Home | History | Annotate | Download | only in message_loop
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
      6 #define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
      7 
      8 #include <queue>
      9 #include <string>
     10 
     11 #include "base/base_export.h"
     12 #include "base/callback_forward.h"
     13 #include "base/debug/task_annotator.h"
     14 #include "base/gtest_prod_util.h"
     15 #include "base/location.h"
     16 #include "base/macros.h"
     17 #include "base/memory/ref_counted.h"
     18 #include "base/memory/scoped_ptr.h"
     19 #include "base/message_loop/incoming_task_queue.h"
     20 #include "base/message_loop/message_loop_task_runner.h"
     21 #include "base/message_loop/message_pump.h"
     22 #include "base/message_loop/timer_slack.h"
     23 #include "base/observer_list.h"
     24 #include "base/pending_task.h"
     25 #include "base/sequenced_task_runner_helpers.h"
     26 #include "base/synchronization/lock.h"
     27 #include "base/time/time.h"
     28 #include "base/tracking_info.h"
     29 #include "build/build_config.h"
     30 
     31 // TODO(sky): these includes should not be necessary. Nuke them.
     32 #if defined(OS_WIN)
     33 #include "base/message_loop/message_pump_win.h"
     34 #elif defined(OS_IOS)
     35 #include "base/message_loop/message_pump_io_ios.h"
     36 #elif defined(OS_POSIX)
     37 #include "base/message_loop/message_pump_libevent.h"
     38 #endif
     39 
     40 namespace base {
     41 
     42 class HistogramBase;
     43 class RunLoop;
     44 class ThreadTaskRunnerHandle;
     45 class WaitableEvent;
     46 
     47 // A MessageLoop is used to process events for a particular thread.  There is
     48 // at most one MessageLoop instance per thread.
     49 //
     50 // Events include at a minimum Task instances submitted to PostTask and its
     51 // variants.  Depending on the type of message pump used by the MessageLoop
     52 // other events such as UI messages may be processed.  On Windows APC calls (as
     53 // time permits) and signals sent to a registered set of HANDLEs may also be
     54 // processed.
     55 //
     56 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
     57 // on the thread where the MessageLoop's Run method executes.
     58 //
     59 // NOTE: MessageLoop has task reentrancy protection.  This means that if a
     60 // task is being processed, a second task cannot start until the first task is
     61 // finished.  Reentrancy can happen when processing a task, and an inner
     62 // message pump is created.  That inner pump then processes native messages
     63 // which could implicitly start an inner task.  Inner message pumps are created
     64 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
     65 // (DoDragDrop), printer functions (StartDoc) and *many* others.
     66 //
     67 // Sample workaround when inner task processing is needed:
     68 //   HRESULT hr;
     69 //   {
     70 //     MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
     71 //     hr = DoDragDrop(...); // Implicitly runs a modal message loop.
     72 //   }
     73 //   // Process |hr| (the result returned by DoDragDrop()).
     74 //
     75 // Please be SURE your task is reentrant (nestable) and all global variables
     76 // are stable and accessible before calling SetNestableTasksAllowed(true).
     77 //
     78 class BASE_EXPORT MessageLoop : public MessagePump::Delegate {
     79  public:
     80   // A MessageLoop has a particular type, which indicates the set of
     81   // asynchronous events it may process in addition to tasks and timers.
     82   //
     83   // TYPE_DEFAULT
     84   //   This type of ML only supports tasks and timers.
     85   //
     86   // TYPE_UI
     87   //   This type of ML also supports native UI events (e.g., Windows messages).
     88   //   See also MessageLoopForUI.
     89   //
     90   // TYPE_IO
     91   //   This type of ML also supports asynchronous IO.  See also
     92   //   MessageLoopForIO.
     93   //
     94   // TYPE_JAVA
     95   //   This type of ML is backed by a Java message handler which is responsible
     96   //   for running the tasks added to the ML. This is only for use on Android.
     97   //   TYPE_JAVA behaves in essence like TYPE_UI, except during construction
     98   //   where it does not use the main thread specific pump factory.
     99   //
    100   // TYPE_CUSTOM
    101   //   MessagePump was supplied to constructor.
    102   //
    103   enum Type {
    104     TYPE_DEFAULT,
    105     TYPE_UI,
    106     TYPE_CUSTOM,
    107     TYPE_IO,
    108 #if defined(OS_ANDROID)
    109     TYPE_JAVA,
    110 #endif  // defined(OS_ANDROID)
    111   };
    112 
    113   // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
    114   // is typical to make use of the current thread's MessageLoop instance.
    115   explicit MessageLoop(Type type = TYPE_DEFAULT);
    116   // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must
    117   // be non-NULL.
    118   explicit MessageLoop(scoped_ptr<MessagePump> pump);
    119 
    120   ~MessageLoop() override;
    121 
    122   // Returns the MessageLoop object for the current thread, or null if none.
    123   static MessageLoop* current();
    124 
    125   static void EnableHistogrammer(bool enable_histogrammer);
    126 
    127   typedef scoped_ptr<MessagePump> (MessagePumpFactory)();
    128   // Uses the given base::MessagePumpForUIFactory to override the default
    129   // MessagePump implementation for 'TYPE_UI'. Returns true if the factory
    130   // was successfully registered.
    131   static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory);
    132 
    133   // Creates the default MessagePump based on |type|. Caller owns return
    134   // value.
    135   static scoped_ptr<MessagePump> CreateMessagePumpForType(Type type);
    136   // A DestructionObserver is notified when the current MessageLoop is being
    137   // destroyed.  These observers are notified prior to MessageLoop::current()
    138   // being changed to return NULL.  This gives interested parties the chance to
    139   // do final cleanup that depends on the MessageLoop.
    140   //
    141   // NOTE: Any tasks posted to the MessageLoop during this notification will
    142   // not be run.  Instead, they will be deleted.
    143   //
    144   class BASE_EXPORT DestructionObserver {
    145    public:
    146     virtual void WillDestroyCurrentMessageLoop() = 0;
    147 
    148    protected:
    149     virtual ~DestructionObserver();
    150   };
    151 
    152   // Add a DestructionObserver, which will start receiving notifications
    153   // immediately.
    154   void AddDestructionObserver(DestructionObserver* destruction_observer);
    155 
    156   // Remove a DestructionObserver.  It is safe to call this method while a
    157   // DestructionObserver is receiving a notification callback.
    158   void RemoveDestructionObserver(DestructionObserver* destruction_observer);
    159 
    160   // NOTE: Deprecated; prefer task_runner() and the TaskRunner interfaces.
    161   // TODO(skyostil): Remove these functions (crbug.com/465354).
    162   //
    163   // The "PostTask" family of methods call the task's Run method asynchronously
    164   // from within a message loop at some point in the future.
    165   //
    166   // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
    167   // with normal UI or IO event processing.  With the PostDelayedTask variant,
    168   // tasks are called after at least approximately 'delay_ms' have elapsed.
    169   //
    170   // The NonNestable variants work similarly except that they promise never to
    171   // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
    172   // such tasks get deferred until the top-most MessageLoop::Run is executing.
    173   //
    174   // The MessageLoop takes ownership of the Task, and deletes it after it has
    175   // been Run().
    176   //
    177   // PostTask(from_here, task) is equivalent to
    178   // PostDelayedTask(from_here, task, 0).
    179   //
    180   // NOTE: These methods may be called on any thread.  The Task will be invoked
    181   // on the thread that executes MessageLoop::Run().
    182   void PostTask(const tracked_objects::Location& from_here,
    183                 const Closure& task);
    184 
    185   void PostDelayedTask(const tracked_objects::Location& from_here,
    186                        const Closure& task,
    187                        TimeDelta delay);
    188 
    189   void PostNonNestableTask(const tracked_objects::Location& from_here,
    190                            const Closure& task);
    191 
    192   void PostNonNestableDelayedTask(const tracked_objects::Location& from_here,
    193                                   const Closure& task,
    194                                   TimeDelta delay);
    195 
    196   // A variant on PostTask that deletes the given object.  This is useful
    197   // if the object needs to live until the next run of the MessageLoop (for
    198   // example, deleting a RenderProcessHost from within an IPC callback is not
    199   // good).
    200   //
    201   // NOTE: This method may be called on any thread.  The object will be deleted
    202   // on the thread that executes MessageLoop::Run().
    203   template <class T>
    204   void DeleteSoon(const tracked_objects::Location& from_here, const T* object) {
    205     base::subtle::DeleteHelperInternal<T, void>::DeleteViaSequencedTaskRunner(
    206         this, from_here, object);
    207   }
    208 
    209   // A variant on PostTask that releases the given reference counted object
    210   // (by calling its Release method).  This is useful if the object needs to
    211   // live until the next run of the MessageLoop, or if the object needs to be
    212   // released on a particular thread.
    213   //
    214   // A common pattern is to manually increment the object's reference count
    215   // (AddRef), clear the pointer, then issue a ReleaseSoon.  The reference count
    216   // is incremented manually to ensure clearing the pointer does not trigger a
    217   // delete and to account for the upcoming decrement (ReleaseSoon).  For
    218   // example:
    219   //
    220   // scoped_refptr<Foo> foo = ...
    221   // foo->AddRef();
    222   // Foo* raw_foo = foo.get();
    223   // foo = NULL;
    224   // message_loop->ReleaseSoon(raw_foo);
    225   //
    226   // NOTE: This method may be called on any thread.  The object will be
    227   // released (and thus possibly deleted) on the thread that executes
    228   // MessageLoop::Run().  If this is not the same as the thread that calls
    229   // ReleaseSoon(FROM_HERE, ), then T MUST inherit from
    230   // RefCountedThreadSafe<T>!
    231   template <class T>
    232   void ReleaseSoon(const tracked_objects::Location& from_here,
    233                    const T* object) {
    234     base::subtle::ReleaseHelperInternal<T, void>::ReleaseViaSequencedTaskRunner(
    235         this, from_here, object);
    236   }
    237 
    238   // Deprecated: use RunLoop instead.
    239   // Run the message loop.
    240   void Run();
    241 
    242   // Deprecated: use RunLoop instead.
    243   // Process all pending tasks, windows messages, etc., but don't wait/sleep.
    244   // Return as soon as all items that can be run are taken care of.
    245   void RunUntilIdle();
    246 
    247   // Deprecated: use RunLoop instead.
    248   //
    249   // Signals the Run method to return when it becomes idle. It will continue to
    250   // process pending messages and future messages as long as they are enqueued.
    251   // Warning: if the MessageLoop remains busy, it may never quit. Only use this
    252   // Quit method when looping procedures (such as web pages) have been shut
    253   // down.
    254   //
    255   // This method may only be called on the same thread that called Run, and Run
    256   // must still be on the call stack.
    257   //
    258   // Use QuitClosure variants if you need to Quit another thread's MessageLoop,
    259   // but note that doing so is fairly dangerous if the target thread makes
    260   // nested calls to MessageLoop::Run.  The problem being that you won't know
    261   // which nested run loop you are quitting, so be careful!
    262   void QuitWhenIdle();
    263 
    264   // Deprecated: use RunLoop instead.
    265   //
    266   // This method is a variant of Quit, that does not wait for pending messages
    267   // to be processed before returning from Run.
    268   void QuitNow();
    269 
    270   // Deprecated: use RunLoop instead.
    271   // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an
    272   // arbitrary MessageLoop to QuitWhenIdle.
    273   static Closure QuitWhenIdleClosure();
    274 
    275   // Set the timer slack for this message loop.
    276   void SetTimerSlack(TimerSlack timer_slack) {
    277     pump_->SetTimerSlack(timer_slack);
    278   }
    279 
    280   // Returns true if this loop is |type|. This allows subclasses (especially
    281   // those in tests) to specialize how they are identified.
    282   virtual bool IsType(Type type) const;
    283 
    284   // Returns the type passed to the constructor.
    285   Type type() const { return type_; }
    286 
    287   // Optional call to connect the thread name with this loop.
    288   void set_thread_name(const std::string& thread_name) {
    289     DCHECK(thread_name_.empty()) << "Should not rename this thread!";
    290     thread_name_ = thread_name;
    291   }
    292   const std::string& thread_name() const { return thread_name_; }
    293 
    294   // Gets the TaskRunner associated with this message loop.
    295   const scoped_refptr<SingleThreadTaskRunner>& task_runner() {
    296     return task_runner_;
    297   }
    298 
    299   // Sets a new TaskRunner for this message loop. The message loop must already
    300   // have been bound to a thread prior to this call, and the task runner must
    301   // belong to that thread. Note that changing the task runner will also affect
    302   // the ThreadTaskRunnerHandle for the target thread. Must be called on the
    303   // thread to which the message loop is bound.
    304   void SetTaskRunner(scoped_refptr<SingleThreadTaskRunner> task_runner);
    305 
    306   // Enables or disables the recursive task processing. This happens in the case
    307   // of recursive message loops. Some unwanted message loops may occur when
    308   // using common controls or printer functions. By default, recursive task
    309   // processing is disabled.
    310   //
    311   // Please use |ScopedNestableTaskAllower| instead of calling these methods
    312   // directly.  In general, nestable message loops are to be avoided.  They are
    313   // dangerous and difficult to get right, so please use with extreme caution.
    314   //
    315   // The specific case where tasks get queued is:
    316   // - The thread is running a message loop.
    317   // - It receives a task #1 and executes it.
    318   // - The task #1 implicitly starts a message loop, like a MessageBox in the
    319   //   unit test. This can also be StartDoc or GetSaveFileName.
    320   // - The thread receives a task #2 before or while in this second message
    321   //   loop.
    322   // - With NestableTasksAllowed set to true, the task #2 will run right away.
    323   //   Otherwise, it will get executed right after task #1 completes at "thread
    324   //   message loop level".
    325   void SetNestableTasksAllowed(bool allowed);
    326   bool NestableTasksAllowed() const;
    327 
    328   // Enables nestable tasks on |loop| while in scope.
    329   class ScopedNestableTaskAllower {
    330    public:
    331     explicit ScopedNestableTaskAllower(MessageLoop* loop)
    332         : loop_(loop),
    333           old_state_(loop_->NestableTasksAllowed()) {
    334       loop_->SetNestableTasksAllowed(true);
    335     }
    336     ~ScopedNestableTaskAllower() {
    337       loop_->SetNestableTasksAllowed(old_state_);
    338     }
    339 
    340    private:
    341     MessageLoop* loop_;
    342     bool old_state_;
    343   };
    344 
    345   // Returns true if we are currently running a nested message loop.
    346   bool IsNested();
    347 
    348   // A TaskObserver is an object that receives task notifications from the
    349   // MessageLoop.
    350   //
    351   // NOTE: A TaskObserver implementation should be extremely fast!
    352   class BASE_EXPORT TaskObserver {
    353    public:
    354     TaskObserver();
    355 
    356     // This method is called before processing a task.
    357     virtual void WillProcessTask(const PendingTask& pending_task) = 0;
    358 
    359     // This method is called after processing a task.
    360     virtual void DidProcessTask(const PendingTask& pending_task) = 0;
    361 
    362    protected:
    363     virtual ~TaskObserver();
    364   };
    365 
    366   // These functions can only be called on the same thread that |this| is
    367   // running on.
    368   void AddTaskObserver(TaskObserver* task_observer);
    369   void RemoveTaskObserver(TaskObserver* task_observer);
    370 
    371 #if defined(OS_WIN)
    372   void set_os_modal_loop(bool os_modal_loop) {
    373     os_modal_loop_ = os_modal_loop;
    374   }
    375 
    376   bool os_modal_loop() const {
    377     return os_modal_loop_;
    378   }
    379 #endif  // OS_WIN
    380 
    381   // Can only be called from the thread that owns the MessageLoop.
    382   bool is_running() const;
    383 
    384   // Returns true if the message loop has high resolution timers enabled.
    385   // Provided for testing.
    386   bool HasHighResolutionTasks();
    387 
    388   // Returns true if the message loop is "idle". Provided for testing.
    389   bool IsIdleForTesting();
    390 
    391   // Returns the TaskAnnotator which is used to add debug information to posted
    392   // tasks.
    393   debug::TaskAnnotator* task_annotator() { return &task_annotator_; }
    394 
    395   // Runs the specified PendingTask.
    396   void RunTask(const PendingTask& pending_task);
    397 
    398   //----------------------------------------------------------------------------
    399  protected:
    400   scoped_ptr<MessagePump> pump_;
    401 
    402  private:
    403   friend class RunLoop;
    404   friend class internal::IncomingTaskQueue;
    405   friend class ScheduleWorkTest;
    406   friend class Thread;
    407   FRIEND_TEST_ALL_PREFIXES(MessageLoopTest, DeleteUnboundLoop);
    408 
    409   using MessagePumpFactoryCallback = Callback<scoped_ptr<MessagePump>()>;
    410 
    411   // Creates a MessageLoop without binding to a thread.
    412   // If |type| is TYPE_CUSTOM non-null |pump_factory| must be also given
    413   // to create a message pump for this message loop.  Otherwise a default
    414   // message pump for the |type| is created.
    415   //
    416   // It is valid to call this to create a new message loop on one thread,
    417   // and then pass it to the thread where the message loop actually runs.
    418   // The message loop's BindToCurrentThread() method must be called on the
    419   // thread the message loop runs on, before calling Run().
    420   // Before BindToCurrentThread() is called, only Post*Task() functions can
    421   // be called on the message loop.
    422   static scoped_ptr<MessageLoop> CreateUnbound(
    423       Type type,
    424       MessagePumpFactoryCallback pump_factory);
    425 
    426   // Common private constructor. Other constructors delegate the initialization
    427   // to this constructor.
    428   MessageLoop(Type type, MessagePumpFactoryCallback pump_factory);
    429 
    430   // Configure various members and bind this message loop to the current thread.
    431   void BindToCurrentThread();
    432 
    433   // Sets the ThreadTaskRunnerHandle for the current thread to point to the
    434   // task runner for this message loop.
    435   void SetThreadTaskRunnerHandle();
    436 
    437   // Invokes the actual run loop using the message pump.
    438   void RunHandler();
    439 
    440   // Called to process any delayed non-nestable tasks.
    441   bool ProcessNextDelayedNonNestableTask();
    442 
    443   // Calls RunTask or queues the pending_task on the deferred task list if it
    444   // cannot be run right now.  Returns true if the task was run.
    445   bool DeferOrRunPendingTask(const PendingTask& pending_task);
    446 
    447   // Adds the pending task to delayed_work_queue_.
    448   void AddToDelayedWorkQueue(const PendingTask& pending_task);
    449 
    450   // Delete tasks that haven't run yet without running them.  Used in the
    451   // destructor to make sure all the task's destructors get called.  Returns
    452   // true if some work was done.
    453   bool DeletePendingTasks();
    454 
    455   // Loads tasks from the incoming queue to |work_queue_| if the latter is
    456   // empty.
    457   void ReloadWorkQueue();
    458 
    459   // Wakes up the message pump. Can be called on any thread. The caller is
    460   // responsible for synchronizing ScheduleWork() calls.
    461   void ScheduleWork();
    462 
    463   // Start recording histogram info about events and action IF it was enabled
    464   // and IF the statistics recorder can accept a registration of our histogram.
    465   void StartHistogrammer();
    466 
    467   // Add occurrence of event to our histogram, so that we can see what is being
    468   // done in a specific MessageLoop instance (i.e., specific thread).
    469   // If message_histogram_ is NULL, this is a no-op.
    470   void HistogramEvent(int event);
    471 
    472   // MessagePump::Delegate methods:
    473   bool DoWork() override;
    474   bool DoDelayedWork(TimeTicks* next_delayed_work_time) override;
    475   bool DoIdleWork() override;
    476 
    477   const Type type_;
    478 
    479   // A list of tasks that need to be processed by this instance.  Note that
    480   // this queue is only accessed (push/pop) by our current thread.
    481   TaskQueue work_queue_;
    482 
    483 #if defined(OS_WIN)
    484   // How many high resolution tasks are in the pending task queue. This value
    485   // increases by N every time we call ReloadWorkQueue() and decreases by 1
    486   // every time we call RunTask() if the task needs a high resolution timer.
    487   int pending_high_res_tasks_;
    488   // Tracks if we have requested high resolution timers. Its only use is to
    489   // turn off the high resolution timer upon loop destruction.
    490   bool in_high_res_mode_;
    491 #endif
    492 
    493   // Contains delayed tasks, sorted by their 'delayed_run_time' property.
    494   DelayedTaskQueue delayed_work_queue_;
    495 
    496   // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
    497   TimeTicks recent_time_;
    498 
    499   // A queue of non-nestable tasks that we had to defer because when it came
    500   // time to execute them we were in a nested message loop.  They will execute
    501   // once we're out of nested message loops.
    502   TaskQueue deferred_non_nestable_work_queue_;
    503 
    504   ObserverList<DestructionObserver> destruction_observers_;
    505 
    506   // A recursion block that prevents accidentally running additional tasks when
    507   // insider a (accidentally induced?) nested message pump.
    508   bool nestable_tasks_allowed_;
    509 
    510 #if defined(OS_WIN)
    511   // Should be set to true before calling Windows APIs like TrackPopupMenu, etc.
    512   // which enter a modal message loop.
    513   bool os_modal_loop_;
    514 #endif
    515 
    516   // pump_factory_.Run() is called to create a message pump for this loop
    517   // if type_ is TYPE_CUSTOM and pump_ is null.
    518   MessagePumpFactoryCallback pump_factory_;
    519 
    520   std::string thread_name_;
    521   // A profiling histogram showing the counts of various messages and events.
    522   HistogramBase* message_histogram_;
    523 
    524   RunLoop* run_loop_;
    525 
    526   ObserverList<TaskObserver> task_observers_;
    527 
    528   debug::TaskAnnotator task_annotator_;
    529 
    530   scoped_refptr<internal::IncomingTaskQueue> incoming_task_queue_;
    531 
    532   // A task runner which we haven't bound to a thread yet.
    533   scoped_refptr<internal::MessageLoopTaskRunner> unbound_task_runner_;
    534 
    535   // The task runner associated with this message loop.
    536   scoped_refptr<SingleThreadTaskRunner> task_runner_;
    537   scoped_ptr<ThreadTaskRunnerHandle> thread_task_runner_handle_;
    538 
    539   template <class T, class R> friend class base::subtle::DeleteHelperInternal;
    540   template <class T, class R> friend class base::subtle::ReleaseHelperInternal;
    541 
    542   void DeleteSoonInternal(const tracked_objects::Location& from_here,
    543                           void(*deleter)(const void*),
    544                           const void* object);
    545   void ReleaseSoonInternal(const tracked_objects::Location& from_here,
    546                            void(*releaser)(const void*),
    547                            const void* object);
    548 
    549   DISALLOW_COPY_AND_ASSIGN(MessageLoop);
    550 };
    551 
    552 #if !defined(OS_NACL)
    553 
    554 //-----------------------------------------------------------------------------
    555 // MessageLoopForUI extends MessageLoop with methods that are particular to a
    556 // MessageLoop instantiated with TYPE_UI.
    557 //
    558 // This class is typically used like so:
    559 //   MessageLoopForUI::current()->...call some method...
    560 //
    561 class BASE_EXPORT MessageLoopForUI : public MessageLoop {
    562  public:
    563   MessageLoopForUI() : MessageLoop(TYPE_UI) {
    564   }
    565 
    566   // Returns the MessageLoopForUI of the current thread.
    567   static MessageLoopForUI* current() {
    568     MessageLoop* loop = MessageLoop::current();
    569     DCHECK(loop);
    570     DCHECK_EQ(MessageLoop::TYPE_UI, loop->type());
    571     return static_cast<MessageLoopForUI*>(loop);
    572   }
    573 
    574   static bool IsCurrent() {
    575     MessageLoop* loop = MessageLoop::current();
    576     return loop && loop->type() == MessageLoop::TYPE_UI;
    577   }
    578 
    579 #if defined(OS_IOS)
    580   // On iOS, the main message loop cannot be Run().  Instead call Attach(),
    581   // which connects this MessageLoop to the UI thread's CFRunLoop and allows
    582   // PostTask() to work.
    583   void Attach();
    584 #endif
    585 
    586 #if defined(OS_ANDROID)
    587   // On Android, the UI message loop is handled by Java side. So Run() should
    588   // never be called. Instead use Start(), which will forward all the native UI
    589   // events to the Java message loop.
    590   void Start();
    591 #endif
    592 
    593 #if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
    594   // Please see MessagePumpLibevent for definition.
    595   bool WatchFileDescriptor(
    596       int fd,
    597       bool persistent,
    598       MessagePumpLibevent::Mode mode,
    599       MessagePumpLibevent::FileDescriptorWatcher* controller,
    600       MessagePumpLibevent::Watcher* delegate);
    601 #endif
    602 };
    603 
    604 // Do not add any member variables to MessageLoopForUI!  This is important b/c
    605 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
    606 // data that you need should be stored on the MessageLoop's pump_ instance.
    607 static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
    608               "MessageLoopForUI should not have extra member variables");
    609 
    610 #endif  // !defined(OS_NACL)
    611 
    612 //-----------------------------------------------------------------------------
    613 // MessageLoopForIO extends MessageLoop with methods that are particular to a
    614 // MessageLoop instantiated with TYPE_IO.
    615 //
    616 // This class is typically used like so:
    617 //   MessageLoopForIO::current()->...call some method...
    618 //
    619 class BASE_EXPORT MessageLoopForIO : public MessageLoop {
    620  public:
    621   MessageLoopForIO();
    622 
    623   // Returns the MessageLoopForIO of the current thread.
    624   static MessageLoopForIO* current() {
    625     MessageLoop* loop = MessageLoop::current();
    626     DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
    627     return static_cast<MessageLoopForIO*>(loop);
    628   }
    629 
    630   static bool IsCurrent() {
    631     MessageLoop* loop = MessageLoop::current();
    632     return loop && loop->type() == MessageLoop::TYPE_IO;
    633   }
    634 
    635 #if !defined(OS_NACL_SFI)
    636 
    637 #if defined(OS_WIN)
    638   typedef MessagePumpForIO::IOHandler IOHandler;
    639   typedef MessagePumpForIO::IOContext IOContext;
    640   typedef MessagePumpForIO::IOObserver IOObserver;
    641 #elif defined(OS_IOS)
    642   typedef MessagePumpIOSForIO::Watcher Watcher;
    643   typedef MessagePumpIOSForIO::FileDescriptorWatcher
    644       FileDescriptorWatcher;
    645   typedef MessagePumpIOSForIO::IOObserver IOObserver;
    646 
    647   enum Mode {
    648     WATCH_READ = MessagePumpIOSForIO::WATCH_READ,
    649     WATCH_WRITE = MessagePumpIOSForIO::WATCH_WRITE,
    650     WATCH_READ_WRITE = MessagePumpIOSForIO::WATCH_READ_WRITE
    651   };
    652 #elif defined(OS_POSIX)
    653   typedef MessagePumpLibevent::Watcher Watcher;
    654   typedef MessagePumpLibevent::FileDescriptorWatcher
    655       FileDescriptorWatcher;
    656   typedef MessagePumpLibevent::IOObserver IOObserver;
    657 
    658   enum Mode {
    659     WATCH_READ = MessagePumpLibevent::WATCH_READ,
    660     WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE,
    661     WATCH_READ_WRITE = MessagePumpLibevent::WATCH_READ_WRITE
    662   };
    663 #endif
    664 
    665   void AddIOObserver(IOObserver* io_observer);
    666   void RemoveIOObserver(IOObserver* io_observer);
    667 
    668 #if defined(OS_WIN)
    669   // Please see MessagePumpWin for definitions of these methods.
    670   void RegisterIOHandler(HANDLE file, IOHandler* handler);
    671   bool RegisterJobObject(HANDLE job, IOHandler* handler);
    672   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
    673 #elif defined(OS_POSIX)
    674   // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition.
    675   bool WatchFileDescriptor(int fd,
    676                            bool persistent,
    677                            Mode mode,
    678                            FileDescriptorWatcher* controller,
    679                            Watcher* delegate);
    680 #endif  // defined(OS_IOS) || defined(OS_POSIX)
    681 #endif  // !defined(OS_NACL_SFI)
    682 };
    683 
    684 // Do not add any member variables to MessageLoopForIO!  This is important b/c
    685 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
    686 // data that you need should be stored on the MessageLoop's pump_ instance.
    687 static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
    688               "MessageLoopForIO should not have extra member variables");
    689 
    690 }  // namespace base
    691 
    692 #endif  // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
    693