Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jidctred.c
      3  *
      4  * This file was part of the Independent JPEG Group's software.
      5  * Copyright (C) 1994-1998, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2015, D. R. Commander
      8  * For conditions of distribution and use, see the accompanying README file.
      9  *
     10  * This file contains inverse-DCT routines that produce reduced-size output:
     11  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
     12  *
     13  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
     14  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
     15  * with an 8-to-4 step that produces the four averages of two adjacent outputs
     16  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
     17  * These steps were derived by computing the corresponding values at the end
     18  * of the normal LL&M code, then simplifying as much as possible.
     19  *
     20  * 1x1 is trivial: just take the DC coefficient divided by 8.
     21  *
     22  * See jidctint.c for additional comments.
     23  */
     24 
     25 #define JPEG_INTERNALS
     26 #include "jinclude.h"
     27 #include "jpeglib.h"
     28 #include "jdct.h"               /* Private declarations for DCT subsystem */
     29 
     30 #ifdef IDCT_SCALING_SUPPORTED
     31 
     32 
     33 /*
     34  * This module is specialized to the case DCTSIZE = 8.
     35  */
     36 
     37 #if DCTSIZE != 8
     38   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     39 #endif
     40 
     41 
     42 /* Scaling is the same as in jidctint.c. */
     43 
     44 #if BITS_IN_JSAMPLE == 8
     45 #define CONST_BITS  13
     46 #define PASS1_BITS  2
     47 #else
     48 #define CONST_BITS  13
     49 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
     50 #endif
     51 
     52 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     53  * causing a lot of useless floating-point operations at run time.
     54  * To get around this we use the following pre-calculated constants.
     55  * If you change CONST_BITS you may want to add appropriate values.
     56  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     57  */
     58 
     59 #if CONST_BITS == 13
     60 #define FIX_0_211164243  ((INT32)  1730)        /* FIX(0.211164243) */
     61 #define FIX_0_509795579  ((INT32)  4176)        /* FIX(0.509795579) */
     62 #define FIX_0_601344887  ((INT32)  4926)        /* FIX(0.601344887) */
     63 #define FIX_0_720959822  ((INT32)  5906)        /* FIX(0.720959822) */
     64 #define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
     65 #define FIX_0_850430095  ((INT32)  6967)        /* FIX(0.850430095) */
     66 #define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
     67 #define FIX_1_061594337  ((INT32)  8697)        /* FIX(1.061594337) */
     68 #define FIX_1_272758580  ((INT32)  10426)       /* FIX(1.272758580) */
     69 #define FIX_1_451774981  ((INT32)  11893)       /* FIX(1.451774981) */
     70 #define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
     71 #define FIX_2_172734803  ((INT32)  17799)       /* FIX(2.172734803) */
     72 #define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
     73 #define FIX_3_624509785  ((INT32)  29692)       /* FIX(3.624509785) */
     74 #else
     75 #define FIX_0_211164243  FIX(0.211164243)
     76 #define FIX_0_509795579  FIX(0.509795579)
     77 #define FIX_0_601344887  FIX(0.601344887)
     78 #define FIX_0_720959822  FIX(0.720959822)
     79 #define FIX_0_765366865  FIX(0.765366865)
     80 #define FIX_0_850430095  FIX(0.850430095)
     81 #define FIX_0_899976223  FIX(0.899976223)
     82 #define FIX_1_061594337  FIX(1.061594337)
     83 #define FIX_1_272758580  FIX(1.272758580)
     84 #define FIX_1_451774981  FIX(1.451774981)
     85 #define FIX_1_847759065  FIX(1.847759065)
     86 #define FIX_2_172734803  FIX(2.172734803)
     87 #define FIX_2_562915447  FIX(2.562915447)
     88 #define FIX_3_624509785  FIX(3.624509785)
     89 #endif
     90 
     91 
     92 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
     93  * For 8-bit samples with the recommended scaling, all the variable
     94  * and constant values involved are no more than 16 bits wide, so a
     95  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
     96  * For 12-bit samples, a full 32-bit multiplication will be needed.
     97  */
     98 
     99 #if BITS_IN_JSAMPLE == 8
    100 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
    101 #else
    102 #define MULTIPLY(var,const)  ((var) * (const))
    103 #endif
    104 
    105 
    106 /* Dequantize a coefficient by multiplying it by the multiplier-table
    107  * entry; produce an int result.  In this module, both inputs and result
    108  * are 16 bits or less, so either int or short multiply will work.
    109  */
    110 
    111 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
    112 
    113 
    114 /*
    115  * Perform dequantization and inverse DCT on one block of coefficients,
    116  * producing a reduced-size 4x4 output block.
    117  */
    118 
    119 GLOBAL(void)
    120 jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
    121                JCOEFPTR coef_block,
    122                JSAMPARRAY output_buf, JDIMENSION output_col)
    123 {
    124   INT32 tmp0, tmp2, tmp10, tmp12;
    125   INT32 z1, z2, z3, z4;
    126   JCOEFPTR inptr;
    127   ISLOW_MULT_TYPE * quantptr;
    128   int * wsptr;
    129   JSAMPROW outptr;
    130   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    131   int ctr;
    132   int workspace[DCTSIZE*4];     /* buffers data between passes */
    133   SHIFT_TEMPS
    134 
    135   /* Pass 1: process columns from input, store into work array. */
    136 
    137   inptr = coef_block;
    138   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
    139   wsptr = workspace;
    140   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    141     /* Don't bother to process column 4, because second pass won't use it */
    142     if (ctr == DCTSIZE-4)
    143       continue;
    144     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
    145         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
    146         inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
    147       /* AC terms all zero; we need not examine term 4 for 4x4 output */
    148       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
    149                              PASS1_BITS);
    150 
    151       wsptr[DCTSIZE*0] = dcval;
    152       wsptr[DCTSIZE*1] = dcval;
    153       wsptr[DCTSIZE*2] = dcval;
    154       wsptr[DCTSIZE*3] = dcval;
    155 
    156       continue;
    157     }
    158 
    159     /* Even part */
    160 
    161     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    162     tmp0 = LEFT_SHIFT(tmp0, CONST_BITS+1);
    163 
    164     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    165     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    166 
    167     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
    168 
    169     tmp10 = tmp0 + tmp2;
    170     tmp12 = tmp0 - tmp2;
    171 
    172     /* Odd part */
    173 
    174     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    175     z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    176     z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    177     z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    178 
    179     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
    180          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
    181          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
    182          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
    183 
    184     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
    185          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
    186          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
    187          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
    188 
    189     /* Final output stage */
    190 
    191     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
    192     wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
    193     wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
    194     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
    195   }
    196 
    197   /* Pass 2: process 4 rows from work array, store into output array. */
    198 
    199   wsptr = workspace;
    200   for (ctr = 0; ctr < 4; ctr++) {
    201     outptr = output_buf[ctr] + output_col;
    202     /* It's not clear whether a zero row test is worthwhile here ... */
    203 
    204 #ifndef NO_ZERO_ROW_TEST
    205     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
    206         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
    207       /* AC terms all zero */
    208       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
    209                                   & RANGE_MASK];
    210 
    211       outptr[0] = dcval;
    212       outptr[1] = dcval;
    213       outptr[2] = dcval;
    214       outptr[3] = dcval;
    215 
    216       wsptr += DCTSIZE;         /* advance pointer to next row */
    217       continue;
    218     }
    219 #endif
    220 
    221     /* Even part */
    222 
    223     tmp0 = LEFT_SHIFT((INT32) wsptr[0], CONST_BITS+1);
    224 
    225     tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
    226          + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
    227 
    228     tmp10 = tmp0 + tmp2;
    229     tmp12 = tmp0 - tmp2;
    230 
    231     /* Odd part */
    232 
    233     z1 = (INT32) wsptr[7];
    234     z2 = (INT32) wsptr[5];
    235     z3 = (INT32) wsptr[3];
    236     z4 = (INT32) wsptr[1];
    237 
    238     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
    239          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
    240          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
    241          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
    242 
    243     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
    244          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
    245          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
    246          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
    247 
    248     /* Final output stage */
    249 
    250     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
    251                                           CONST_BITS+PASS1_BITS+3+1)
    252                             & RANGE_MASK];
    253     outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
    254                                           CONST_BITS+PASS1_BITS+3+1)
    255                             & RANGE_MASK];
    256     outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
    257                                           CONST_BITS+PASS1_BITS+3+1)
    258                             & RANGE_MASK];
    259     outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
    260                                           CONST_BITS+PASS1_BITS+3+1)
    261                             & RANGE_MASK];
    262 
    263     wsptr += DCTSIZE;           /* advance pointer to next row */
    264   }
    265 }
    266 
    267 
    268 /*
    269  * Perform dequantization and inverse DCT on one block of coefficients,
    270  * producing a reduced-size 2x2 output block.
    271  */
    272 
    273 GLOBAL(void)
    274 jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
    275                JCOEFPTR coef_block,
    276                JSAMPARRAY output_buf, JDIMENSION output_col)
    277 {
    278   INT32 tmp0, tmp10, z1;
    279   JCOEFPTR inptr;
    280   ISLOW_MULT_TYPE * quantptr;
    281   int * wsptr;
    282   JSAMPROW outptr;
    283   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    284   int ctr;
    285   int workspace[DCTSIZE*2];     /* buffers data between passes */
    286   SHIFT_TEMPS
    287 
    288   /* Pass 1: process columns from input, store into work array. */
    289 
    290   inptr = coef_block;
    291   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
    292   wsptr = workspace;
    293   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    294     /* Don't bother to process columns 2,4,6 */
    295     if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
    296       continue;
    297     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
    298         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
    299       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
    300       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
    301                              PASS1_BITS);
    302 
    303       wsptr[DCTSIZE*0] = dcval;
    304       wsptr[DCTSIZE*1] = dcval;
    305 
    306       continue;
    307     }
    308 
    309     /* Even part */
    310 
    311     z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    312     tmp10 = LEFT_SHIFT(z1, CONST_BITS+2);
    313 
    314     /* Odd part */
    315 
    316     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    317     tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
    318     z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    319     tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
    320     z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    321     tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
    322     z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    323     tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
    324 
    325     /* Final output stage */
    326 
    327     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
    328     wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
    329   }
    330 
    331   /* Pass 2: process 2 rows from work array, store into output array. */
    332 
    333   wsptr = workspace;
    334   for (ctr = 0; ctr < 2; ctr++) {
    335     outptr = output_buf[ctr] + output_col;
    336     /* It's not clear whether a zero row test is worthwhile here ... */
    337 
    338 #ifndef NO_ZERO_ROW_TEST
    339     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
    340       /* AC terms all zero */
    341       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
    342                                   & RANGE_MASK];
    343 
    344       outptr[0] = dcval;
    345       outptr[1] = dcval;
    346 
    347       wsptr += DCTSIZE;         /* advance pointer to next row */
    348       continue;
    349     }
    350 #endif
    351 
    352     /* Even part */
    353 
    354     tmp10 = LEFT_SHIFT((INT32) wsptr[0], CONST_BITS+2);
    355 
    356     /* Odd part */
    357 
    358     tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
    359          + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
    360          + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
    361          + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
    362 
    363     /* Final output stage */
    364 
    365     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
    366                                           CONST_BITS+PASS1_BITS+3+2)
    367                             & RANGE_MASK];
    368     outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
    369                                           CONST_BITS+PASS1_BITS+3+2)
    370                             & RANGE_MASK];
    371 
    372     wsptr += DCTSIZE;           /* advance pointer to next row */
    373   }
    374 }
    375 
    376 
    377 /*
    378  * Perform dequantization and inverse DCT on one block of coefficients,
    379  * producing a reduced-size 1x1 output block.
    380  */
    381 
    382 GLOBAL(void)
    383 jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
    384                JCOEFPTR coef_block,
    385                JSAMPARRAY output_buf, JDIMENSION output_col)
    386 {
    387   int dcval;
    388   ISLOW_MULT_TYPE * quantptr;
    389   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    390   SHIFT_TEMPS
    391 
    392   /* We hardly need an inverse DCT routine for this: just take the
    393    * average pixel value, which is one-eighth of the DC coefficient.
    394    */
    395   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
    396   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
    397   dcval = (int) DESCALE((INT32) dcval, 3);
    398 
    399   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
    400 }
    401 
    402 #endif /* IDCT_SCALING_SUPPORTED */
    403