Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jidctflt.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1994-1998, Thomas G. Lane.
      6  * Modified 2010 by Guido Vollbeding.
      7  * libjpeg-turbo Modifications:
      8  * Copyright (C) 2014, D. R. Commander.
      9   * For conditions of distribution and use, see the accompanying README file.
     10  *
     11  * This file contains a floating-point implementation of the
     12  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
     13  * must also perform dequantization of the input coefficients.
     14  *
     15  * This implementation should be more accurate than either of the integer
     16  * IDCT implementations.  However, it may not give the same results on all
     17  * machines because of differences in roundoff behavior.  Speed will depend
     18  * on the hardware's floating point capacity.
     19  *
     20  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
     21  * on each row (or vice versa, but it's more convenient to emit a row at
     22  * a time).  Direct algorithms are also available, but they are much more
     23  * complex and seem not to be any faster when reduced to code.
     24  *
     25  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     26  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     27  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     28  * JPEG textbook (see REFERENCES section in file README).  The following code
     29  * is based directly on figure 4-8 in P&M.
     30  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     31  * possible to arrange the computation so that many of the multiplies are
     32  * simple scalings of the final outputs.  These multiplies can then be
     33  * folded into the multiplications or divisions by the JPEG quantization
     34  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     35  * to be done in the DCT itself.
     36  * The primary disadvantage of this method is that with a fixed-point
     37  * implementation, accuracy is lost due to imprecise representation of the
     38  * scaled quantization values.  However, that problem does not arise if
     39  * we use floating point arithmetic.
     40  */
     41 
     42 #define JPEG_INTERNALS
     43 #include "jinclude.h"
     44 #include "jpeglib.h"
     45 #include "jdct.h"               /* Private declarations for DCT subsystem */
     46 
     47 #ifdef DCT_FLOAT_SUPPORTED
     48 
     49 
     50 /*
     51  * This module is specialized to the case DCTSIZE = 8.
     52  */
     53 
     54 #if DCTSIZE != 8
     55   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     56 #endif
     57 
     58 
     59 /* Dequantize a coefficient by multiplying it by the multiplier-table
     60  * entry; produce a float result.
     61  */
     62 
     63 #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
     64 
     65 
     66 /*
     67  * Perform dequantization and inverse DCT on one block of coefficients.
     68  */
     69 
     70 GLOBAL(void)
     71 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
     72                  JCOEFPTR coef_block,
     73                  JSAMPARRAY output_buf, JDIMENSION output_col)
     74 {
     75   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     76   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
     77   FAST_FLOAT z5, z10, z11, z12, z13;
     78   JCOEFPTR inptr;
     79   FLOAT_MULT_TYPE * quantptr;
     80   FAST_FLOAT * wsptr;
     81   JSAMPROW outptr;
     82   JSAMPLE *range_limit = cinfo->sample_range_limit;
     83   int ctr;
     84   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
     85   #define _0_125 ((FLOAT_MULT_TYPE)0.125)
     86 
     87   /* Pass 1: process columns from input, store into work array. */
     88 
     89   inptr = coef_block;
     90   quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
     91   wsptr = workspace;
     92   for (ctr = DCTSIZE; ctr > 0; ctr--) {
     93     /* Due to quantization, we will usually find that many of the input
     94      * coefficients are zero, especially the AC terms.  We can exploit this
     95      * by short-circuiting the IDCT calculation for any column in which all
     96      * the AC terms are zero.  In that case each output is equal to the
     97      * DC coefficient (with scale factor as needed).
     98      * With typical images and quantization tables, half or more of the
     99      * column DCT calculations can be simplified this way.
    100      */
    101 
    102     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
    103         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
    104         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
    105         inptr[DCTSIZE*7] == 0) {
    106       /* AC terms all zero */
    107       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0],
    108                                     quantptr[DCTSIZE*0] * _0_125);
    109 
    110       wsptr[DCTSIZE*0] = dcval;
    111       wsptr[DCTSIZE*1] = dcval;
    112       wsptr[DCTSIZE*2] = dcval;
    113       wsptr[DCTSIZE*3] = dcval;
    114       wsptr[DCTSIZE*4] = dcval;
    115       wsptr[DCTSIZE*5] = dcval;
    116       wsptr[DCTSIZE*6] = dcval;
    117       wsptr[DCTSIZE*7] = dcval;
    118 
    119       inptr++;                  /* advance pointers to next column */
    120       quantptr++;
    121       wsptr++;
    122       continue;
    123     }
    124 
    125     /* Even part */
    126 
    127     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125);
    128     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125);
    129     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125);
    130     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125);
    131 
    132     tmp10 = tmp0 + tmp2;        /* phase 3 */
    133     tmp11 = tmp0 - tmp2;
    134 
    135     tmp13 = tmp1 + tmp3;        /* phases 5-3 */
    136     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
    137 
    138     tmp0 = tmp10 + tmp13;       /* phase 2 */
    139     tmp3 = tmp10 - tmp13;
    140     tmp1 = tmp11 + tmp12;
    141     tmp2 = tmp11 - tmp12;
    142 
    143     /* Odd part */
    144 
    145     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125);
    146     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125);
    147     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125);
    148     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125);
    149 
    150     z13 = tmp6 + tmp5;          /* phase 6 */
    151     z10 = tmp6 - tmp5;
    152     z11 = tmp4 + tmp7;
    153     z12 = tmp4 - tmp7;
    154 
    155     tmp7 = z11 + z13;           /* phase 5 */
    156     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
    157 
    158     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    159     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
    160     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
    161 
    162     tmp6 = tmp12 - tmp7;        /* phase 2 */
    163     tmp5 = tmp11 - tmp6;
    164     tmp4 = tmp10 - tmp5;
    165 
    166     wsptr[DCTSIZE*0] = tmp0 + tmp7;
    167     wsptr[DCTSIZE*7] = tmp0 - tmp7;
    168     wsptr[DCTSIZE*1] = tmp1 + tmp6;
    169     wsptr[DCTSIZE*6] = tmp1 - tmp6;
    170     wsptr[DCTSIZE*2] = tmp2 + tmp5;
    171     wsptr[DCTSIZE*5] = tmp2 - tmp5;
    172     wsptr[DCTSIZE*3] = tmp3 + tmp4;
    173     wsptr[DCTSIZE*4] = tmp3 - tmp4;
    174 
    175     inptr++;                    /* advance pointers to next column */
    176     quantptr++;
    177     wsptr++;
    178   }
    179 
    180   /* Pass 2: process rows from work array, store into output array. */
    181 
    182   wsptr = workspace;
    183   for (ctr = 0; ctr < DCTSIZE; ctr++) {
    184     outptr = output_buf[ctr] + output_col;
    185     /* Rows of zeroes can be exploited in the same way as we did with columns.
    186      * However, the column calculation has created many nonzero AC terms, so
    187      * the simplification applies less often (typically 5% to 10% of the time).
    188      * And testing floats for zero is relatively expensive, so we don't bother.
    189      */
    190 
    191     /* Even part */
    192 
    193     /* Apply signed->unsigned and prepare float->int conversion */
    194     z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
    195     tmp10 = z5 + wsptr[4];
    196     tmp11 = z5 - wsptr[4];
    197 
    198     tmp13 = wsptr[2] + wsptr[6];
    199     tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
    200 
    201     tmp0 = tmp10 + tmp13;
    202     tmp3 = tmp10 - tmp13;
    203     tmp1 = tmp11 + tmp12;
    204     tmp2 = tmp11 - tmp12;
    205 
    206     /* Odd part */
    207 
    208     z13 = wsptr[5] + wsptr[3];
    209     z10 = wsptr[5] - wsptr[3];
    210     z11 = wsptr[1] + wsptr[7];
    211     z12 = wsptr[1] - wsptr[7];
    212 
    213     tmp7 = z11 + z13;
    214     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
    215 
    216     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    217     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
    218     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
    219 
    220     tmp6 = tmp12 - tmp7;
    221     tmp5 = tmp11 - tmp6;
    222     tmp4 = tmp10 - tmp5;
    223 
    224     /* Final output stage: float->int conversion and range-limit */
    225 
    226     outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
    227     outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
    228     outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
    229     outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
    230     outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
    231     outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
    232     outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
    233     outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
    234 
    235     wsptr += DCTSIZE;           /* advance pointer to next row */
    236   }
    237 }
    238 
    239 #endif /* DCT_FLOAT_SUPPORTED */
    240