Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jfdctint.c
      3  *
      4  * This file was part of the Independent JPEG Group's software.
      5  * Copyright (C) 1991-1996, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2015, D. R. Commander
      8  * For conditions of distribution and use, see the accompanying README file.
      9  *
     10  * This file contains a slow-but-accurate integer implementation of the
     11  * forward DCT (Discrete Cosine Transform).
     12  *
     13  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
     14  * on each column.  Direct algorithms are also available, but they are
     15  * much more complex and seem not to be any faster when reduced to code.
     16  *
     17  * This implementation is based on an algorithm described in
     18  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
     19  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
     20  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
     21  * The primary algorithm described there uses 11 multiplies and 29 adds.
     22  * We use their alternate method with 12 multiplies and 32 adds.
     23  * The advantage of this method is that no data path contains more than one
     24  * multiplication; this allows a very simple and accurate implementation in
     25  * scaled fixed-point arithmetic, with a minimal number of shifts.
     26  */
     27 
     28 #define JPEG_INTERNALS
     29 #include "jinclude.h"
     30 #include "jpeglib.h"
     31 #include "jdct.h"               /* Private declarations for DCT subsystem */
     32 
     33 #ifdef DCT_ISLOW_SUPPORTED
     34 
     35 
     36 /*
     37  * This module is specialized to the case DCTSIZE = 8.
     38  */
     39 
     40 #if DCTSIZE != 8
     41   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     42 #endif
     43 
     44 
     45 /*
     46  * The poop on this scaling stuff is as follows:
     47  *
     48  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
     49  * larger than the true DCT outputs.  The final outputs are therefore
     50  * a factor of N larger than desired; since N=8 this can be cured by
     51  * a simple right shift at the end of the algorithm.  The advantage of
     52  * this arrangement is that we save two multiplications per 1-D DCT,
     53  * because the y0 and y4 outputs need not be divided by sqrt(N).
     54  * In the IJG code, this factor of 8 is removed by the quantization step
     55  * (in jcdctmgr.c), NOT in this module.
     56  *
     57  * We have to do addition and subtraction of the integer inputs, which
     58  * is no problem, and multiplication by fractional constants, which is
     59  * a problem to do in integer arithmetic.  We multiply all the constants
     60  * by CONST_SCALE and convert them to integer constants (thus retaining
     61  * CONST_BITS bits of precision in the constants).  After doing a
     62  * multiplication we have to divide the product by CONST_SCALE, with proper
     63  * rounding, to produce the correct output.  This division can be done
     64  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
     65  * as long as possible so that partial sums can be added together with
     66  * full fractional precision.
     67  *
     68  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
     69  * they are represented to better-than-integral precision.  These outputs
     70  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
     71  * with the recommended scaling.  (For 12-bit sample data, the intermediate
     72  * array is INT32 anyway.)
     73  *
     74  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
     75  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
     76  * shows that the values given below are the most effective.
     77  */
     78 
     79 #if BITS_IN_JSAMPLE == 8
     80 #define CONST_BITS  13
     81 #define PASS1_BITS  2
     82 #else
     83 #define CONST_BITS  13
     84 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
     85 #endif
     86 
     87 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     88  * causing a lot of useless floating-point operations at run time.
     89  * To get around this we use the following pre-calculated constants.
     90  * If you change CONST_BITS you may want to add appropriate values.
     91  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     92  */
     93 
     94 #if CONST_BITS == 13
     95 #define FIX_0_298631336  ((INT32)  2446)        /* FIX(0.298631336) */
     96 #define FIX_0_390180644  ((INT32)  3196)        /* FIX(0.390180644) */
     97 #define FIX_0_541196100  ((INT32)  4433)        /* FIX(0.541196100) */
     98 #define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
     99 #define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
    100 #define FIX_1_175875602  ((INT32)  9633)        /* FIX(1.175875602) */
    101 #define FIX_1_501321110  ((INT32)  12299)       /* FIX(1.501321110) */
    102 #define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
    103 #define FIX_1_961570560  ((INT32)  16069)       /* FIX(1.961570560) */
    104 #define FIX_2_053119869  ((INT32)  16819)       /* FIX(2.053119869) */
    105 #define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
    106 #define FIX_3_072711026  ((INT32)  25172)       /* FIX(3.072711026) */
    107 #else
    108 #define FIX_0_298631336  FIX(0.298631336)
    109 #define FIX_0_390180644  FIX(0.390180644)
    110 #define FIX_0_541196100  FIX(0.541196100)
    111 #define FIX_0_765366865  FIX(0.765366865)
    112 #define FIX_0_899976223  FIX(0.899976223)
    113 #define FIX_1_175875602  FIX(1.175875602)
    114 #define FIX_1_501321110  FIX(1.501321110)
    115 #define FIX_1_847759065  FIX(1.847759065)
    116 #define FIX_1_961570560  FIX(1.961570560)
    117 #define FIX_2_053119869  FIX(2.053119869)
    118 #define FIX_2_562915447  FIX(2.562915447)
    119 #define FIX_3_072711026  FIX(3.072711026)
    120 #endif
    121 
    122 
    123 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
    124  * For 8-bit samples with the recommended scaling, all the variable
    125  * and constant values involved are no more than 16 bits wide, so a
    126  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
    127  * For 12-bit samples, a full 32-bit multiplication will be needed.
    128  */
    129 
    130 #if BITS_IN_JSAMPLE == 8
    131 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
    132 #else
    133 #define MULTIPLY(var,const)  ((var) * (const))
    134 #endif
    135 
    136 
    137 /*
    138  * Perform the forward DCT on one block of samples.
    139  */
    140 
    141 GLOBAL(void)
    142 jpeg_fdct_islow (DCTELEM * data)
    143 {
    144   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    145   INT32 tmp10, tmp11, tmp12, tmp13;
    146   INT32 z1, z2, z3, z4, z5;
    147   DCTELEM *dataptr;
    148   int ctr;
    149   SHIFT_TEMPS
    150 
    151   /* Pass 1: process rows. */
    152   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
    153   /* furthermore, we scale the results by 2**PASS1_BITS. */
    154 
    155   dataptr = data;
    156   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    157     tmp0 = dataptr[0] + dataptr[7];
    158     tmp7 = dataptr[0] - dataptr[7];
    159     tmp1 = dataptr[1] + dataptr[6];
    160     tmp6 = dataptr[1] - dataptr[6];
    161     tmp2 = dataptr[2] + dataptr[5];
    162     tmp5 = dataptr[2] - dataptr[5];
    163     tmp3 = dataptr[3] + dataptr[4];
    164     tmp4 = dataptr[3] - dataptr[4];
    165 
    166     /* Even part per LL&M figure 1 --- note that published figure is faulty;
    167      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
    168      */
    169 
    170     tmp10 = tmp0 + tmp3;
    171     tmp13 = tmp0 - tmp3;
    172     tmp11 = tmp1 + tmp2;
    173     tmp12 = tmp1 - tmp2;
    174 
    175     dataptr[0] = (DCTELEM) LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS);
    176     dataptr[4] = (DCTELEM) LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS);
    177 
    178     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    179     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
    180                                    CONST_BITS-PASS1_BITS);
    181     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
    182                                    CONST_BITS-PASS1_BITS);
    183 
    184     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
    185      * cK represents cos(K*pi/16).
    186      * i0..i3 in the paper are tmp4..tmp7 here.
    187      */
    188 
    189     z1 = tmp4 + tmp7;
    190     z2 = tmp5 + tmp6;
    191     z3 = tmp4 + tmp6;
    192     z4 = tmp5 + tmp7;
    193     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    194 
    195     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    196     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    197     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    198     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    199     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    200     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    201     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    202     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    203 
    204     z3 += z5;
    205     z4 += z5;
    206 
    207     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
    208     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
    209     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
    210     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
    211 
    212     dataptr += DCTSIZE;         /* advance pointer to next row */
    213   }
    214 
    215   /* Pass 2: process columns.
    216    * We remove the PASS1_BITS scaling, but leave the results scaled up
    217    * by an overall factor of 8.
    218    */
    219 
    220   dataptr = data;
    221   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    222     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    223     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    224     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    225     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    226     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    227     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    228     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    229     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    230 
    231     /* Even part per LL&M figure 1 --- note that published figure is faulty;
    232      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
    233      */
    234 
    235     tmp10 = tmp0 + tmp3;
    236     tmp13 = tmp0 - tmp3;
    237     tmp11 = tmp1 + tmp2;
    238     tmp12 = tmp1 - tmp2;
    239 
    240     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
    241     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
    242 
    243     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    244     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
    245                                            CONST_BITS+PASS1_BITS);
    246     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
    247                                            CONST_BITS+PASS1_BITS);
    248 
    249     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
    250      * cK represents cos(K*pi/16).
    251      * i0..i3 in the paper are tmp4..tmp7 here.
    252      */
    253 
    254     z1 = tmp4 + tmp7;
    255     z2 = tmp5 + tmp6;
    256     z3 = tmp4 + tmp6;
    257     z4 = tmp5 + tmp7;
    258     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    259 
    260     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    261     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    262     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    263     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    264     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    265     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    266     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    267     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    268 
    269     z3 += z5;
    270     z4 += z5;
    271 
    272     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
    273                                            CONST_BITS+PASS1_BITS);
    274     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
    275                                            CONST_BITS+PASS1_BITS);
    276     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
    277                                            CONST_BITS+PASS1_BITS);
    278     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
    279                                            CONST_BITS+PASS1_BITS);
    280 
    281     dataptr++;                  /* advance pointer to next column */
    282   }
    283 }
    284 
    285 #endif /* DCT_ISLOW_SUPPORTED */
    286