferred ownership to the target function.
     30 //
     31 // ConstRef() allows binding a constant reference to an argument rather
     32 // than a copy.
     33 //
     34 // IgnoreResult() is used to adapt a function or Callback with a return type to
     35 // one with a void return. This is most useful if you have a function with,
     36 // say, a pesky ignorable bool return that you want to use with PostTask or
     37 // something else that expect a Callback with a void return.
     38 //
     39 // EXAMPLE OF Unretained():
     40 //
     41 //   class Foo {
     42 //    public:
     43 //     void func() { cout << "Foo:f" << endl; }
     44 //   };
     45 //
     46 //   // In some function somewhere.
     47 //   Foo foo;
     48 //   Closure foo_callback =
     49 //       Bind(&Foo::func, Unretained(&foo));
     50 //   foo_callback.Run();  // Prints "Foo:f".
     51 //
     52 // Without the Unretained() wrapper on |&foo|, the above call would fail
     53 // to compile because Foo does not support the AddRef() and Release() methods.
     54 //
     55 //
     56 // EXAMPLE OF Owned():
     57 //
     58 //   void foo(int* arg) { cout << *arg << endl }
     59 //
     60 //   int* pn = new int(1);
     61 //   Closure foo_callback = Bind(&foo, Owned(pn));
     62 //
     63 //   foo_callback.Run();  // Prints "1"
     64 //   foo_callback.Run();  // Prints "1"
     65 //   *n = 2;
     66 //   foo_callback.Run();  // Prints "2"
     67 //
     68 //   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
     69 //                          // |foo_callback| goes out of scope.
     70 //
     71 // Without Owned(), someone would have to know to delete |pn| when the last
     72 // reference to the Callback is deleted.
     73 //
     74 //
     75 // EXAMPLE OF ConstRef():
     76 //
     77 //   void foo(int arg) { cout << arg << endl }
     78 //
     79 //   int n = 1;
     80 //   Closure no_ref = Bind(&foo, n);
     81 //   Closure has_ref = Bind(&foo, ConstRef(n));
     82 //
     83 //   no_ref.Run();  // Prints "1"
     84 //   has_ref.Run();  // Prints "1"
     85 //
     86 //   n = 2;
     87 //   no_ref.Run();  // Prints "1"
     88 //   has_ref.Run();  // Prints "2"
     89 //
     90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
     91 // its bound callbacks.
     92 //
     93 //
     94 // EXAMPLE OF IgnoreResult():
     95 //
     96 //   int DoSomething(int arg) { cout << arg << endl; }
     97 //
     98 //   // Assign to a Callback with a void return type.
     99 //   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
    100 //   cb->Run(1);  // Prints "1".
    101 //
    102 //   // Prints "1" on |ml|.
    103 //   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
    104 //
    105 //
    106 // EXAMPLE OF Passed():
    107 //
    108 //   void TakesOwnership(scoped_ptr<Foo> arg) { }
    109 //   scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
    110 //
    111 //   scoped_ptr<Foo> f(new Foo());
    112 //
    113 //   // |cb| is given ownership of Foo(). |f| is now NULL.
    114 //   // You can use std::move(f) in place of &f, but it's more verbose.
    115 //   Closure cb = Bind(&TakesOwnership, Passed(&f));
    116 //
    117 //   // Run was never called so |cb| still owns Foo() and deletes
    118 //   // it on Reset().
    119 //   cb.Reset();
    120 //
    121 //   // |cb| is given a new Foo created by CreateFoo().
    122 //   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
    123 //
    124 //   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
    125 //   // no longer owns Foo() and, if reset, would not delete Foo().
    126 //   cb.Run();  // Foo() is now transferred to |arg| and deleted.
    127 //   cb.Run();  // This CHECK()s since Foo() already been used once.
    128 //
    129 // Passed() is particularly useful with PostTask() when you are transferring
    130 // ownership of an argument into a task, but don't necessarily know if the
    131 // task will always be executed. This can happen if the task is cancellable
    132 // or if it is posted to a TaskRunner.
    133 //
    134 //
    135 // SIMPLE FUNCTIONS AND UTILITIES.
    136 //
    137 //   DoNothing() - Useful for creating a Closure that does nothing when called.
    138 //   DeletePointer<T>() - Useful for creating a Closure that will delete a
    139 //                        pointer when invoked. Only use this when necessary.
    140 //                        In most cases MessageLoop::DeleteSoon() is a better
    141 //                        fit.
    142 
    143 #ifndef BASE_BIND_HELPERS_H_
    144 #define BASE_BIND_HELPERS_H_
    145 
    146 #include <stddef.h>
    147 
    148 #include <map>
    149 #include <memory>
    150 #include <type_traits>
    151 #include <utility>
    152 #include <vector>
    153 
    154 #include "base/callback.h"
    155 #include "base/memory/weak_ptr.h"
    156 #include "base/template_util.h"
    157 #include "build/build_config.h"
    158 
    159 namespace base {
    160 namespace internal {
    161 
    162 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
    163 // for the existence of AddRef() and Release() functions of the correct
    164 // signature.
    165 //
    166 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
    167 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
    168 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
    169 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
    170 //
    171 // The last link in particular show the method used below.
    172 //
    173 // For SFINAE to work with inherited methods, we need to pull some extra tricks
    174 // with multiple inheritance.  In the more standard formulation, the overloads
    175 // of Check would be:
    176 //
    177 //   template <typename C>
    178 //   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
    179 //
    180 //   template <typename C>
    181 //   No NotTheCheckWeWant(...);
    182 //
    183 //   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
    184 //
    185 // The problem here is that template resolution will not match
    186 // C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
    187 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
    188 // |value| will be false.  This formulation only checks for whether or
    189 // not TargetFunc exist directly in the class being introspected.
    190 //
    191 // To get around this, we play a dirty trick with multiple inheritance.
    192 // First, We create a class BaseMixin that declares each function that we
    193 // want to probe for.  Then we create a class Base that inherits from both T
    194 // (the class we wish to probe) and BaseMixin.  Note that the function
    195 // signature in BaseMixin does not need to match the signature of the function
    196 // we are probing for; thus it's easiest to just use void().
    197 //
    198 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
    199 // ambiguous resolution between BaseMixin and T.  This lets us write the
    200 // following:
    201 //
    202 //   template <typename C>
    203 //   No GoodCheck(Helper<&C::TargetFunc>*);
    204 //
    205 //   template <typename C>
    206 //   Yes GoodCheck(...);
    207 //
    208 //   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
    209 //
    210 // Notice here that the variadic version of GoodCheck() returns Yes here
    211 // instead of No like the previous one. Also notice that we calculate |value|
    212 // by specializing GoodCheck() on Base instead of T.
    213 //
    214 // We've reversed the roles of the variadic, and Helper overloads.
    215 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
    216 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
    217 // to the variadic version if T has TargetFunc.  If T::TargetFunc does not
    218 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
    219 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
    220 //
    221 // This method of SFINAE will correctly probe for inherited names, but it cannot
    222 // typecheck those names.  It's still a good enough sanity check though.
    223 //
    224 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
    225 //
    226 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
    227 // this works well.
    228 //
    229 // TODO(ajwong): Make this check for Release() as well.
    230 // See http://crbug.com/82038.
    231 template <typename T>
    232 class SupportsAddRefAndRelease {
    233   using Yes = char[1];
    234   using No = char[2];
    235 
    236   struct BaseMixin {
    237     void AddRef();
    238   };
    239 
    240 // MSVC warns when you try to use Base if T has a private destructor, the
    241 // common pattern for refcounted types. It does this even though no attempt to
    242 // instantiate Base is made.  We disable the warning for this definition.
    243 #if defined(OS_WIN)
    244 #pragma warning(push)
    245 #pragma warning(disable:4624)
    246 #endif
    247   struct Base : public T, public BaseMixin {
    248   };
    249 #if defined(OS_WIN)
    250 #pragma warning(pop)
    251 #endif
    252 
    253   template <void(BaseMixin::*)()> struct Helper {};
    254 
    255   template <typename C>
    256   static No& Check(Helper<&C::AddRef>*);
    257 
    258   template <typename >
    259   static Yes& Check(...);
    260 
    261  public:
    262   enum { value = sizeof(Check<Base>(0)) == sizeof(Yes) };
    263 };
    264 
    265 // Helpers to assert that arguments of a recounted type are bound with a
    266 // scoped_refptr.
    267 template <bool IsClasstype, typename T>
    268 struct UnsafeBindtoRefCountedArgHelper : false_type {
    269 };
    270 
    271 template <typename T>
    272 struct UnsafeBindtoRefCountedArgHelper<true, T>
    273     : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
    274 };
    275 
    276 template <typename T>
    277 struct UnsafeBindtoRefCountedArg : false_type {
    278 };
    279 
    280 template <typename T>
    281 struct UnsafeBindtoRefCountedArg<T*>
    282     : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
    283 };
    284 
    285 template <typename T>
    286 class HasIsMethodTag {
    287   using Yes = char[1];
    288   using No = char[2];
    289 
    290   template <typename U>
    291   static Yes& Check(typename U::IsMethod*);
    292 
    293   template <typename U>
    294   static No& Check(...);
    295 
    296  public:
    297   enum { value = sizeof(Check<T>(0)) == sizeof(Yes) };
    298 };
    299 
    300 template <typename T>
    301 class UnretainedWrapper {
    302  public:
    303   explicit UnretainedWrapper(T* o) : ptr_(o) {}
    304   T* get() const { return ptr_; }
    305  private:
    306   T* ptr_;
    307 };
    308 
    309 template <typename T>
    310 class ConstRefWrapper {
    311  public:
    312   explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
    313   const T& get() const { return *ptr_; }
    314  private:
    315   const T* ptr_;
    316 };
    317 
    318 template <typename T>
    319 struct IgnoreResultHelper {
    320   explicit IgnoreResultHelper(T functor) : functor_(functor) {}
    321 
    322   T functor_;
    323 };
    324 
    325 template <typename T>
    326 struct IgnoreResultHelper<Callback<T> > {
    327   explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
    328 
    329   const Callback<T>& functor_;
    330 };
    331 
    332 // An alternate implementation is to avoid the destructive copy, and instead
    333 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
    334 // a class that is essentially a scoped_ptr<>.
    335 //
    336 // The current implementation has the benefit though of leaving ParamTraits<>
    337 // fully in callback_internal.h as well as avoiding type conversions during
    338 // storage.
    339 template <typename T>
    340 class OwnedWrapper {
    341  public:
    342   explicit OwnedWrapper(T* o) : ptr_(o) {}
    343   ~OwnedWrapper() { delete ptr_; }
    344   T* get() const { return ptr_; }
    345   OwnedWrapper(const OwnedWrapper& other) {
    346     ptr_ = other.ptr_;
    347     other.ptr_ = NULL;
    348   }
    349 
    350  private:
    351   mutable T* ptr_;
    352 };
    353 
    354 // PassedWrapper is a copyable adapter for a scoper that ignores const.
    355 //
    356 // It is needed to get around the fact that Bind() takes a const reference to
    357 // all its arguments.  Because Bind() takes a const reference to avoid
    358 // unnecessary copies, it is incompatible with movable-but-not-copyable
    359 // types; doing a destructive "move" of the type into Bind() would violate
    360 // the const correctness.
    361 //
    362 // This conundrum cannot be solved without either C++11 rvalue references or
    363 // a O(2^n) blowup of Bind() templates to handle each combination of regular
    364 // types and movable-but-not-copyable types.  Thus we introduce a wrapper type
    365 // that is copyable to transmit the correct type information down into
    366 // BindState<>. Ignoring const in this type makes sense because it is only
    367 // created when we are explicitly trying to do a destructive move.
    368 //
    369 // Two notes:
    370 //  1) PassedWrapper supports any type that has a move constructor, however
    371 //     the type will need to be specifically whitelisted in order for it to be
    372 //     bound to a Callback. We guard this explicitly at the call of Passed()
    373 //     to make for clear errors. Things not given to Passed() will be forwarded
    374 //     and stored by value which will not work for general move-only types.
    375 //  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
    376 //     scoper to a Callback and allow the Callback to execute once.
    377 template <typename T>
    378 class PassedWrapper {
    379  public:
    380   explicit PassedWrapper(T&& scoper)
    381       : is_valid_(true), scoper_(std::move(scoper)) {}
    382   PassedWrapper(const PassedWrapper& other)
    383       : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
    384   T Pass() const {
    385     CHECK(is_valid_);
    386     is_valid_ = false;
    387     return std::move(scoper_);
    388   }
    389 
    390  private:
    391   mutable bool is_valid_;
    392   mutable T scoper_;
    393 };
    394 
    395 // Specialize PassedWrapper for std::unique_ptr used by base::Passed().
    396 // Use std::move() to transfer the data from one storage to another.
    397 template <typename T, typename D>
    398 class PassedWrapper<std::unique_ptr<T, D>> {
    399  public:
    400   explicit PassedWrapper(std::unique_ptr<T, D> scoper)
    401       : is_valid_(true), scoper_(std::move(scoper)) {}
    402   PassedWrapper(const PassedWrapper& other)
    403       : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
    404 
    405   std::unique_ptr<T, D> Pass() const {
    406     CHECK(is_valid_);
    407     is_valid_ = false;
    408     return std::move(scoper_);
    409   }
    410 
    411  private:
    412   mutable bool is_valid_;
    413   mutable std::unique_ptr<T, D> scoper_;
    414 };
    415 
    416 // Specialize PassedWrapper for std::vector<std::unique_ptr<T>>.
    417 template <typename T, typename D, typename A>
    418 class PassedWrapper<std::vector<std::unique_ptr<T, D>, A>> {
    419  public:
    420   explicit PassedWrapper(std::vector<std::unique_ptr<T, D>, A> scoper)
    421       : is_valid_(true), scoper_(std::move(scoper)) {}
    422   PassedWrapper(const PassedWrapper& other)
    423       : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
    424 
    425   std::vector<std::unique_ptr<T, D>, A> Pass() const {
    426     CHECK(is_valid_);
    427     is_valid_ = false;
    428     return std::move(scoper_);
    429   }
    430 
    431  private:
    432   mutable bool is_valid_;
    433   mutable std::vector<std::unique_ptr<T, D>, A> scoper_;
    434 };
    435 
    436 // Specialize PassedWrapper for std::map<K, std::unique_ptr<T>>.
    437 template <typename K, typename T, typename D, typename C, typename A>
    438 class PassedWrapper<std::map<K, std::unique_ptr<T, D>, C, A>> {
    439  public:
    440   explicit PassedWrapper(std::map<K, std::unique_ptr<T, D>, C, A> scoper)
    441       : is_valid_(true), scoper_(std::move(scoper)) {}
    442   PassedWrapper(const PassedWrapper& other)
    443       : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
    444 
    445   std::map<K, std::unique_ptr<T, D>, C, A> Pass() const {
    446     CHECK(is_valid_);
    447     is_valid_ = false;
    448     return std::move(scoper_);
    449   }
    450 
    451  private:
    452   mutable bool is_valid_;
    453   mutable std::map<K, std::unique_ptr<T, D>, C, A> scoper_;
    454 };
    455 
    456 // Unwrap the stored parameters for the wrappers above.
    457 template <typename T>
    458 struct UnwrapTraits {
    459   using ForwardType = const T&;
    460   static ForwardType Unwrap(const T& o) { return o; }
    461 };
    462 
    463 template <typename T>
    464 struct UnwrapTraits<UnretainedWrapper<T> > {
    465   using ForwardType = T*;
    466   static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
    467     return unretained.get();
    468   }
    469 };
    470 
    471 template <typename T>
    472 struct UnwrapTraits<ConstRefWrapper<T> > {
    473   using ForwardType = const T&;
    474   static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
    475     return const_ref.get();
    476   }
    477 };
    478 
    479 template <typename T>
    480 struct UnwrapTraits<scoped_refptr<T> > {
    481   using ForwardType = T*;
    482   static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
    483 };
    484 
    485 template <typename T>
    486 struct UnwrapTraits<WeakPtr<T> > {
    487   using ForwardType = const WeakPtr<T>&;
    488   static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
    489 };
    490 
    491 template <typename T>
    492 struct UnwrapTraits<OwnedWrapper<T> > {
    493   using ForwardType = T*;
    494   static ForwardType Unwrap(const OwnedWrapper<T>& o) {
    495     return o.get();
    496   }
    497 };
    498 
    499 template <typename T>
    500 struct UnwrapTraits<PassedWrapper<T> > {
    501   using ForwardType = T;
    502   static T Unwrap(PassedWrapper<T>& o) {
    503     return o.Pass();
    504   }
    505 };
    506 
    507 // Utility for handling different refcounting semantics in the Bind()
    508 // function.
    509 template <bool is_method, typename... T>
    510 struct MaybeScopedRefPtr;
    511 
    512 template <bool is_method>
    513 struct MaybeScopedRefPtr<is_method> {
    514   MaybeScopedRefPtr() {}
    515 };
    516 
    517 template <typename T, typename... Rest>
    518 struct MaybeScopedRefPtr<false, T, Rest...> {
    519   MaybeScopedRefPtr(const T&, const Rest&...) {}
    520 };
    521 
    522 template <typename T, size_t n, typename... Rest>
    523 struct MaybeScopedRefPtr<false, T[n], Rest...> {
    524   MaybeScopedRefPtr(const T*, const Rest&...) {}
    525 };
    526 
    527 template <typename T, typename... Rest>
    528 struct MaybeScopedRefPtr<true, T, Rest...> {
    529   MaybeScopedRefPtr(const T& /* o */, const Rest&...) {}
    530 };
    531 
    532 template <typename T, typename... Rest>
    533 struct MaybeScopedRefPtr<true, T*, Rest...> {
    534   MaybeScopedRefPtr(T* o, const Rest&...) : ref_(o) {}
    535   scoped_refptr<T> ref_;
    536 };
    537 
    538 // No need to additionally AddRef() and Release() since we are storing a
    539 // scoped_refptr<> inside the storage object already.
    540 template <typename T, typename... Rest>
    541 struct MaybeScopedRefPtr<true, scoped_refptr<T>, Rest...> {
    542   MaybeScopedRefPtr(const scoped_refptr<T>&, const Rest&...) {}
    543 };
    544 
    545 template <typename T, typename... Rest>
    546 struct MaybeScopedRefPtr<true, const T*, Rest...> {
    547   MaybeScopedRefPtr(const T* o, const Rest&...) : ref_(o) {}
    548   scoped_refptr<const T> ref_;
    549 };
    550 
    551 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
    552 // method.  It is used internally by Bind() to select the correct
    553 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
    554 // the target object is invalidated.
    555 //
    556 // The first argument should be the type of the object that will be received by
    557 // the method.
    558 template <bool IsMethod, typename... Args>
    559 struct IsWeakMethod : public false_type {};
    560 
    561 template <typename T, typename... Args>
    562 struct IsWeakMethod<true, WeakPtr<T>, Args...> : public true_type {};
    563 
    564 template <typename T, typename... Args>
    565 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>, Args...>
    566     : public true_type {};
    567 
    568 
    569 // Packs a list of types to hold them in a single type.
    570 template <typename... Types>
    571 struct TypeList {};
    572 
    573 // Used for DropTypeListItem implementation.
    574 template <size_t n, typename List>
    575 struct DropTypeListItemImpl;
    576 
    577 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
    578 template <size_t n, typename T, typename... List>
    579 struct DropTypeListItemImpl<n, TypeList<T, List...>>
    580     : DropTypeListItemImpl<n - 1, TypeList<List...>> {};
    581 
    582 template <typename T, typename... List>
    583 struct DropTypeListItemImpl<0, TypeList<T, List...>> {
    584   using Type = TypeList<T, List...>;
    585 };
    586 
    587 template <>
    588 struct DropTypeListItemImpl<0, TypeList<>> {
    589   using Type = TypeList<>;
    590 };
    591 
    592 // A type-level function that drops |n| list item from given TypeList.
    593 template <size_t n, typename List>
    594 using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
    595 
    596 // Used for TakeTypeListItem implementation.
    597 template <size_t n, typename List, typename... Accum>
    598 struct TakeTypeListItemImpl;
    599 
    600 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
    601 template <size_t n, typename T, typename... List, typename... Accum>
    602 struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
    603     : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
    604 
    605 template <typename T, typename... List, typename... Accum>
    606 struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
    607   using Type = TypeList<Accum...>;
    608 };
    609 
    610 template <typename... Accum>
    611 struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
    612   using Type = TypeList<Accum...>;
    613 };
    614 
    615 // A type-level function that takes first |n| list item from given TypeList.
    616 // E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
    617 // TypeList<A, B, C>.
    618 template <size_t n, typename List>
    619 using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
    620 
    621 // Used for ConcatTypeLists implementation.
    622 template <typename List1, typename List2>
    623 struct ConcatTypeListsImpl;
    624 
    625 template <typename... Types1, typename... Types2>
    626 struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
    627   using Type = TypeList<Types1..., Types2...>;
    628 };
    629 
    630 // A type-level function that concats two TypeLists.
    631 template <typename List1, typename List2>
    632 using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
    633 
    634 // Used for MakeFunctionType implementation.
    635 template <typename R, typename ArgList>
    636 struct MakeFunctionTypeImpl;
    637 
    638 template <typename R, typename... Args>
    639 struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
    640   // MSVC 2013 doesn't support Type Alias of function types.
    641   // Revisit this after we update it to newer version.
    642   typedef R Type(Args...);
    643 };
    644 
    645 // A type-level function that constructs a function type that has |R| as its
    646 // return type and has TypeLists items as its arguments.
    647 template <typename R, typename ArgList>
    648 using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
    649 
    650 // Used for ExtractArgs.
    651 template <typename Signature>
    652 struct ExtractArgsImpl;
    653 
    654 template <typename R, typename... Args>
    655 struct ExtractArgsImpl<R(Args...)> {
    656   using Type = TypeList<Args...>;
    657 };
    658 
    659 // A type-level function that extracts function arguments into a TypeList.
    660 // E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
    661 template <typename Signature>
    662 using ExtractArgs = typename ExtractArgsImpl<Signature>::Type;
    663 
    664 }  // namespace internal
    665 
    666 template <typename T>
    667 static inline internal::UnretainedWrapper<T> Unretained(T* o) {
    668   return internal::UnretainedWrapper<T>(o);
    669 }
    670 
    671 template <typename T>
    672 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
    673   return internal::ConstRefWrapper<T>(o);
    674 }
    675 
    676 template <typename T>
    677 static inline internal::OwnedWrapper<T> Owned(T* o) {
    678   return internal::OwnedWrapper<T>(o);
    679 }
    680 
    681 // We offer 2 syntaxes for calling Passed().  The first takes an rvalue and
    682 // is best suited for use with the return value of a function or other temporary
    683 // rvalues. The second takes a pointer to the scoper and is just syntactic sugar
    684 // to avoid having to write Passed(std::move(scoper)).
    685 //
    686 // Both versions of Passed() prevent T from being an lvalue reference. The first
    687 // via use of enable_if, and the second takes a T* which will not bind to T&.
    688 template <typename T,
    689           typename std::enable_if<internal::IsMoveOnlyType<T>::value &&
    690                                   !std::is_lvalue_reference<T>::value>::type* =
    691               nullptr>
    692 static inline internal::PassedWrapper<T> Passed(T&& scoper) {
    693   return internal::PassedWrapper<T>(std::move(scoper));
    694 }
    695 template <typename T,
    696           typename std::enable_if<internal::IsMoveOnlyType<T>::value>::type* =
    697               nullptr>
    698 static inline internal::PassedWrapper<T> Passed(T* scoper) {
    699   return internal::PassedWrapper<T>(std::move(*scoper));
    700 }
    701 
    702 template <typename T>
    703 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
    704   return internal::IgnoreResultHelper<T>(data);
    705 }
    706 
    707 template <typename T>
    708 static inline internal::IgnoreResultHelper<Callback<T> >
    709 IgnoreResult(const Callback<T>& data) {
    710   return internal::IgnoreResultHelper<Callback<T> >(data);
    711 }
    712 
    713 BASE_EXPORT void DoNothing();
    714 
    715 template<typename T>
    716 void DeletePointer(T* obj) {
    717   delete obj;
    718 }
    719 
    720 }  // namespace base
    721 
    722 #endif  // BASE_BIND_HELPERS_H_
    723