Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jccoefct.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1994-1997, Thomas G. Lane.
      6  * It was modified by The libjpeg-turbo Project to include only code and
      7  * information relevant to libjpeg-turbo.
      8  * For conditions of distribution and use, see the accompanying README file.
      9  *
     10  * This file contains the coefficient buffer controller for compression.
     11  * This controller is the top level of the JPEG compressor proper.
     12  * The coefficient buffer lies between forward-DCT and entropy encoding steps.
     13  */
     14 
     15 #define JPEG_INTERNALS
     16 #include "jinclude.h"
     17 #include "jpeglib.h"
     18 
     19 
     20 /* We use a full-image coefficient buffer when doing Huffman optimization,
     21  * and also for writing multiple-scan JPEG files.  In all cases, the DCT
     22  * step is run during the first pass, and subsequent passes need only read
     23  * the buffered coefficients.
     24  */
     25 #ifdef ENTROPY_OPT_SUPPORTED
     26 #define FULL_COEF_BUFFER_SUPPORTED
     27 #else
     28 #ifdef C_MULTISCAN_FILES_SUPPORTED
     29 #define FULL_COEF_BUFFER_SUPPORTED
     30 #endif
     31 #endif
     32 
     33 
     34 /* Private buffer controller object */
     35 
     36 typedef struct {
     37   struct jpeg_c_coef_controller pub; /* public fields */
     38 
     39   JDIMENSION iMCU_row_num;      /* iMCU row # within image */
     40   JDIMENSION mcu_ctr;           /* counts MCUs processed in current row */
     41   int MCU_vert_offset;          /* counts MCU rows within iMCU row */
     42   int MCU_rows_per_iMCU_row;    /* number of such rows needed */
     43 
     44   /* For single-pass compression, it's sufficient to buffer just one MCU
     45    * (although this may prove a bit slow in practice).  We allocate a
     46    * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
     47    * MCU constructed and sent.  In multi-pass modes, this array points to the
     48    * current MCU's blocks within the virtual arrays.
     49    */
     50   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
     51 
     52   /* In multi-pass modes, we need a virtual block array for each component. */
     53   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
     54 } my_coef_controller;
     55 
     56 typedef my_coef_controller * my_coef_ptr;
     57 
     58 
     59 /* Forward declarations */
     60 METHODDEF(boolean) compress_data
     61         (j_compress_ptr cinfo, JSAMPIMAGE input_buf);
     62 #ifdef FULL_COEF_BUFFER_SUPPORTED
     63 METHODDEF(boolean) compress_first_pass
     64         (j_compress_ptr cinfo, JSAMPIMAGE input_buf);
     65 METHODDEF(boolean) compress_output
     66         (j_compress_ptr cinfo, JSAMPIMAGE input_buf);
     67 #endif
     68 
     69 
     70 LOCAL(void)
     71 start_iMCU_row (j_compress_ptr cinfo)
     72 /* Reset within-iMCU-row counters for a new row */
     73 {
     74   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     75 
     76   /* In an interleaved scan, an MCU row is the same as an iMCU row.
     77    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
     78    * But at the bottom of the image, process only what's left.
     79    */
     80   if (cinfo->comps_in_scan > 1) {
     81     coef->MCU_rows_per_iMCU_row = 1;
     82   } else {
     83     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
     84       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
     85     else
     86       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
     87   }
     88 
     89   coef->mcu_ctr = 0;
     90   coef->MCU_vert_offset = 0;
     91 }
     92 
     93 
     94 /*
     95  * Initialize for a processing pass.
     96  */
     97 
     98 METHODDEF(void)
     99 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
    100 {
    101   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    102 
    103   coef->iMCU_row_num = 0;
    104   start_iMCU_row(cinfo);
    105 
    106   switch (pass_mode) {
    107   case JBUF_PASS_THRU:
    108     if (coef->whole_image[0] != NULL)
    109       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    110     coef->pub.compress_data = compress_data;
    111     break;
    112 #ifdef FULL_COEF_BUFFER_SUPPORTED
    113   case JBUF_SAVE_AND_PASS:
    114     if (coef->whole_image[0] == NULL)
    115       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    116     coef->pub.compress_data = compress_first_pass;
    117     break;
    118   case JBUF_CRANK_DEST:
    119     if (coef->whole_image[0] == NULL)
    120       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    121     coef->pub.compress_data = compress_output;
    122     break;
    123 #endif
    124   default:
    125     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    126     break;
    127   }
    128 }
    129 
    130 
    131 /*
    132  * Process some data in the single-pass case.
    133  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    134  * per call, ie, v_samp_factor block rows for each component in the image.
    135  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
    136  *
    137  * NB: input_buf contains a plane for each component in image,
    138  * which we index according to the component's SOF position.
    139  */
    140 
    141 METHODDEF(boolean)
    142 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    143 {
    144   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    145   JDIMENSION MCU_col_num;       /* index of current MCU within row */
    146   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
    147   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    148   int blkn, bi, ci, yindex, yoffset, blockcnt;
    149   JDIMENSION ypos, xpos;
    150   jpeg_component_info *compptr;
    151 
    152   /* Loop to write as much as one whole iMCU row */
    153   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    154        yoffset++) {
    155     for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
    156          MCU_col_num++) {
    157       /* Determine where data comes from in input_buf and do the DCT thing.
    158        * Each call on forward_DCT processes a horizontal row of DCT blocks
    159        * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
    160        * sequentially.  Dummy blocks at the right or bottom edge are filled in
    161        * specially.  The data in them does not matter for image reconstruction,
    162        * so we fill them with values that will encode to the smallest amount of
    163        * data, viz: all zeroes in the AC entries, DC entries equal to previous
    164        * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
    165        */
    166       blkn = 0;
    167       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    168         compptr = cinfo->cur_comp_info[ci];
    169         blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
    170                                                 : compptr->last_col_width;
    171         xpos = MCU_col_num * compptr->MCU_sample_width;
    172         ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
    173         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    174           if (coef->iMCU_row_num < last_iMCU_row ||
    175               yoffset+yindex < compptr->last_row_height) {
    176             (*cinfo->fdct->forward_DCT) (cinfo, compptr,
    177                                          input_buf[compptr->component_index],
    178                                          coef->MCU_buffer[blkn],
    179                                          ypos, xpos, (JDIMENSION) blockcnt);
    180             if (blockcnt < compptr->MCU_width) {
    181               /* Create some dummy blocks at the right edge of the image. */
    182               jzero_far((void *) coef->MCU_buffer[blkn + blockcnt],
    183                         (compptr->MCU_width - blockcnt) * sizeof(JBLOCK));
    184               for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
    185                 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
    186               }
    187             }
    188           } else {
    189             /* Create a row of dummy blocks at the bottom of the image. */
    190             jzero_far((void *) coef->MCU_buffer[blkn],
    191                       compptr->MCU_width * sizeof(JBLOCK));
    192             for (bi = 0; bi < compptr->MCU_width; bi++) {
    193               coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
    194             }
    195           }
    196           blkn += compptr->MCU_width;
    197           ypos += DCTSIZE;
    198         }
    199       }
    200       /* Try to write the MCU.  In event of a suspension failure, we will
    201        * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
    202        */
    203       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
    204         /* Suspension forced; update state counters and exit */
    205         coef->MCU_vert_offset = yoffset;
    206         coef->mcu_ctr = MCU_col_num;
    207         return FALSE;
    208       }
    209     }
    210     /* Completed an MCU row, but perhaps not an iMCU row */
    211     coef->mcu_ctr = 0;
    212   }
    213   /* Completed the iMCU row, advance counters for next one */
    214   coef->iMCU_row_num++;
    215   start_iMCU_row(cinfo);
    216   return TRUE;
    217 }
    218 
    219 
    220 #ifdef FULL_COEF_BUFFER_SUPPORTED
    221 
    222 /*
    223  * Process some data in the first pass of a multi-pass case.
    224  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    225  * per call, ie, v_samp_factor block rows for each component in the image.
    226  * This amount of data is read from the source buffer, DCT'd and quantized,
    227  * and saved into the virtual arrays.  We also generate suitable dummy blocks
    228  * as needed at the right and lower edges.  (The dummy blocks are constructed
    229  * in the virtual arrays, which have been padded appropriately.)  This makes
    230  * it possible for subsequent passes not to worry about real vs. dummy blocks.
    231  *
    232  * We must also emit the data to the entropy encoder.  This is conveniently
    233  * done by calling compress_output() after we've loaded the current strip
    234  * of the virtual arrays.
    235  *
    236  * NB: input_buf contains a plane for each component in image.  All
    237  * components are DCT'd and loaded into the virtual arrays in this pass.
    238  * However, it may be that only a subset of the components are emitted to
    239  * the entropy encoder during this first pass; be careful about looking
    240  * at the scan-dependent variables (MCU dimensions, etc).
    241  */
    242 
    243 METHODDEF(boolean)
    244 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    245 {
    246   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    247   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    248   JDIMENSION blocks_across, MCUs_across, MCUindex;
    249   int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
    250   JCOEF lastDC;
    251   jpeg_component_info *compptr;
    252   JBLOCKARRAY buffer;
    253   JBLOCKROW thisblockrow, lastblockrow;
    254 
    255   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    256        ci++, compptr++) {
    257     /* Align the virtual buffer for this component. */
    258     buffer = (*cinfo->mem->access_virt_barray)
    259       ((j_common_ptr) cinfo, coef->whole_image[ci],
    260        coef->iMCU_row_num * compptr->v_samp_factor,
    261        (JDIMENSION) compptr->v_samp_factor, TRUE);
    262     /* Count non-dummy DCT block rows in this iMCU row. */
    263     if (coef->iMCU_row_num < last_iMCU_row)
    264       block_rows = compptr->v_samp_factor;
    265     else {
    266       /* NB: can't use last_row_height here, since may not be set! */
    267       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    268       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    269     }
    270     blocks_across = compptr->width_in_blocks;
    271     h_samp_factor = compptr->h_samp_factor;
    272     /* Count number of dummy blocks to be added at the right margin. */
    273     ndummy = (int) (blocks_across % h_samp_factor);
    274     if (ndummy > 0)
    275       ndummy = h_samp_factor - ndummy;
    276     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
    277      * on forward_DCT processes a complete horizontal row of DCT blocks.
    278      */
    279     for (block_row = 0; block_row < block_rows; block_row++) {
    280       thisblockrow = buffer[block_row];
    281       (*cinfo->fdct->forward_DCT) (cinfo, compptr,
    282                                    input_buf[ci], thisblockrow,
    283                                    (JDIMENSION) (block_row * DCTSIZE),
    284                                    (JDIMENSION) 0, blocks_across);
    285       if (ndummy > 0) {
    286         /* Create dummy blocks at the right edge of the image. */
    287         thisblockrow += blocks_across; /* => first dummy block */
    288         jzero_far((void *) thisblockrow, ndummy * sizeof(JBLOCK));
    289         lastDC = thisblockrow[-1][0];
    290         for (bi = 0; bi < ndummy; bi++) {
    291           thisblockrow[bi][0] = lastDC;
    292         }
    293       }
    294     }
    295     /* If at end of image, create dummy block rows as needed.
    296      * The tricky part here is that within each MCU, we want the DC values
    297      * of the dummy blocks to match the last real block's DC value.
    298      * This squeezes a few more bytes out of the resulting file...
    299      */
    300     if (coef->iMCU_row_num == last_iMCU_row) {
    301       blocks_across += ndummy;  /* include lower right corner */
    302       MCUs_across = blocks_across / h_samp_factor;
    303       for (block_row = block_rows; block_row < compptr->v_samp_factor;
    304            block_row++) {
    305         thisblockrow = buffer[block_row];
    306         lastblockrow = buffer[block_row-1];
    307         jzero_far((void *) thisblockrow,
    308                   (size_t) (blocks_across * sizeof(JBLOCK)));
    309         for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
    310           lastDC = lastblockrow[h_samp_factor-1][0];
    311           for (bi = 0; bi < h_samp_factor; bi++) {
    312             thisblockrow[bi][0] = lastDC;
    313           }
    314           thisblockrow += h_samp_factor; /* advance to next MCU in row */
    315           lastblockrow += h_samp_factor;
    316         }
    317       }
    318     }
    319   }
    320   /* NB: compress_output will increment iMCU_row_num if successful.
    321    * A suspension return will result in redoing all the work above next time.
    322    */
    323 
    324   /* Emit data to the entropy encoder, sharing code with subsequent passes */
    325   return compress_output(cinfo, input_buf);
    326 }
    327 
    328 
    329 /*
    330  * Process some data in subsequent passes of a multi-pass case.
    331  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    332  * per call, ie, v_samp_factor block rows for each component in the scan.
    333  * The data is obtained from the virtual arrays and fed to the entropy coder.
    334  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
    335  *
    336  * NB: input_buf is ignored; it is likely to be a NULL pointer.
    337  */
    338 
    339 METHODDEF(boolean)
    340 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    341 {
    342   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    343   JDIMENSION MCU_col_num;       /* index of current MCU within row */
    344   int blkn, ci, xindex, yindex, yoffset;
    345   JDIMENSION start_col;
    346   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
    347   JBLOCKROW buffer_ptr;
    348   jpeg_component_info *compptr;
    349 
    350   /* Align the virtual buffers for the components used in this scan.
    351    * NB: during first pass, this is safe only because the buffers will
    352    * already be aligned properly, so jmemmgr.c won't need to do any I/O.
    353    */
    354   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    355     compptr = cinfo->cur_comp_info[ci];
    356     buffer[ci] = (*cinfo->mem->access_virt_barray)
    357       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
    358        coef->iMCU_row_num * compptr->v_samp_factor,
    359        (JDIMENSION) compptr->v_samp_factor, FALSE);
    360   }
    361 
    362   /* Loop to process one whole iMCU row */
    363   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    364        yoffset++) {
    365     for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
    366          MCU_col_num++) {
    367       /* Construct list of pointers to DCT blocks belonging to this MCU */
    368       blkn = 0;                 /* index of current DCT block within MCU */
    369       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    370         compptr = cinfo->cur_comp_info[ci];
    371         start_col = MCU_col_num * compptr->MCU_width;
    372         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    373           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    374           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    375             coef->MCU_buffer[blkn++] = buffer_ptr++;
    376           }
    377         }
    378       }
    379       /* Try to write the MCU. */
    380       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
    381         /* Suspension forced; update state counters and exit */
    382         coef->MCU_vert_offset = yoffset;
    383         coef->mcu_ctr = MCU_col_num;
    384         return FALSE;
    385       }
    386     }
    387     /* Completed an MCU row, but perhaps not an iMCU row */
    388     coef->mcu_ctr = 0;
    389   }
    390   /* Completed the iMCU row, advance counters for next one */
    391   coef->iMCU_row_num++;
    392   start_iMCU_row(cinfo);
    393   return TRUE;
    394 }
    395 
    396 #endif /* FULL_COEF_BUFFER_SUPPORTED */
    397 
    398 
    399 /*
    400  * Initialize coefficient buffer controller.
    401  */
    402 
    403 GLOBAL(void)
    404 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
    405 {
    406   my_coef_ptr coef;
    407 
    408   coef = (my_coef_ptr)
    409     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    410                                 sizeof(my_coef_controller));
    411   cinfo->coef = (struct jpeg_c_coef_controller *) coef;
    412   coef->pub.start_pass = start_pass_coef;
    413 
    414   /* Create the coefficient buffer. */
    415   if (need_full_buffer) {
    416 #ifdef FULL_COEF_BUFFER_SUPPORTED
    417     /* Allocate a full-image virtual array for each component, */
    418     /* padded to a multiple of samp_factor DCT blocks in each direction. */
    419     int ci;
    420     jpeg_component_info *compptr;
    421 
    422     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    423          ci++, compptr++) {
    424       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    425         ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
    426          (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    427                                 (long) compptr->h_samp_factor),
    428          (JDIMENSION) jround_up((long) compptr->height_in_blocks,
    429                                 (long) compptr->v_samp_factor),
    430          (JDIMENSION) compptr->v_samp_factor);
    431     }
    432 #else
    433     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    434 #endif
    435   } else {
    436     /* We only need a single-MCU buffer. */
    437     JBLOCKROW buffer;
    438     int i;
    439 
    440     buffer = (JBLOCKROW)
    441       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    442                                   C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
    443     for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
    444       coef->MCU_buffer[i] = buffer + i;
    445     }
    446     coef->whole_image[0] = NULL; /* flag for no virtual arrays */
    447   }
    448 }
    449