1 /****************************************************************************** 2 * 3 * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore 4 * 5 * Licensed under the Apache License, Version 2.0 (the "License"); 6 * you may not use this file except in compliance with the License. 7 * You may obtain a copy of the License at: 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 * 17 ******************************************************************************/ 18 /** 19 ******************************************************************************* 20 * @file 21 * ihevc_chroma_itrans_recon.c 22 * 23 * @brief 24 * Contains function definitions for inverse transform and reconstruction 25 * of chroma interleaved data. 26 * 27 * @author 28 * 100470 29 * 30 * @par List of Functions: 31 * - ihevc_chroma_itrans_recon_4x4() 32 * 33 * @remarks 34 * None 35 * 36 ******************************************************************************* 37 */ 38 39 #include <stdio.h> 40 #include <string.h> 41 #include "ihevc_typedefs.h" 42 #include "ihevc_macros.h" 43 #include "ihevc_platform_macros.h" 44 #include "ihevc_defs.h" 45 #include "ihevc_trans_tables.h" 46 #include "ihevc_chroma_itrans_recon.h" 47 #include "ihevc_func_selector.h" 48 #include "ihevc_trans_macros.h" 49 50 /* All the functions work one component(U or V) of interleaved data depending upon pointers passed to it */ 51 /* Data visualization */ 52 /* U V U V U V U V */ 53 /* U V U V U V U V */ 54 /* U V U V U V U V */ 55 /* U V U V U V U V */ 56 /* If the pointer points to first byte of above stream (U) , functions will operate on U component */ 57 /* If the pointer points to second byte of above stream (V) , functions will operate on V component */ 58 59 /** 60 ******************************************************************************* 61 * 62 * @brief 63 * This function performs Inverse transform and reconstruction for 4x4 64 * input block 65 * 66 * @par Description: 67 * Performs inverse transform and adds the prediction data and clips output 68 * to 8 bit 69 * 70 * @param[in] pi2_src 71 * Input 4x4 coefficients 72 * 73 * @param[in] pi2_tmp 74 * Temporary 4x4 buffer for storing inverse transform 75 * 1st stage output 76 * 77 * @param[in] pu1_pred 78 * Prediction 4x4 block 79 * 80 * @param[out] pu1_dst 81 * Output 4x4 block 82 * 83 * @param[in] src_strd 84 * Input stride 85 * 86 * @param[in] pred_strd 87 * Prediction stride 88 * 89 * @param[in] dst_strd 90 * Output Stride 91 * 92 * @param[in] shift 93 * Output shift 94 * 95 * @param[in] zero_cols 96 * Zero columns in pi2_src 97 * 98 * @returns Void 99 * 100 * @remarks 101 * None 102 * 103 ******************************************************************************* 104 */ 105 106 107 void ihevc_chroma_itrans_recon_4x4(WORD16 *pi2_src, 108 WORD16 *pi2_tmp, 109 UWORD8 *pu1_pred, 110 UWORD8 *pu1_dst, 111 WORD32 src_strd, 112 WORD32 pred_strd, 113 WORD32 dst_strd, 114 WORD32 zero_cols, 115 WORD32 zero_rows) 116 { 117 WORD32 j; 118 WORD32 e[2], o[2]; 119 WORD32 add; 120 WORD32 shift; 121 WORD16 *pi2_tmp_orig; 122 WORD32 trans_size; 123 UNUSED(zero_rows); 124 trans_size = TRANS_SIZE_4; 125 126 pi2_tmp_orig = pi2_tmp; 127 128 /* Inverse Transform 1st stage */ 129 shift = IT_SHIFT_STAGE_1; 130 add = 1 << (shift - 1); 131 132 for(j = 0; j < trans_size; j++) 133 { 134 /* Checking for Zero Cols */ 135 if((zero_cols & 1) == 1) 136 { 137 memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); 138 } 139 else 140 { 141 142 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ 143 o[0] = g_ai2_ihevc_trans_4[1][0] * pi2_src[src_strd] 144 + g_ai2_ihevc_trans_4[3][0] * pi2_src[3 * src_strd]; 145 o[1] = g_ai2_ihevc_trans_4[1][1] * pi2_src[src_strd] 146 + g_ai2_ihevc_trans_4[3][1] * pi2_src[3 * src_strd]; 147 e[0] = g_ai2_ihevc_trans_4[0][0] * pi2_src[0] 148 + g_ai2_ihevc_trans_4[2][0] * pi2_src[2 * src_strd]; 149 e[1] = g_ai2_ihevc_trans_4[0][1] * pi2_src[0] 150 + g_ai2_ihevc_trans_4[2][1] * pi2_src[2 * src_strd]; 151 152 pi2_tmp[0] = 153 CLIP_S16(((e[0] + o[0] + add) >> shift)); 154 pi2_tmp[1] = 155 CLIP_S16(((e[1] + o[1] + add) >> shift)); 156 pi2_tmp[2] = 157 CLIP_S16(((e[1] - o[1] + add) >> shift)); 158 pi2_tmp[3] = 159 CLIP_S16(((e[0] - o[0] + add) >> shift)); 160 161 } 162 pi2_src++; 163 pi2_tmp += trans_size; 164 zero_cols = zero_cols >> 1; 165 } 166 167 pi2_tmp = pi2_tmp_orig; 168 169 /* Inverse Transform 2nd stage */ 170 shift = IT_SHIFT_STAGE_2; 171 add = 1 << (shift - 1); 172 173 for(j = 0; j < trans_size; j++) 174 { 175 WORD32 itrans_out; 176 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ 177 o[0] = g_ai2_ihevc_trans_4[1][0] * pi2_tmp[trans_size] 178 + g_ai2_ihevc_trans_4[3][0] * pi2_tmp[3 * trans_size]; 179 o[1] = g_ai2_ihevc_trans_4[1][1] * pi2_tmp[trans_size] 180 + g_ai2_ihevc_trans_4[3][1] * pi2_tmp[3 * trans_size]; 181 e[0] = g_ai2_ihevc_trans_4[0][0] * pi2_tmp[0] 182 + g_ai2_ihevc_trans_4[2][0] * pi2_tmp[2 * trans_size]; 183 e[1] = g_ai2_ihevc_trans_4[0][1] * pi2_tmp[0] 184 + g_ai2_ihevc_trans_4[2][1] * pi2_tmp[2 * trans_size]; 185 186 itrans_out = 187 CLIP_S16(((e[0] + o[0] + add) >> shift)); 188 pu1_dst[0 * 2] = CLIP_U8((itrans_out + pu1_pred[0 * 2])); 189 itrans_out = 190 CLIP_S16(((e[1] + o[1] + add) >> shift)); 191 pu1_dst[1 * 2] = CLIP_U8((itrans_out + pu1_pred[1 * 2])); 192 itrans_out = 193 CLIP_S16(((e[1] - o[1] + add) >> shift)); 194 pu1_dst[2 * 2] = CLIP_U8((itrans_out + pu1_pred[2 * 2])); 195 itrans_out = 196 CLIP_S16(((e[0] - o[0] + add) >> shift)); 197 pu1_dst[3 * 2] = CLIP_U8((itrans_out + pu1_pred[3 * 2])); 198 199 pi2_tmp++; 200 pu1_pred += pred_strd; 201 pu1_dst += dst_strd; 202 203 } 204 } 205 206